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Abstract 
Fitness improving innovations occur in populations of 
organisms as genetic changes (mutations) that allow better fit 
with the environmental niche of the organisms. Similarly, 
fitness improving innovations may occur in the context of 
human communities as well in terms of socio-economic 
innovations (e.g. new ways of organizing the military, new 
products or services) that lead to more efficient use of available 
resources. Here we explore the link between such innovations 
and the harshness of the environment, where the populations 
live. Environmental harshness characterizes the availability of 
population growth supporting resources in the environment. 
Our analysis shows that if the harshness of the environment 
varies smoothly with the distance, the expected extent of fitness 
improving innovations and of the resource utilization efficiency 
of populations depends in a combined linear and harmonic 
manner on the harshness of the environment at the location of 
origin of the populations. We explore the implications of this 
result for particular cases of both biological and social 
environments (e.g. gene drives, business innovation).  

Introduction 
At any time there is usually a diverse community of organisms 
at any geographical location (Gould, 2002). These organisms 
typically belong to more then one, and often many, distinct 
populations of organisms. The same happen also in terms of 
humans belonging to culturally distinct populations and 
companies and organizations belonging to distinct sectors of 
the economy (Diamond, 1997; Arthur, 2009). Some of these 
populations are more successful than others. The successful 
populations spread widely and become dominant, in terms of 
the number of individuals, among the co-existing populations 
for a considerable period of time over some extensive 
geographical range (Andras, 2015; Diamond, 1997; Gould, 
2002; Nielsen et al, 2017; Turchin, 2006). 
 The spreading of populations generally can be described as 
a reaction-diffusion process (Volpert and Petrovskii, 2009). 
Generally, individuals belonging a particular population 
migrate to geographically neighboring areas and establish the 
presence of their population there. The meaning of neighboring 
areas depends on the context, e.g. in the case of animal or plant 
populations it is a close distance sufficiently hospitable 
location, but in the context of globally mobile companies may 
mean almost any location around the Earth with sufficient 
support services present. 
 Populations of living organisms change by accumulating 
mutations in their DNA that lead to the emergence of features 

or behaviors at cellular or organismal scale, which give a 
selective advantage to the individuals harboring these 
mutations (Maynard Smith and Szathmary, 2000). This 
process leads to the emergence of new, genetically and 
reproductively separated, populations of organisms (Yom-Tov 
and Geffen, 2011). Similar processes happen at the level of 
socio-economic organization of human communities as well, 
leading to the emergence of new, culturally distinct, 
populations and new, technologically distinct, areas of 
economic activity filled by a corresponding new population of 
human organizations (Arthur, 2009; Fukuyama, 2011; 
Turchin, 2006). The actual process of how these changes 
accumulate to generate the innovations leading to the 
emergence of new populations is not yet fully known (Maynard 
Smith and Szathmary, 2000). 
 Examples of innovations that define new populations 
include the development of foot adaptations in animals 
(Holowka and Lieberman, 2018) or the development of 
drought resistance in plants (Kooyers, 2015). In the case of 
human populations an example is the development of settled 
agriculture (Diamond and Bellwood, 2003) or in the case of 
companies the development of new products or technologies 
(Arthur, 2009) such as provision of social media services or 
the development of diesel engines. 
 A number of environmental factors influence the spreading 
of populations (Andras, 2015; Barraclough, Vogler and 
Harvey, 1998;  Fukuyama, 2011). Such factors include the 
presence of geographical barriers (e.g. mountains, sea, rivers), 
variation in the harshness of the environment (e.g. cold/warm, 
arid/wet areas, presence/absence of disease spreading vectors), 
the extent of competition among co-existing populations (e.g. 
increased number of populations in overlapping environmental 
niches may lead to more competition among populations), or 
the speed of growth of co-existing populations (e.g. plentiful 
resources may facilitate fast growth of all populations). These 
environmental factors modulate the spreading of populations 
by altering the diffusion process that drives the population 
spreading (Andras, 2015). 
 Previously it has been reported that the average extent of 
innovations emerging in populations increases with the 
harshness of the environment where the new population 
originates (Andras, 2015). In terms of interpretation it has been 
suggested that the likely reason is that in harsher environments 
fitness innovations of larger extent are needed to result in 
sufficient growth of the population to spread to other areas and 
in such environments larger innovations have amplified effect 
on the growth success of the populations. On the other hand, in 



 

 

less harsh areas, even small innovations may provide sufficient 
advantage for a comparative growth benefit that may lead to 
the emergence of a successful population (Andras, 2015). 
However, the reported findings have also shown an 
unexplained wavy nature of the variation of the mean extent of 
innovation with the harshness of the environment 
superimposed on the above noted linear relationship.  

Here we explore and explain the nature of this wavy 
relationship between the harshness of the environment and the 
average extent of fitness innovations. We also show that the 
resource utilization efficiency of successful populations also 
follows a similar, but phase sifted, wavy relationship with the 
harshness of the location of origin, similarly superimposed on a 
linear relationship. These results have implications for a 
number of research and technological applications area that 
relate to the emergence of innovations in populations, such as 
the use of gene drive technologies, emergence of antibiotic 
resistance, and policies for support of business innovation. 

 The rest of the paper is organized as follows. First we 
review briefly the relevant background. Next we describe the 
core equations and theoretical derivations about the 
distribution of fitness improving innovations and the impact of 
environmental factors on this. This is followed by a brief 
summary of the simulation environment that we used. Then we 
describe our results and the interpretation and discussion of 
these. Finally, the paper is closed by the conclusions section. 

Background 
The spreading of populations of organisms and culturally 
different human populations is usually modeled using reaction-
diffusion equations (Volpert and Petrovskii, 2009). This has 
the following general form 
 

∂ q(x,t)/ ∂ t = ∇(D(q,x)⋅ ∇q(x,t))+F(q,x,t) (1) 
 
where q(x,t) is the size or quantity (i.e. normalized number of 
individuals) of a given population at location x and time t, 
D(q,x) is the diffusivity of the environment at location x and for 
population size q, and F(q,x,t) is the reaction terms, which 
expresses the local dynamics of the population given its size 
q(x,t) at spatial position x and time t. This last term includes 
the impact of death and birth of individuals on the population 
size and also the impact of other factors, such as the 
competition with other populations, the availability of 
resources at the location and so on. The impact of the 
harshness of the environment on populations can be 
incorporated into this term within the reaction-diffusion model 
of population spreading. The diffusivity element of the model 
characterizes the ease / difficulty of spreading from one 
location to a neighboring location. This element would include 
for example the presence of natural barriers, such as mountains 
or rivers in the environment (Andras, 2015).  
 While the reaction-diffusion model of population spreading 
is very useful for conceptual and formal analysis of the 
spreading process it has its limitations. These stem mainly 
from the limits of formal analysis for cases with non-simple 
forms of the reaction term and also for cases with complex 
structure for the diffusivity element. Building models that aim 
to capture realistic conditions and constraints often lead to 

models with such non-simple reaction terms and diffusivity 
elements (Andras, 2015; Cheng et al, 2014). In such cases 
agent based models can be used very effectively (Montenegro 
et al, 2016). In these models a discrete version of equation (1) 
is used in combination with the modeling of populations by a 
collection of agents that make a few algorithmic and possibly 
stochastic decisions (e.g. reproduction, movement, division, 
etc.). Such agent-based models of population spreading can 
also include the process of accumulation of innovations (e.g. 
simulating the impact of genetic mutations or of cultural-
technical changes). 
 The emergence of genetic changes that lead to cellular or 
organismal level fitness improving innovations has been 
researched for many years (Maynard Smith and Szathmary, 
2000). Although there are still many aspects of this process 
that are unclear, there is important progress in some respects. 
The best understood aspects of such processes relate to the 
emergence of antibacterial resistance in bacteria (Blair et al, 
2015) and the evolution of viruses (Vijaykrishna, Mukerji, and 
Smith, 2015). Recent works also show how the replication of 
mammalian genes leads to the emergence of fitness improving 
genetic innovations (Carelli et al, 2016) and the emergence and 
fitness improving usefulness of mutations in plants have been 
also analyzed using observations of natural spreading of 
relatively recently introduced invasive plant species (Exposito-
Alonso et al, 2018). In the context of emergence cultural-
technical changes that lead to fitness improving innovations 
among companies or human populations there is also 
considerable related research (Arthur, 2009; Fukuyama, 
2014). Genomic studies of human population spreading can 
indicate the origins of innovations and the directions of 
spreading, although do not convey information about how the 
innovations came about (Nielsen et al, 2017). Both biological 
evolution and simulation-based research show that 
environmental barriers, which provide relative isolative 
protection to evolution of species, increase the frequency of 
fitness improving innovations, while the lack of such barriers 
reduces this frequency (Mazancourt et al, 2008; Millien, 2006; 
Yom-Tov and Geffen, 2011; Andras, 2015). 
 Previous works on modeling the spreading of human 
populations and animal species have used agent-based models 
to analyze the location of origin and the spreading pattern of 
populations (Andras, 2015; Montenegro et al, 2016). Andras 
(2015) used agent-based simulation to show that the average 
resource utilization efficiency and average time persistence of 
successful populations reduces linearly with the harshness of 
the location of origin of these populations. Similarly the paper 
also shows that the average extent of fitness improving 
innovations of successful populations increases linearly with 
the harshness of the location of origin. However, in all these 
cases the paper shows that superimposed on the linear 
relationship there is also a periodic, wavy relationship with the 
harshness of the location of origin. This aspect of the 
relationship has not been fully explained in Andras (2015).  

Fitness Improving Innovations and 
Environmental Factors 

We assume that the populations exist in an environment 
characterized at each location by the environmental harshness, 



 

 

h. This effectively sets the level of resources available at that 
location, higher h implying more scarcity of resources. Note 
that this definition of environmental harshness is very generic 
and it may incorporate effects of the physical environment, 
such as aridity, temperature or availability of shelter, and also 
effects of the live environment, such as predation risk. 

Populations are characterized by their resource utilization 
efficiency, r, which determines to what extent they can use the 
resources available at a given location. The population growth 
rate depends on the resource utilization efficiency of the 
population, on the available resources and also on the general 
growth support of the available resources and the competition 
between different co-existing populations for the resources. A 
relatively general assumption is that the population growth 
rate, ρ, is proportional with the general growth support, γ, the 
extent of the competitiveness of the population, η, a gradually 
saturating function of the resource utilization efficiency of the 
population (e.g. ln(1+r)) and is inversely proportional with the 
harshness of the environment, h. The growth rate should also 
take account the death rate of the population,θ, which is 
assumed to be the same for all competing populations, but is 
altered locally additively proportionally with the general 
growth support, γ, and inversely proportionally with the 
harshness of the environment, h. The corresponding equation 
is: 

 
ρ = γ ⋅ η ⋅ ln(1+r)) / h – θ +γ / h (2) 

 
A fitness innovation is defined as a change in the resource 

utilization efficiency of a part of a pre-existing population, ∆r, 
due to mutations to the genes of the organism or changes to the 
cultural-technical processes of the human population (Maynard 
Smith and Szathmary, 2000; Turchin, 2006). A fitness 
improving innovation is such a fitness innovation that improves 
the resource utilization efficiency of the population, i.e. when 
∆r > 0. For example, this may mean the emergence of 
enzymes that allow the animals to digest their food more 
efficiently, or the emergence of molecular changes that allow 
the build-up of larger and stronger muscle mass, or the 
emergence of cultural changes that allow better agricultural 
practices that make possible the feeding of a larger population 
without requiring extension of the available agricultural land 
area (Diamond and Bellwood, 2003; Fukuyama, 2014; 
Maynard Smith and Szathmary, 2000; Turchin, 2006). 

The general growth support of the environment,γ, is a 
general environmental factor that modulates the effectiveness 
of the impact of the environmental harshness on the 
populations. For example, large scale climate effects may alter 
in such way the impact of environmental harshness, or the 
general accessibility of a technology for all human populations 
may change the effectiveness of the environmental harshness. 

The competitiveness of a population depends on the relative 
resource utilization efficiency of the population in comparison 
with other co-existing populations. A conceptually simple 
approach to defining such competitiveness is to consider a 
function that saturates both for high and low values, such as 
the sigmoidal function of an expression that quantifies the 
relative strength of the resource utilization of the population. 
For example, we may define the extent of competitiveness as: 

 
η =1/(1+exp( – α⋅ r / (Σk rpop-k)) (3) 

where α is an environmental factor that characterizes the 
steepness of the competition in the given environment, and the 
summation is applied over all resource utilization values of all 
co-existing populations. We note that a similar approach is 
used in the context of calculating the competitiveness of plant 
species (Kattenborn et al, 2017; Hodgson et al, 1999). In our 
approach the sigmoidal transformation reduces the 
competitiveness differences in the top and bottom extremes. 
 Finally, the spreading of the populations will also be 
influenced by the presence of natural barriers, such as 
mountain ranges, rivers, sea, which make difficult to cross the 
barrier (Andras, 2015; Barraclough, Vogler and Harvey, 
1998). The presence of natural barriers can be incorporated 
into the diffusivity of the environment, D(x), where x is the 
location. The other environmental factors noted above, h, α, γ, 
θ, and the resource utilization efficiency, r, get incorporated 
into the reaction term, F(q,x,t), of the population diffusion 
equation (1), where q is the size of the population and t is the 
time. 
 We aim to determine the mean resource utilization 
efficiency of populations originating from locations with 
environmental harshness h and also the mean amount of fitness 
improving innovation for these populations. Given that in 
natural environments the harshness varies relatively smoothly 
with the location in the environment, we adopt this assumption. 
We also assume that the chance of generating any resource 
utilization innovation is β, where 0 < β < 1, independently of 
the location and the amount of innovation. This is a simplifying 
assumption.  
 First, let us consider the count of populations with resource 
utilization efficiency r at locations with environmental 
harshness h at time t, ge(r,h,t). At any time the difference in the 
number of populations moving in and those that move out of 
the area, all with resource utilization efficiency r, is the 
population move induced change of the number of such 
populations, in areas with harshness h. Some of these 
populations may die out and some new population with 
resource utilization efficiency r may emerge following a 
mutation in populations with different resource utilization 
efficiency. The number of newly emerging populations with 
resource utilization efficiency r, depends on the past number of 
the source populations summed up over all possible r values. 
In terms of equations we can write 
 
β ⋅ Σ∆r ge(r – ∆r,h,t – ∆t) =β ⋅ Σ∆r (ge(r – ∆r,h,t – ∆t) – 

ge(r – ∆r,h,t) ) + β ⋅ Σ∆r (ge(r – ∆r,h,t) 
(4) 

 
Turning the above equation in continuous form as ∆r and ∆t 
become very small, we get the differential equation 
formulation for the number of emerging new populations with 
resource utilization efficiency r: 
 

– β ⋅ ∫∆R ∂ ge(r – ∆r,h,t )/ ∂ t d∆r +  
β ⋅ ∫∆R ge(r – ∆r,h,t) d∆r 

(5) 

 
where ∆R is the value range of ∆r-s – we note that this 
formulation allows fractional counts of populations as well. 
Summing up the noted parts, we get the equation for the 
number of populations with resource utilization efficiency r, 
including all changes: 
 



 

 

∂ ge(r,h,t )/ ∂ t = – a ⋅ ∂ 2ge(r,h,t )/ ∂ h2 –  
δ ⋅ (h / r) ⋅ ge(r,h,t ) – 

β ⋅ ∫∆R ∂ ge(r – ∆r,h,t )/ ∂ t d∆r +  
β ⋅ ∫∆R ge(r – ∆r,h,t) d∆r 

(6) 

 
where δ ⋅ (h / r) is the extinction multiplier, proportional with 
the harshness of the environment and inversely proportional 
with the resource utilization efficiency of the populations. 
Considering Ge(r,h,t) = ∫∆R ge(r – ∆r,h,t) d∆r, we can write 
 
∂ 2 Ge(r,h,t )/ ∂ t∂∆r = – a ⋅ ∂ 3Ge(r,h,t )/ ∂ h2∂∆r –  

δ ⋅ (h / r) ⋅ ∂ Ge(r,h,t )/ ∂∆r – 
β ⋅ ∂ Ge(r,h,t )/ ∂ t +  

β ⋅ Ge(r,h,t) 

(7) 

We define the following function: 
 

ur,h,t(r’,h’,t’) =β ⋅ ∂ Ge(r,h,t )/ ∂ t +  
β ⋅ Ge(r,h,t) 

(8) 

 
which is the number of populations with resource utilization 
efficiency r that newly emerged at a location with harshness h 
at time t and then spread all around. This definition implies that 
 

ur,h,t(h’,t’) = 0 (9) 
 
for all h’ ≠ h and t’ ≤ t and also for h’ = h and t’ < t. Using the 
above reasoning, we can write the equation 
 

∂ ur,h,t(h’,t’ )/ ∂ t’ = – a ⋅ ∂ 2ur,h,t(h’,t’ )/ ∂ h2 –  
δ ⋅ (h’ / r) ⋅ ur,h,t(h,t ) 

(10) 

 
given that we are not interested in this case of innovation 
induced emergence of new populations. 
 These populations persist for sufficient time, τ, if 
 

∫H ur,h,t(h’,t + τ)dh’ > 0 (11) 
 
where H is the full range of environmental harshness values. 
Considering the populations that persist for long time, some of 
these will become dominant and successful in the sense they 
will account for a considerable part of the overall population in 
the whole area. The practical meaning of sufficiently long 
persistence, sufficient size and whole area will depend on the 
context (e.g. for example this may mean a hundred years, 5% 
of the total population over an area of the size of an average 
European country, in the case of human populations). 
Considering that the populations will spread over locations 
with all h values, over a long time period, and that there will be 
always other populations with both higher and lower r values 
around, the ratio of becoming successful should not change 
with h, r or t, and this fixed ratio is denoted as κ. We note that 
if the r values can go only up to a certain limit r* then there will 
be an effect on the success ratio that depends on the value of r 
when this is close to r*. So, the proportion of successful 
populations with resource utilization efficiency r originating 
from an area with harshness h at time t is: 
 

κ ⋅ ∫T(τ) ∫H ur,h,t(h’,t + τ’)dh’dτ’ / ur,h,t(h,t) (12) 
 
where T(τ) = [τ, T* – τ] is the considered time domain, T* 
being the maximum time considered for the calculations. 

Thus the chance for a population with resource utilization 
efficiency r originating from an area with harshness h to 
become a successful population is: 
 

q(r,h) = κ ⋅ ∫T# ∫T(τ”) ∫H (ur,h,t(h’, τ” + τ’)dh’dτ’ / 
ur,h,t(h,τ”)) dτ” 

(13) 

 
where T# = (0,T*) is the full considered time domain and T(τ”) 
= [τ”,T* – τ”]. 
 Then we can calculate the chance of having a population as 
a result of a ∆r fitness innovation, while it is originating from 
an area with harshness h at time t, by summing up (integrating) 
over all r values. This is: 
 

vtime(∆r,h,t) = ∫R q(r+∆r,h) ⋅ ge(r,h,t)dr /  
∫R ge(r,h,t)dr  

(14) 

 
where R is the full range of r values. Integrating this over time, 
gives us the overall chance of having successful populations 
originating at a location with harshness h and as a result of a 
fitness innovation ∆r: 
 

v(∆r,h) = ∫T# (∫R q(r+∆r,h) ⋅ ge(r,h,τ’)dr /  
Ge(r,h,τ’))dτ’  

(15) 

 
where T# is defined as before. 
 Using these equations we can calculate the mean resource 
utilization efficiency and the mean fitness innovation for 
populations originating at locations with harshness h as 
follows: 
 

rm(h) = ∫R r ⋅ q(r,h) dr 
  

(16) 

∆rm(h) = ∫∆R ∆r ⋅ v(∆r,h) d∆r (17) 
 
where ∆R is the full range of ∆r values and R is defined as 
above. 
 Given the form of equation (7) that defines Ge(r,h,t) we 
conclude that if the ∂ 2/ ∂ h2 component of equation (7) is non-
zero then Ge(r,h,t) will have a dampened harmonic (i.e. 
dampened sinusoidal) component in it. Considering the 
dependence of q(r,h) and v(∆r,h) on Ge(r,h,t), the mean values 
of r and ∆r will contain similarly a dampened harmonic 
component in addition to a linear component. The reason 
behind this is that equations similar to equation (7) can be 
written for rm(h) and ∆rm(h) as well. This is valid as long as the 
environmental harshness, h, varies smoothly with the distance 
between the locations. If this is not the case, this result no 
longer holds. For example, if h would vary randomly, then the 
∂ 2/ ∂ h2 component of equation (7) would zero out and the 
expectation would be to have no dampened sinusoidal 
component in these mean values as a function of the 
environmental harshness. However, such random variation is 
very unlikely in natural environments. 
 The above reasoning explains the finding reported in Andras 
(2015), which found this unexpected harmonic variation in the 
mean values of r and ∆r. Below we explore experimentally 
further this nature of the dependence of r and ∆r on the 
harshness, h. 



 

 

Simulation Environment 
To explore the variation of the mean resource utilization 
efficiency, rm(h), and the mean fitness innovation, ∆rm(h) with 
the harshness of the locations of origin, h, we used a simulated 
environment where populations spread and evolve by adopting 
fitness innovations. The simulation environment that we used 
has been described in Andras (2015), here we provide a brief 
description of the key features. 
 The world is implemented as a 2-dimensional grid of 100 × 
60 spatial locations, without gluing of the opposing edges 
together (i.e. the world is not toroidal). The world contains a 
number of natural barriers (i.e. simulated mountain ridges), 
which are located randomly and have randomly set crossing 
difficulty (i.e. height). In all simulations we used 20 natural 
barriers. The world has a number of harshness hotspots and 
the harshness of the world locations vary smoothly with the 
distance from the centre of the hotspot. In some simulations we 
used 10 harshness hotspots, while in other simulations we used 
only one harshness hotspot. We adopted two options for the 
harshness variation with distance. In the first case the 
harshness depends on the inverse of the Euclidean distance, 
while in the second case it depends on the inverse of the 
Manhattan distance: 
 

h(x) = 1 / (ε + ((x1 – x01)2 + (x2 – x02)2)1/2)  (18) 
  

h(x) = 1 / (ε + (|x1 – x01| + |x2 – x02|))  (19) 
 
where x0 is the centre of the harshness hotspot and ε > 0. 
 Initially, around 1.5% of the spatial locations host a 
population. Each population is characterized by their resource 
utilization efficiency, r, that is set by calculating the value 
associated with a population specific sequence of bits (0 or 1) 
b of length L as follows: 
 

r=Σk=1,L1Σj=1,L2 bL1⋅(k-1)+j⋅2j (20) 
 
where L1⋅L2 = L and in our case L1 = L2 = 10. Populations 
may give rise to a new population by experiencing a mutation 
in their bit string. The likelihood of such mutations is β = 
0.00008 in our simulations. The fitness innovation 
corresponding to the mutation is the difference of the r values 
after and prior to the mutation. Following such mutations a 
part of the populations adopts the new resource utilization 
efficiency coding bit string. The population is split 
proportionally with the two r values. 
 The populations at each location grow and spread. The 
spreading follows a discretized version of the reaction-
diffusion equation (1): 
 

Q(x,t+1) = (21) 
=Σ(µ,υ)∈Ψ(ϕx+(τ,υ),-µ,-υ,t⋅ Q(x+(µ,υ),t) –ϕx,µ,υ,t⋅ 

Q(x,t)) 
+ρ(x) ⋅ Q(x,t) 

 

 
where Q(x,t) is the size of the population at spatial position x at 
time t, Ψ={(-1,0),(1,0),(0,-1),(0,1)}, and ϕx,τ,υ,t are stochastic 
diffusivity parameters, and ρ(x) is the growth rate of the 
population at the spatial position x. The stochastic diffusivity 

Figure 1. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of multiple harshness 
hotspots in the environment (mean value dark line, 95% 
confidence intervals, light lines). 
 
parameters are set such that 
 

ϕx+(τ,υ),-τ,-υ,t = ω  if   
Q(x,t) is sufficiently large, given the height value at the 

neighboring location x+(µ,υ)  
otherwise ϕx+(τ,υ),-τ,-υ,t = 0 

 
 
 
(22) 

 
where ω is a randomly set value, in the case of the reported 
simulations ω∈(0,0.4). If ϕx+(τ,υ),-τ,-υ,t = 0 the populations 
encounters a barrier that cannot be crossed. The growth rate of 
the population is given by equation (2), with θ = 0.005. The 
implementation of equation is slightly modified compared to 
equation (3) by adding constant terms into it: 
 

η =0.1/(1+exp(α / 2 – α⋅ r / (Σk rpop-k)) (23) 
 
The value of α was set to 10 in some simulations and it was 
varied in the range of 6 to 12 in other simulations. The value of 
γ in equation (2) was set to 1.4 in some simulations and then it 
was varied in the range of 0.8 to 1.7 in other simulations. 
 Each simulation was run for 30,000 time turns. Typically, 
we started initially with around 90 populations. The 
populations spread and evolved. The competition for resources 
drove to extinction some of the populations. The newly 
emerged populations that innovated successfully spread and 
became dominant. In the simulations we considered a 
population dominant if it contained over 0.5% of the total 
population at any one time turn in the simulated world. We did 
not set a particular persistence limit, but naturally, for any new 
population it took some time to become dominant according to 
the above definition (typically more than 20 time turns). 

For each population we considered the harshness of the 
location of their origin and we calculated for each harshness 
value, h, the mean value of the resource utilization efficiency, 
rm(h), and of the fitness innovation, ∆r m(h), considering all 
populations originating from a location with harshness value h. 
For each condition that we considered we did 10 different 
simulations. Each simulation generated in the range of 2,500 –  



 

 

 
Figure 2. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of random harshness in 
the environment (mean value dark line, 95% confidence 
intervals, light lines). 
 
3,000 successful populations that were taken into 
consideration. Only the average values, where there was at 
least 10 different populations originating from locations with a 
given harshness h, were considered in the analysis and in 
almost all cases the averages were calculated from more than 
20 instances of appropriate populations. 

The computer program implementing the simulations 
described above is available on request from the author.  

Results and Discussion 
First, we considered the default case with multiple harshness 
hotspots in the environment and Euclidean distance based 
determination of the harshness of locations. The results are 
shown in Figure 1. As expected both relationship displays the 
harmonic component added onto a linear relationship with a 
negative slope in the case of the resource utilization efficiency 
and a positive slope in the case of the fitness innovation. In 
other words, the mean resource utilization efficiency, rm, drops 
with the increase of the harshness of the location of origin and 
the mean fitness innovation, ∆rm, grows with the increase of 
the harshness of the location of origin innovation. 

Intuitively this means that successful population originating 
from low harshness environment gain their advantage from 
being highly efficient in the utilization of resources. On the 
other hand this result also means that successful populations 
originating from harsh environments stand out by making high 
fitness innovations. The harmonic element of the relationships 
is due to the smooth variation of the environmental harshness 
with distances between locations, as we explained it earlier. 
This harmonic element complicates the above outlines picture 
of the relationships with environmental harshness. This 
component implies that there will be intermediate ranges of 
environmental harshness where either the high resource  

 

Figure 3. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of slow variation of 
harshness with the Euclidean distance with one harshness 
hotspot; and the mean resource utilization efficiency, r (C), and 
mean fitness innovation, ∆r (D), in the case of fast variation of 
harshness with the Euclidean distance with one harshness 
hotspot (mean value dark line, 95% confidence intervals, light 
lines).  
 
utilization efficiency or high fitness innovation will be more 
likely than elsewhere for the locally originating new 
populations. 

 
 Next, we considered the un-natural case of random variation 
environmental harshness. The results are shown in Figure 2. 
While there is still some very small level of harmonic 
component in the relationships between h and r and ∆r, the 
relationships are mainly linear as we expected, based on our 
analysis. The case of random variation of environmental 
harshness shows the core relationship between harshness and 
resource utilization efficiency and fitness innovation. 
 We explored next the case of having a single harshness 
hotspot with different variation of the harshness with the 
distance from the centre of the hotspot. We considered 
equations (18) and (19) for the definition of harshness and we 
also added a multiplier in the front of them to make the 
harshness variation fast (high multiplier – 20) or slow (low 
multiplier – 10). The results are shown in Figures 3 and 4. In 
these scenarios again we see that the harmonic component is 
clearly present in addition to the linear variation of r and ∆r 
with h. The data in the figures also shows that the period 
length of the harmonic component extends as the speed of 
variation of h increases with the distance, in the case of both 
distance choices. 
 This means that faster variation of harshness with the 
distance comes with slower harmonic variation of rm and ∆rm 
with the variation of h. This implies that if harshness changes 
rapidly with distance, there will be only one or at most a few 
harshness ranges where high resource utilization efficiency or 
high fitness innovation may emerge. On the other side, if the 
harshness changes slowly with the distance, there will be 
multiple, possibly many, harshness ranges where high resource 



 

 

Figure 4. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of slow variation of 
harshness with the Manhattan distance with one harshness 
hotspot; and mean resource utilization efficiency, r (C), and 
mean fitness innovation, ∆r (D), in the case of fast variation of 
harshness with the Manhattan distance with one harshness 
hotspot (mean value dark line, 95% confidence intervals, light 
lines). 
 
utilization efficiency and high fitness innovations may emerge 
in new populations. A practical prediction derived from this is 
the expectation to have one or a few ranges of height values in 
relatively steeply rising mountainous areas, where the most 
successful new species may arise, while in areas with slow 
change of height the expectation is to have many ranges of 
height where highly successful new species may emerge. 
 We also considered the impact of variation of the 
competition strength, α, and of the general population growth 
speed parameter, γ. The results are shown in Figures 5 and 6. 
In these respects, we found that stronger competition and 
faster growth of the populations reduces the period length of 
the harmonic component. The implication of this is that in 
environments, which are generally more competitive or 
support faster growth there will be multiple or many ranges of 
harshness values where the most innovative and most efficient 
new populations are likely to emerge. On the other side in 
environments that stunt the population growth or suppress 
competition between populations there will be only one or a 
few ranges of harshness values where the most innovative and 
most efficient populations may emerge.  
 We note that in all smooth harshness variation cases the 
variation of the mean resource utilization efficiency and mean 
fitness innovation with the harshness follow similar, but phase-
shifted harmonic relationships. The conceptual explanation of 
this phase shift, is the difference between equations (13) and 
(15), which define q(r,h) and v(∆r,h), which are the likelihoods 
of having a newly emerging population with resource 
utilization efficiency r or fitness innovation ∆r emerging at a 
location with harshness h (i.e. v(∆r,h) is defined using an 
integral of q(r,h)). 
 Our theoretical analysis provides the explanation for the 
observed combined harmonic and linear variation of the 
resource utilization efficiency mean value and fitness 
innovation mean value with the harshness of the environment 
at the location of the origin. The simulation experiments 
confirm the expectations based on the theoretical explanation  

Figure 5. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A, C), and mean 
fitness innovation, ∆r (B, D), in the case of low (A, B) and 
high (C, D) level competition (α) between populations, using 
the Euclidean distance and multiple harshness hotspot (mean 
value dark line, 95% confidence intervals, light lines). 
 
and also offer a heuristic estimation of the impact of the key 
environmental parameters (i.e. speed of variation of harshness 
with distance, competition strength, population growth speed) 
on the nature of the relationship between the environmental 
harshness and the and the mean resource utilization efficiency 
and mean fitness innovation (i.e. which change in the 
parameters. 
 Our result is interesting because it implies that due to the 
harmonic component of the studies relationships there will be 
areas with particular ranges of environmental harshness where 
the population with the largest fitness innovations and also 
with the most efficient resource utilization are much more 
likely to emerge than in other areas with relatively similar 
features. In other words, the likelihood of emergence of such 
new species in natural environments does not vary linearly 
with the harshness of the environment, but follows the 
combined linear and harmonic relationship. 
In a natural context, this implies that for example, genetic 
mutations that can prevent the effectiveness of a gene drive 
(Unckless, Clark and Messer, 2017) intervention against 
mosquitoes, may emerge much more likely in environment 
locations with certain levels of harshness, and are much less 
likely to emerge elsewhere. Being able to determine where 
such locations are likely to be, would help to maintain the 
effectiveness of the gene drive intervention. Similarly, this kind 
of analysis may help identify locations where antimicrobial 
resistance of bacteria (Blair et al, 2015) is more likely to 
emerge and possibly help to alter the environmental 
antimicrobial resistance of bacteria (Blair et al, 2015) is more 
likely to emerge and possibly help to alter the environmental 
features such that the antimicrobial resistance development 
happens in areas where it can be identified early and fought 
effectively. 

In a socio-economic setting, this has implications for 
example for the likelihood of emergence of firms with 
disruptive innovation and those with high efficiency. Our 
results imply that in the context of a steeply varying regulatory 
and economic environment, there will be only a few ranges of 
regulatory and economic settings that will be conducive for the 
emergence of highly innovative or efficient firms. Similarly, 



 

 

Figure 6. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A, C), and mean 
fitness innovation, ∆r (B, D), in the case of low (A, B) and 
high (C, D) general growth support (γ) for populations, using 
the Euclidean distance and multiple harshness hotspot (mean 
value dark line, 95% confidence intervals, light lines). 

 
less competition and more barriers of growth will reduce the 
likely ranges of regulatory and economic settings, in which 
highly innovative or efficient firms may emerge. On the other 
side, more competition, fewer growth barriers, and more 
uniform regulatory – economic landscape favor the presence of 
multiple ranges of settings in which innovative or efficient 
firms may emerge. Our results also imply that most likely the 
preferred regulatory – economic settings will not be the same 
for the emergence of the most innovative and most highly 
efficient firms. 

Conclusions 
In this paper we present a formal analysis of the relationship 
between environmental harshness and the mean resource 
utilization efficiency and mean fitness innovation of 
populations originating from locations with a given 
environmental harshness. We show that these relationships 
contain a linear and a harmonic component if the 
environmental harshness changes smoothly with the distance 
between locations. We explore experimentally the relationships 
considering a number of simulation environments with 
different parameters. The experimental analysis confirms the 
theoretical expectations. The experimental analysis also shows 
the dependence of the nature of these relationships on the 
environmental parameters. The experimental data also 
highlights that there is a phase shift between the harmonic 
components of the two relationships. 

The experimental results show that faster variation of 
environmental harshness with distance extends the period 
length of the harmonic component of the relationships. The 
data also shows that more general growth support for the 
populations and more competition between the populations 
makes the period of the harmonic component of the 
relationships shorter. 

The results are interpreted in both biological and social 
context. Our analysis may help to identify ways of improving 
the effectiveness of fight against the emergence of 
antimicrobial resistance in bacteria or of the application of gene 
drives. The interpretation in socio-economic context points to 

the impact of the regulatory – economic landscape on the 
likelihood of emergence of firms with disruptive innovations 
and of highly efficient firms. 
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