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Abstract. The paper is concerned with a bending edge wave on a thin orthotropic elastic plate
resting on the Winkler-Fuss foundation. The main focus of the contribution is on derivation
of a specialised reduced model accounting for the contribution of the bending edge wave to
the overall dynamic response, allowing simplified analysis for a number of dynamic problems.
The developed formulation includes an elliptic equation associated with decay over the interior,
and a beam-like equation on the edge governing wave propagation accounting for both bending
moment and modified shear force excitation, thus highlighting a dual parabolic-elliptic nature
of the bending edge wave. A model example illustrates the benefits of the approach.

Introduction

Bending edge waves have a remarkable history, starting from the original contribution [1],
with a preceding analysis of stability within static framework [2], for more details see [3], and
a review article [4]. The applications of edge waves are often related to non-destructive testing
in engineering structures, e.g. turbine blades etc., see [5], as well as more recent contributions
[6],[7], and references therein. We also mention related applications in acoustics, see [8].

Bending edge waves have been mostly studied on an elastic plate subject to homogeneous
boundary conditions, see e.g. [9], [10] and [11] accounting for the effect of particular types of
anisotropy, as well as a challenging scenario of arbitrary anistropy tackled by means of Stroh
formalism, see [12]. We also mention a related problem of instability of plate edges by means
of pre-stress, analysed in [13]. Localised waves have also been studied on the interface between
two Kirchhoff plates [14], and also on the edge of a circular disk [15].

In addition, we cite the considerations within the framework of 3D elasticity, including that for
mixed boundary conditions [16], as well as nontrivial analysis for classical boundary conditions
[17], [18].

Other recent developments include studies of bending edge waves on plates supported by
elastic foundations, see [19] and [20], as well as plates with the reinforced edge, see [21], [22],
and a recent work [23].

The considerations of general forced conditions on the edge are relatively seldom, e.g. within
the framework of explicit models for edge waves. We are mentioning some preliminary ideas
in [24], and a parabolic-elliptic model developed in [25], with the methodology summarised for
Rayleigh and Rayleigh-type waves in [26]. The formulation for the bending edge wave relies
on the eigensolution in terms of a single plane harmonic function. This eigensolution is then
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perturbed in slow time. As a result, the decay away from the edge is governed by an elliptic
equation, whereas propagation along the edge is described by a beam-like equation with the
loading appearing in the right hand side, mirroring a hyperbolic-elliptic formulation for the
Rayleigh wave.

In the current paper this methodology of explicit models, capturing the contribution of the
localised wave to the overall dynamic response, is developed further for the case of an orthotropic
elastic plate on the Winkler-Fuss foundation, subject to prescribed bending moment and modified
shear force on the plate’s edge. First, a brief derivation of the bending edge wave of arbitrary
profile is presented. Then, a perturbation scheme is established. First, the cases of excitation
by means of the bending moment or the modified shear force are treated separately. Then
a generalised formulation is proposed, accounting for both types of excitation. This provides
another step forward in development of parabolic-elliptic model for the bending edge wave,
since the vector problem is essentially reduced to a scalar one. Finally, the developed beam-like
equation on the edge is implemented for the bending moment of the point impulse form, allowing
an elegant solution in terms of elementary functions.

1. Statement of the problem

Consider an elastic plate of thickness 2h, occupying the region −∞ < x < ∞, 0 ≤ y < ∞,
0 ≤ z ≤ 2h, resting on a Winkler-Fuss foundation with the associated domain −∞ < x < ∞,
0 ≤ y < ∞, 2h 6 z < ∞, see Fig. 1. We note that the term ”Winkler-Fuss” is used in order
to acknowledge the early contribution of N.Fuss, see also Section 3.1 in [27]. Within this paper,
we assume for the sake of simplicity that the coordinate system is chosen to coincide with the
principal directions of anisotropy.

2h

z

x

y

Figure 1. Schematic of an elastic plate on the Winkler-Fuss foundation.

The governing equation for flexural displacement W of an orthotropic, homogeneous, thin elastic
plate is written as

(

Lxy + 2ρh∂2
tt + β

)

W = 0, (1-1)

where the differential operator Lxy is specified as

Lxy = Dx∂
4
xxxx + 2H∂4

xxyy +Dy∂
4
yyyy,

β is the Winkler coefficient, ρ is volume mass density, Dx and Dy are bending stiffnesses in the
x, y directions respectively, with H = D1 + 2Dxy, see [9]. Note that the material parameters
must satisfy the conditions ensuring positive definiteness of the strain energy density

Dx > 0, Dy > 0, Dxy > 0, DxDy > D2
1. (1-2)
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The boundary conditions at the edge y = 0 are taken in the form
(

D1∂
2
xx +Dy∂

2
yy

)

W = M,
(

(D1 + 4Dxy)∂
3
xxy +Dy∂

3
yyy

)

W = N,
(1-3)

where M = M(x, t) and N = N(x, t) are prescribed bending moment and modified shear force,
respectively.

2. Homogeneous wave of arbitrary profile

First, we formulate the eigensolution (M = N = 0) for the deflection in terms of a single
plane harmonic function, for more detail see [28]. Let us introduce the following dimensionless
variables

ξ =
x

h
, η =

y

h
, τ = t

√

Dx

2ρh5
. (2-1)

Then, the governing equation (1-1) may be rewritten as
(

Lξη + ∂2
ττ + β1

)

W = 0, (2-2)

where β1 = βh4/Dx, with the differential operator Lξη defined by

Lξη = ∂4
ξξξξ +

2H

Dx
∂4
ξξηη +

Dy

Dx
∂4
ηηηη . (2-3)

Next we adopt the beam-like assumption,

Aτ [W ] =
(

c4∂4
ξξξξ + ∂2

ττ + β1
)

W = 0, (2-4)

see [2] for more detail, where

c4 = 1−

(√

4D2
xy +D2

1 − 2Dxy

)2

DxDy
(2-5)

is a well-known constant first derived in [9], appearing in the dispersion relation for the studied
bending edge wave [28]

Dxk
4c4 = 2ρhω2 − β. (2-6)

It is emphasized that due to the assumption (2-4) it is possible to transform equation (2-2) to a
form that does not involve time derivatives in explicit form, i.e.

(

Dy∂
4
ηηηη + 2H∂4

ηηξξ +Dx(1− c4)∂4
ξξξξ

)

W = 0. (2-7)

The latter may be shown to be of elliptic type, allowing the operator factorisation

∆1∆2W = 0, (2-8)

where
∆j = ∂2

ηη + λ2
j∂

2
ξξ, j = 1, 2 (2-9)

with

λ2
1 + λ2

2 =
2H

Dy
, λ2

1λ
2
2 =

Dx

Dy

(

1− c4
)

. (2-10)

Below we focus on the scenario when λj > 0, j = 1, 2.
It should be noted that the dispersion relation of the elastically supported beam governed

by (2-4) coincides with the dispersion relation (2-6) of the bending edge wave under consideration.
It is also emphasized that the assumption (2-4) is essentially mirroring the representation of the
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eigensolution of arbitrary profile for Rayleigh waves in the form f(x± ct, y), which may be also
expressed implicitly as

(

∂2
tt − c2∂2

xx

)

f = 0, for more detail see [26].
The deflection W may now be expressed as a sum of two arbitrary functions, harmonic in the

first two arguments (and decaying as y → ∞), namely

W =
2
∑

j=1

Wj(ξ, λjη, τ). (2-11)

Note that throughout this paper the summation convention is not employed. Now, on substitut-
ing solution (2-11) into the free edge boundary conditions (1-3), when M = N = 0, and using
properties of harmonic functions, we deduce (at η = 0)

2
∑

j=1

Mj [Wj] = 0,

2
∑

j=1

Nj[Wj] = 0, (2-12)

with the differential operators Mj and Nj defined as

Mj = (D1 − λ2
jDy)∂

2
ξξ,

Nj = λj(D1 + 4Dxy − λ2
jDy)∂

3
ξξξ.

(2-13)

It may be observed that the solvability of (2-12) leads to the dispersion relation (2-6), with c
defined by formula (2-5).

Moreover, a relation between the harmonic functionsWj may be inferred from equations (2-12),
from which the deflection W is expressed through W1 as

W = W1(ξ, λ1η, τ) + θW1 (ξ, λ2ζ, τ) , (2-14)

where

θ =
λ2
1Dy −D1

D1 − λ2
2Dy

. (2-15)

3. Explicit model for the bending edge wave

Let us now derive the specialised formulation for contribution of the bending edge wave to the
overall dynamic response. Following [25], an asymptotic procedure perturbing the eigensolution
of Section 2 in slow time is established. Let us introduce the fast (τf = τ ) and slow (τs = ǫτ)
time variables accordingly, where ǫ ≪ 1 is a small parameter, therefore

∂2
ττ = ∂2

τf τf
+ 2ǫ∂2

τf τs
+ ǫ2∂2

τsτs . (3-1)

It is worth mentioning that the small parameter ǫ may be associated physically with a small
deviation of the phase speed of the analysed motion from that of the homogeneous edge wave.
Next, the deflection W is expanded as asymptotic series

W =
h2P

ǫDx

(

W (0) + ǫW (1) + . . .
)

, (3-2)

where

P = max
x,t

[M(x, t), hN(x, t)].
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3A. Perturbation procedure for the governing equation of motion. On substituting the
asymptotic series (3-2) into the equation of motion (2-2), at leading order we have

(

Lξη + ∂2
τf τf

+ β1

)

W (0) = 0. (3-3)

Then, in view of the beam-like assumption (see (2-4)),

Aτf [W
(0)] = 0, (3-4)

equation (3-3) becomes

∆1∆2W
(0) = 0, (3-5)

with ∆j defined in (2-9). Hence, the leading order solution is given by

W (0) =

2
∑

j=1

W
(0)
j (ξ, λjη, τf , τs), (3-6)

where Wj , (j = 1, 2) are harmonic functions, decaying at ζ → ∞, similarly to (2-11).
At next order, using the beam-like assumption

Aτf [W
(1)] = 0,

and (3-6), we have

∆1∆2W
(1) = −2∂2

τf τs
W

(0)
1 − 2∂2

τf τs
W

(0)
2 . (3-7)

Then, using the superposition principle, the next order corrector is represented as

W (1) = W
(1)
1 +W

(1)
2 , (3-8)

with W
(1)
1 and W

(1)
2 denoting the particular solutions of (3-7), corresponding to the first and

second terms in the R.H.S., respectively.
Now, employing the properties of harmonic functions, it could be shown that

∆iW
(0)
j = (λ2

i − λ2
j)∂

2
ξξW

(0)
j , (1≤ i 6= j ≤ 2). (3-9)

Hence, it follows from (3-7) that

∆j∂
2
ξξW

(1)
j = (−1)j2κ∂2

τf τs
W

(0)
j , j = 1, 2, (3-10)

where

κ =
1

λ2
2 − λ2

1

=
Dy

2
√

H2 −DxDy(1− c4)
. (3-11)

It is convenient to continue the process for the derivatives ∂3
ξξηW

(1)
j , (j = 1, 2), for which the

solutions of (3-10) may be found in the form

∂3
ξξηW

(1)
j = ∂3

ξξηU
1,0
j + (−1)jκη∂2

τf τs
W

(0)
j , (3-12)

where U
(1,0)
j = U

(1,0)
j (ξ, λjη, τf , τs) are arbitrary functions, harmonic in the first two variables.

Thus, the two-term solutions of the governing equation of motion (2-2) are written as

∂3
ξξηW =

h2P

ǫDx

2
∑

j=1

[

∂3
ξξη(W

(0)
j + ǫU

(1,0)
j ) + (−1)jǫκη∂2

τf τs
W

(0)
j + . . .

]

. (3-13)
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3B. Boundary conditions. Now we are in position to tackle the non-homogeneous boundary
conditions (1-3) at η = 0. At leading order we have

2
∑

j=1

Mj [W
(0)
j ] = 0,

2
∑

j=1

Nj[W
(0)
j ] = 0, (3-14)

where operators Mj and Nj have been defined in (2-13). Therefore, the functions W
(0)
j are

related through

W
(0)
2 = θW

(0)
1 , (3-15)

with θ defined in (2-15).
Let us now concentrate on the excitation due to bending moment (M 6= 0, N = 0). At next
order O(1) the boundary conditions (1-3), differentiated twice by ξ, yield

2
∑

j=1

(

D1∂
4
ξξξξ +Dy∂

4
ξξηη

)

W
(1)
j =

Dx

P
∂2
ξξM,

2
∑

j=1

(

(D1 + 4Dxy)∂
5
ξξξξη +Dy∂

5
ξξηηη

)

W
(1)
j = 0.

(3-16)

Note that from (3-10)

λ2
j∂

4
ξξξξW

(1)
j = ∆j∂

2
ξξW

(1)
j − ∂4

ξξηηW
(1)
j = (−1)j2κ∂2

τf τs
W

(0)
1 − ∂4

ξξηηW
(1)
j . (3-17)

Hence, using (3-13) and (3-17), the boundary conditions (3-16) become

2
∑

j=1

∂ξξMj [U
(1,0)
j ] =

Dx

P
∂ξξM + κ

2
∑

j=1

(−1)j
(

Dy +D1λ
−2
j

)

∂2
τf τs

W
(0)
1 ,

2
∑

j=1

∂ξNj [U
(1,0)
j ] = 2κDy

2
∑

j=1

(−1)j+1λj∂
2
τf τs

W
(0)
j ,

(3-18)

where harmonic conjugation and integration with respect to ξ was applied to the second equation.

Now, employing (3-15) and also the inferred fact that W (0) = (1 + θ)W
(0)
1 on the edge η = 0,

after some algebraic manipulations the solvability of (3-18) implies

∂2
τf τs

W (0) =
QMDx

2P
∂2
ξξM, (3-19)

where QM is a material constant given by

QM =
χ (χ+D1)

Dy(χ+ 2Dxy)
, (3-20)

with χ =
√

DxDy(1 − γ4).
Hence, using the beam-like assumption (3-4), along with the leading-order approximation

W ≈ h2P

ǫDx
W (0), (3-21)

equation (3-19) can be transformed to

Aτf [W ] + 2ǫ∂2
τf τs

W = QM ∂2
ξξM. (3-22)
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Due to the operator relation

∂2
τf τf

+ 2ǫ∂2
τf τs

= ∂2
ττ +O(ε2),

on returning to the original coordinates equation (3-22) may be recast as

B[W ] = QM ∂2
xxM, (3-23)

with the operator B defined as

B = Dxc
4∂4

xxxx + 2ρh∂2
tt + β. (3-24)

Thus, for the bending edge wave excited by the specified bending moment M(x, t) the deflec-
tion of the edge y = 0 is governed by the beam-like equation (3-23). Note that the results for the
isotropic Kirchhoff plate follow immediately from (3-23), provided that the bending stiffnesses
Dx = Dy = D, D1 = νD, 2Dxy = (1 − ν)D (cf. equation (5.19) in [25]), with the constant Q
becoming identical to that defined in formula (5.15) of the cited paper.

The decay over the interior is described by the elliptic equation
(

∂2
yy + λ2

1∂
2
xx

)

W1 = 0, (3-25)

with the deflection W found from (2-14). As a result, we have a simpler formulation for a scaled
Laplace equation, not a bi-harmonic one. Thus, a dual parabolic-elliptic nature of the studied
wave is established, with the solution of the beam-like equation (3-23) acting as a boundary
value for the elliptic equation (3-25).

A similar formulation may be derived for the second type of excitation, namely by the modified
shear force N = N(x1, t), now with M = 0, N 6= 0 in the boundary conditions on the edge η = 0,
see (1-3). The procedure is rather similar to that presented in the current subsection. At leading
order, once again the boundary conditions (3-14) are revealed, implying the dispersion relation
as their solvability condition. At next order, in view of (3-13), it is convenient to differentiate
twice with respect to ξ, which gives (at η = 0)

2
∑

j=1

(

D1∂
4
ξξξξ +Dy∂

4
ξξηη

)

W
(1)
j = 0,

2
∑

j=1

(

(D1 + 4Dxy)∂
5
ξξξξη +Dy∂

5
ξξηηη

)

W
(1)
j =

hDx

P
∂2
ξξN.

(3-26)

Substituting (3-13) into (3-26) and following a similar procedure to that presented for the bending
moment excitation earlier in this section, it is possible to obtain a beam-like equation on the
edge y = 0, however, this will be written in terms of the rotation angle V = ∂yW , namely

B[V ] = −QM∂2
xxN, (3-27)

with the constant QM defined in Eq. (3-20). As follows from Eq. (2-14), on making use of
the Cauchy-Riemann identities, the rotation angle on the edge is expressed through a single
harmonic function W1 as

V
∣

∣

y=0
= ∂yW

∣

∣

y=0
= − (λ1 + θλ2)W

∗

1,x

∣

∣

y=0
, (3-28)

with the asterisk denoting a harmonic conjugate and θ defined in Eq. (2-15). Therefore,
Eq. (3-27) may be rewritten as

B[W ] = QN

√

−∂2
xx (N) , (3-29)
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where

QN = − 1 + θ

λ1 + θλ2
QM , (3-30)

and
√

−∂2
xx is understood as a pseudo-differential operator, appearing previously in hyperbolic-

elliptic models for the Rayleigh wave, see e.g. Section 5.1 in [26].
Thus, the explicit model for the combined excitation of the bending edge wave by means

of both bending edge moment M and the modified shear force N may be formulated. It is
comprised of a beam-like equation

B[W ] = QM ∂2
xxM +QN

√

−∂2
xx (N) , (3-31)

with the solution of the latter serving as a boundary value for the elliptic equation (3-25), with
the deflection W related to the auxiliary harmonic function W1 by (2-14).

4. Model example

To illustrate the derived formulation, let us now consider a model example. For the sake of
simplicity, assume an unsupported plate, so β = 0. Let the bending edge wave be excited by a
point impulse bending moment, i.e.

M = −M0δ(x)δ(t). (4-1)

Then, the beam-like equation (3-31) on the edge y = 0 becomes
(

Dxc
4∂4

xxxx + 2ρh∂2
tt

)

W = −M0QMδ′′(x)δ(t). (4-2)

On applying the Fourier and Laplace integral transforms with respect to x and t, the transformed
deflection WFL on the edge y = 0 is given by

WFL
∣

∣

y=0
=

M0QMp2

Dxc4p4 + 2ρhs2
, (4-3)

where p and s are the parameters of the Fourier and Laplace integral transforms, respectively.
The associated solution of the ”exact” problem formulation, including the equation of motion

(1-1) subject to the boundary conditions (1-3) with N = 0 and prescribed edge bending moment
(4-1), may be written as

WFL
ex

∣

∣

y=0
=

M0

(

q +D1p
2
)

p2

q2 + 4p2Dxyq −D2
1p

4
, (4-4)

where

q =
√

Dy(Dxp4 + 2ρhs2). (4-5)

It should be noted that the exact solution (4-4) is less trivial for analysis compared to the
asymptotic result (4-3), in particular, involving branch points. At the same time, both exact
and approximate solutions have the same poles Dxc

4p4+2ρhs2 = 0 associated with the bending
edge wave.

Now, applying inverse Laplace transform to (4-3), we deduce

WF
∣

∣

y=0
=

M0QM√
2ρhDx c2

sin

(
√

Dx

2ρh
c2p2t

)

. (4-6)
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Therefore, using a standard integral

∞
∫

0

sin(ap2) cos(2bp)dp =
1

2

√

π

a
cos

(

π

4
+

b2

a

)

, (4-7)

see [29], the inverse Fourier transform for (4-6) can be computed, giving explicitly for edge
deflection

W
∣

∣

y=0
=

M0QM

4

√

2ρhD3
xπ

2t2c3
cos

(

π

4
+

√

2ρh

Dx

x2

4c2t

)

. (4-8)

Let us present a numerical illustration of the obtained solution. Introduce the scaled edge
deflection

W̃ =

√

2πρh3Dx c
2

M0QM
W
∣

∣

y=0
=

1√
τ1

cos

(

π

4
+

ξ2

4τ1

)

, (4-9)

where, as above x = hξ and the dimensionless time τ1 is defined by

τ1 =

√

Dx

2ρh5
c2t. (4-10)

Note that (4-9) demonstrates a generic behaviour, independent of material properties, appearing
in scaling. The following Fig. 2 shows the profile of the solution for several moments of time, with
τ1 taken as 0.1, 0.3 and 1.0, depicted by dotted, dashed and solid lines, respectively. It is visible
how the initially fast oscillations smoothen up and disperse with time. Another observation

notable from Eq. (4-9) relates to the decay of amplitude as O
(

τ
−1/2
1

)

, which is also confirmed

by Fig. 2.

-3

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4

      
      
      

ξ

W̃
τ1=0.1
τ1=0.3
τ1=1.0

Figure 2. Snapshots of edge deflection (4-9) at τ1 = 0.1; 0.3; 1.0.
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5. Conclusions

In this paper a parabolic-elliptic explicit model for the bending edge wave on a semi-infinite,
orthotropic, elastic plate supported by a Winkler-Fuss foundation, excited by prescribed bend-
ing moment and modified shear force, was derived. The formulation contains an elliptic equa-
tion (3-25) governing decay away from the edge, and a parabolic beam-like equation (3-31) along
the edge, associated with wave propagation. This beam-like equation accounts for both types of
loading, achieving further progress compared to previously known separate formulations for the
deflection and the angle of rotation, see [25]. The approach is illustrated by a model example,
allowing an elegant expression for the Green function for edge deflection in case of excitation by
bending moment, see (4-8).

The obtained results develop further the methodology of explicit asymptotic models for
Rayleigh and Rayleigh-type waves summarised in [26]. Some parallels of the presented as-
ymptotic procedure with that in [30] for the Rayleigh wave on an orthorhombic half-space may
be observed, i.e. related to perturbation scheme for a biharmonic equation. Future plans may
involve accounting for more sophisticated foundations, see e.g. [20], treating a plate of arbitrary
anisotropy, which will require Stroh formalism in parallel with recent results for the Rayleigh
waves [31]. Finally, we mention exciting applications related to elastic plates with resonators,
see e.g. [32], and also to topological rainbow effect, see a recent contribution [33].
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