
On integral and differential formulations in nonlocal

elasticity

J. Kaplunova,∗, D.A. Prikazchikova,b, L. Prikazchikovaa

aSchool of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK
bFaculty of Mechanics and Mathematics, al-Farabi Kazakh National

University, Almaty, Kazakhstan

Abstract

The paper is concerned with comparative analysis of differential and in-
tegral formulations for boundary value problems in nonlocal elasticity. For
the sake of simplicity, the focus is on an antiplane problem for a half-space
with prescribed shear stress along the surface. In addition, 1D exponential
kernel depending on the vertical coordinate is considered.

First, a surface loading in the form of a travelling harmonic wave is stud-
ied. This provides a counter-example, revealing that within the framework
of Eringen’s theory the solution to the differential model does not satisfy
the equation of motion in nonlocal stresses underlying the related integral
formulation.

A more general differential setup, starting from singularly perturbed
equations expressing the local stresses through the nonlocal ones, is also
investigated. It is emphasized that the transformation of the original inte-
gral formulation to the differential one in question is only possible provided
that two additional conditions on nonlocal stresses hold on the surface. As a
result, the formulated problem subject to three boundary conditions appears
to be ill-posed, in line with earlier observations for equilibrium of a nonlocal
cantilever beam.

Next, the asymptotic solution of the singularly perturbed problem, sub-
ject to a prescribed stress on the boundary, together with only one of the
aforementioned extra conditions, is obtained at a small internal size. Such
simplification may be justified when only one of the stresses demonstrates

∗Corresponding author
Email address: j.kaplunov@keele.ac.uk (J. Kaplunov)

Preprint submitted to European Journal of Mechanics - A/Solids



nonlocal behaviour; a similar assumption has been recently made within the
so-called dilatational gradient elasticity. Three-term expansion is obtained,
leading to a boundary value problem in local stresses over interior domain.
The associated differential equations are identical to those proposed by Erin-
gen, however, the derived effective boundary condition incorporates the effect
of a nonlocal boundary layer which has previously been ignored. Moreover,
the calculated nonlocal correction to the classical antiplane problem for an
elastic half-space, coming from the boundary conditions is by order of mag-
nitude greater than that appearing in the equations of motion. Finally, it
is shown that the proposed effective condition supports an antiplane surface
wave.

Keywords: Nonlocal elasticity, boundary layer, integral, differential,
asymptotic, shear surface wave, counter-example, effective boundary
conditions, ill-posed.

1. Introduction

Nonlocal elasticity is an important theory finding various modern ap-
plications including nano-technology, e.g. see [8, 18, 23] and references
therein. The concept of nonlocal stresses and integral relations expressing
nonlocal stresses through their local counterparts, have been introduced by
A.C.Eringen, see the most influential contributions [11, 10]. In the paper [10]
the original integral nonlocal theory has been reduced to a differential form,
which is much easier for implementation. The latter has been adapted for
numerous scenarios, in particular for thin nano-structures, see [19, 16, 2] to
name a few. In addition, the differential formulation in nonlocal elasticity
formally has a lot of in common with a popular model of gradient elasticity,
e.g. see [3] and references therein.

Nowadays, there is a strong belief in the equivalence of integral and dif-
ferential nonlocal setups among a broad academic community. At the same
time, the highly cited paper [10] as well as later publications on the subject
do not verify whether the solutions of nonlocal differential equations satisfy
the original integral relations.

This paper is aimed at bridging the gap in understanding of the relation-
ship between integral and differential approaches in nonlocal elasticity. For
the sake of simplicity, antiplane problem for a nonlocally elastic half-space is
considered for a particular one-dimensional exponential kernel, see [10]. We
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begin with the example of travelling harmonic waves, induced by a prescribed
surface stress. Elementary calculations readily indicate that the solution of
the conventional differential model, introduced in [10], does not satisfy the
equation of motion for nonlocal stresses underlying the integral theory.

Next, we consider a more general differential model, starting from sin-
gularly perturbed differential equations, expressing classical (local) stresses
through nonlocal ones. In this case, the coefficients at senior derivatives cor-
responding to an internal size are assumed to be small in comparison with
a typical wavelength. The considered boundary value problem involves two
boundary conditions along the surface of the half-space, in contrast to the
aforementioned differential nonlocal theory [10], as well as the classical local
antiplane elasticity, both operating with a single boundary condition. At the
same time, it may be easily shown that the associated differential equations
are equivalent to the initial integral relations only provided that each of the
nonlocal stresses satisfies an extra boundary condition at the surface. Thus,
in total we obtain three boundary conditions. This observation is in line with
the conclusion of [27], demonstrating that an elastostatic problem in nonlo-
cal integral elasticity for a cantilever beam is ill-posed, see also more recent
publications [21, 25, 28, 29]. Below, we proceed taking into account only one
of two extra boundary conditions, evaluating a posteriori the discrepancy
arising from the violation of the remaining boundary condition.

A three-term asymptotic solution is derived. Along with a slowly varying
component, it includes a boundary layer localised near the surface. Similar
boundary layers arise in integral nonlocal elasticity, e.g. see [5, 6, 1], but are
usually ignored within the differential formulation, e.g. see [18], dealing with
nonlocally elastic engineering structures. At the same time, boundary layers
have been taken into consideration in gradient elasticity, see [20].

Asymptotic analysis results in effective boundary conditions to the equa-
tions in antiplane elasticity, expressed in terms of local stresses. As in previ-
ous asymptotic developments within integral nonlocal elasticity for a Gaus-
sian kernel [5, 6], a leading order correction to the conventional (local) bound-
ary conditions is due to the effect of boundary layers. This correction is of
order of magnitude greater than that coming from the nonlocal equations of
motions.

As an example, the derived effective boundary conditions are imple-
mented for analysis of antiplane shear surface waves. It is worth noting
that the differential nonlocal model [10] does not support such waves, which
have been also observed in recent publications using different methodologies,
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e.g. see [9, 14, 15, 22].

2. Antiplane problem in nonlocal elasticity for a half space

Consider antiplane shear for an elastic half-space (−∞ < x1, x3 < +∞,
0 ≤ x2 < +∞), see Figure 1.
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Figure 1: Antiplane shear of a nonlocally elastic half-space.

The governing equation of motion is written in terms of nonlocal stresses
as

∂s13
∂x1

+
∂s23
∂x2

= ρ
∂2u

∂t2
, (1)

subject to the boundary condition

s23 = f(x1, t) at x2 = 0. (2)

Here sj3 = sj3(x1, x2, t), j = 1, 2 are nonlocal stresses, u = u(x1, x2, t) is
out of plane displacement, ρ is mass density and t is time. For the sake of
simplicity, the nonlocal stresses are taken in the form

sj3 =
1

2a

∫ ∞
0

e−
|x2−x′2|

a σj3(x1, x
′
2, t) dx′2, j = 1, 2, (3)

adapting 1D kernel from [10] (cf. formula [3.4]). In the above, a is a small pa-
rameter (e.g. lattice parameter) and local stresses σj3 are expressed through
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displacement as

σj3 = µ
∂u

∂xj
, (4)

with µ being the Lamé shear modulus.
As shown in [10] for an infinite media, equation of motion (1) can be

transformed into the following differential form

∂σ13
∂x1

+
∂σ23
∂x2

= ρ

(
∂2u

∂t2
− a2 ∂4u

∂t2∂x22

)
. (5)

In the current paper we aim to compare the integral and differential formu-
lations for the bounded domain. We begin with a counter-example, demon-
strating that for a half-space the analysed differential and integral formula-
tions are generally not equivalent.

3. Counter-example

Let us consider a simple example of a forced time-harmonic problem for
antiplane motion of a half-space, motivated by analogous treatment of surface
waves in [10]. The load along x2 = 0 is taken as

f(x1, t) = Feik0(x1−c0t), (6)

where amplitude F , wavenumber k0 and speed c0 are prescribed quantities,
such that c0 < c2 and k0 � 1/a, with c2 =

√
µ/ρ denoting the shear wave

speed.
Below we operate with the displacement u as a function of transverse

variable only u = u(x2), assuming that the exponential factor eik0(x1−c0t) has
already been separated. Hence, equation (5) becomes

(
c22 − a2k20c20

) d2 u

dx22
− k20

(
c22 − c20

)
u = 0, (7)

Boundary condition (2) may be re-written as∫ ∞
0

e−
|x2−x′2|

a
du

dx′2
dx′2 =

2aF

µ
at x2 = 0. (8)

The decaying solution of (7) is

u(x2) = Ue−k0γx2 , (9)
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where U is an arbitrary constant and

γ =

√
c22 − c20

c22 − a2k20c20
. (10)

Using boundary condition (8), the sought for solution for the displacement
is found as

u(x2) = −2F (1 + ak0γ)

k0µγ
e−k0γx2 . (11)

The limit γ → 0 when displacement u → ∞ does not correspond to a
decaying solution of interest, similarly to the classical antiplane problem.
Using (3), the nonlocal stresses may be expressed as

s13 =
iF

γ(1− ak0γ)

{
(1 + ak0γ)e−

x2
a − 2e−k0γx2

}
, (12)

s23 = − F

(1− ak0γ)

{
(1 + ak0γ)e−

x2
a − 2e−k0γx2

}
. (13)

Now we need to verify whether solutions (11), (12) and (13) satisfy the origi-
nal equation of motion in nonlocal stresses. Multiplying them by eik0(x1−c0t),
we deduce from (1)

e−
x2
a
F (1 + akγ)(γ − ak)

aγ(1− akγ)
6≡ 0. (14)

Hence, this equation does not hold, up to a boundary layer of width ∼ a,
except for a rather special loading for which γ = ak0. Thus, it has been
demonstrated that the solutions (11)-(13) of the differential model generally
do not satisfy the equation of motion (1) within the original framework of
integral nonlocal elasticity.

4. Singularly perturbed differential model

Let us now approach the issue of equivalence of differential and integral
formulations in nonlocal elasticity from a more general perspective. Following
the methodology introduced in [10], we differentiate relations (3) twice with
respect to x2, obtaining singularly perturbed equations

a2
∂2sj3
∂x22

− sj3 = −σj3, j = 1, 2. (15)
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Expressing the local stresses σj3 through the nonlocal ones and substituting
the result into (3), we derive additional conditions on the boundary(

sj3 − a
∂sj3
∂x2

)∣∣∣∣
x2=0

= 0, j = 1, 2. (16)

In view of these additional conditions equivalence of two approaches is hardly
possible. Indeed, there is already a condition (2) on the boundary, in addi-
tion to two extra conditions (16). For the moment let us satisfy one of the
conditions (16), say the one for (j = 1), and evaluate at later stage the
discrepancy caused by the violation of the remaining condition (j = 2).

In contrast to a traditional differential model in Section 3, we consider
three differential equations (1) and(15), and two boundary conditions (2) and
(16) for j = 1, instead of the equation of motion (5) in local stresses subject
to boundary condition (2) only. For both cases local stresses are expressed
through displacements by (4).

In fact, on differentiating (15) twice with respect to time and using equa-
tion of motion (1) with relation (4) it is possible to obtain two coupled
equations in nonlocal stresses, namely

∂2s13
∂x21

+
∂2s23
∂x1∂x2

− 1

c22

∂2

∂t2

(
s13 − a2

∂2s13
∂x22

)
= 0,

∂2s23
∂x22

+
∂2s13
∂x1∂x2

− 1

c22

∂2

∂t2

(
s23 − a2

∂2s23
∂x22

)
= 0.

(17)

These second order equations (in spacial variables) obviously require two
boundary conditions along the surface. However, for the sake of clarity,
in what follows we operate with singularly perturbed equations (15) and
equation of motion (1).

5. Asymptotic analysis

The formulated problem can be tackled asymptotically due to the pres-
ence of a natural small parameter

η =
a

l
� 1, (18)

where l is a typical wavelength. Below, dimensionless variables

ζp =
x2
l
, ζq =

x2
a
, ξ1 =

x1
l
, τ = t

c2
l
, (19)
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are introduced, with slow and fast variables ζp and ζq, associated with two
types of variation of the unknown quantities over the transverse coordinate.
Also, the dimensionless functions

u∗ =
u

l
, σ∗j3 =

σj3
µ
, s∗j3 =

sj3
µ
, f ∗ =

f

µ
, j = 1, 2, (20)

are chosen, assuming all the starred quantities to be of order unity.
Now, the governing equations may be rewritten as

∂s∗13
∂ξ1

+
∂s∗23
∂ζp

=
∂2u∗

∂τ 2
, (21)

η2
∂2s∗j3
∂ζ2p

− s∗j3 = −σ∗j3, j = 1, 2, (22)

subject to the boundary conditions

s∗23
∣∣
ζp=0

= f ∗(ξ1, τ), (23)

s∗13
∣∣
ζp=0

= η
∂s∗13
∂ζp

∣∣∣∣
ζp=0

. (24)

Similarly to [6], the nonlocal stresses are split into fast and slow components
p∗j3 and q∗j3, respectively, i.e.

s∗13 = p∗13 + q∗13 (25)

and
s∗23 = p∗23 + ηq∗23, (26)

where p∗ij = p∗ij(ξ1, ζp, τ) and q∗ij = q∗ij(ξ1, ζq, τ). Hence, the equations above
are re-cast in terms of fast and slow quantities as

∂p∗13
∂ξ1

+
∂p∗23
∂ζp

=
∂2u∗

∂τ 2
, (27)

∂q∗13
∂ξ1

+
∂q∗23
∂ζq

= 0, (28)

p∗j3 − η2
∂2p∗j3
∂ζ2p

= σ∗j3, (29)

q∗j3 −
∂2q∗j3
∂ζ2q

= 0, j = 1, 2, (30)
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subject to

p∗13
∣∣
ζp=0

+ q∗13
∣∣
ζq=0

=
∂q∗13
∂ζq

∣∣∣∣
ζq=0

+ η
∂p∗13
∂ζp

∣∣∣∣
ζp=0

(31)

p∗23
∣∣
ζp=0

+ ηq∗23
∣∣
ζq=0

= f ∗. (32)

At leading (zero) order we have

∂p
(0)
13

∂ξ1
+
∂p

(0)
23

∂ζp
=
∂2u(0)

∂τ 2
, (33)

∂q
(0)
13

∂ξ1
+
∂q

(0)
23

∂ζq
= 0, (34)

p
(0)
j3 = σ

(0)
j3 , (35)

q
(0)
j3 −

∂2q
(0)
j3

∂ζ2q
= 0, j = 1, 2, (36)

together with

p
(0)
13

∣∣
ζp=0

+ q
(0)
13

∣∣
ζq=0

=
∂q

(0)
13

∂ζq

∣∣∣∣∣
ζq=0

, (37)

p
(0)
23

∣∣
ζp=0

= f ∗. (38)

Combining (33) and (35), we deduce

∂σ
(0)
13

∂ξ1
+
∂σ

(0)
23

∂ζp
=
∂2u(0)

∂τ 2
, (39)

subject to
σ
(0)
23

∣∣
ζp=0

= f ∗. (40)

In additon, stress-displacement relations at each order follow from (4) as

σ
(k)
13 =

∂u(k)

∂ξ1
and σ

(k)
23 =

∂u(k)

∂ζp
, k = 0, 1, 2, . . . (41)

Now, from (36) it follows that

q
(0)
j3 = Q

(0)
j (ξ1, τ)e−ζq . (42)
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Substituting the latter into (34), we get

Q
(0)
2 =

∂Q
(0)
1

∂ξ1
. (43)

Next, using condition (37),

Q
(0)
1 = −1

2
σ
(0)
13

∣∣
ζp=0

. (44)

Therefore, in terms of local stresses

q
(0)
13 = −1

2
σ
(0)
13

∣∣
ζp=0

e−ζq , (45)

q
(0)
23 = −1

2

∂σ
(0)
13

∂ξ1

∣∣∣∣∣
ζp=0

e−ζq . (46)

At first order, we have

∂p
(1)
13

∂ξ1
+
∂p

(1)
23

∂ζp
=
∂2u(1)

∂τ 2
, (47)

∂q
(1)
13

∂ξ1
+
∂q

(1)
23

∂ζq
= 0, (48)

p
(1)
j3 = σ

(1)
j3 , (49)

q
(1)
j3 −

∂2q
(1)
j3

∂ζ2q
= 0, j = 1, 2, (50)

subject to the following boundary conditions

p
(1)
13

∣∣
ζp=0

+ q
(1)
13

∣∣
ζq=0

=
∂p

(0)
13

∂ζp

∣∣∣∣
ζp=0

+
∂q

(1)
13

∂ζq

∣∣∣∣
ζq=0

, (51)

p
(1)
23

∣∣
ζp=0

+ q
(0)
23

∣∣
ζq=0

= 0. (52)

Using (49) together with (47) we obtain

∂σ
(1)
13

∂ξ1
+
∂σ

(1)
23

∂ζp
=
∂2u(1)

∂τ 2
, (53)
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and

σ
(1)
23

∣∣
ζp=0

=
1

2

∂σ
(0)
13

∂ξ1

∣∣∣∣
ζp=0

. (54)

Also, we have as before from (50) and (48),

q
(1)
j3 = Q

(1)
j (ξ1, τ)e−ζq and Q

(1)
2 =

∂Q
(1)
1

∂ξ1
. (55)

Next, using boundary condition (51), we deduce

Q
(1)
1 =

1

2

(
∂σ

(0)
13

∂ζp

∣∣∣∣
ζp=0

− σ(1)
13

∣∣
ζp=0

)
. (56)

Thus, all the first order terms are determined.
At next order we have

∂p
(2)
13

∂ξ1
+
∂p

(2)
23

∂ζp
=
∂2u(2)

∂τ 2
, (57)

∂q
(2)
13

∂ξ1
+
∂q

(2)
23

∂ζq
= 0, (58)

p
(2)
j3 −

∂2p
(0)
j3

∂ζ2p
= σ

(2)
j3 , (59)

q
(2)
j3 −

∂2q
(2)
j3

∂ζ2q
= 0, j = 1, 2, (60)

together with

p
(2)
13

∣∣
ζp=0

+ q
(2)
13

∣∣
ζq=0

=
∂q

(2)
13

∂ζq

∣∣∣∣
ζq=0

+
∂p

(1)
13

∂ζp

∣∣∣∣
ζp=0

, (61)

p
(2)
23

∣∣
ζp=0

+ q
(1)
23

∣∣
ζq=0

= 0. (62)

Substituting (59) into (57) and taking into account (39), we obtain

∂σ
(2)
13

∂ξ1
+
∂σ

(2)
23

∂ζp
=
∂2u(2)

∂τ 2
− ∂4u(0)

∂ζ2p∂τ
2
. (63)
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This equation is solved subject to

σ
(2)
23

∣∣
ζp=0

= −∂
2σ

(0)
23

∂ζ2p

∣∣∣∣
ζp=0

− 1

2

∂2σ
(0)
13

∂ξ1∂ζp

∣∣∣∣
ζp=0

+
1

2

∂σ
(1)
13

∂ξ1

∣∣∣∣
ζp=0

. (64)

As before, it follows from (60), (58) and (51) that

q
(2)
j3 = Q

(2)
j (ξ1, τ)e−ζq , (65)

where

Q
(2)
1 =

1

2

(
−∂

2σ
(0)
13

∂ζ2p

∣∣∣∣
ζp=0

+
∂σ

(1)
13

∂ζp

∣∣∣∣
ζp=0

− σ(2)
13

∣∣
ζp=0

)
(66)

and

Q
(2)
2 =

∂Q
(2)
1

∂ξ1
. (67)

A combination of three equations, corresponding to leading, first and
second orders, see (39), (53) and (63), implies

∂σ∗13
∂ξ1

+
∂σ∗23
∂ζp

=
∂2u∗

∂τ 2
− η2 ∂4u∗

∂ζ2p∂τ
2
, (68)

subject to boundary condition at ζp = 0

σ∗23 −
η

2

∂σ∗13
∂ξ1

+ η2
(

1

2

∂2σ∗13
∂ξ1∂ζp

+
∂2σ∗23
∂ζ2p

)
= f ∗. (69)

In the above

σ∗j3 = σ
(0)
j3 + ησ

(1)
j3 + η2σ

(2)
j3 , (70)

u∗ = u(0) + ηu(1) + η2u(2). (71)

6. Discussion

In terms of the original variables these equations can be re-cast as

∂σ13
∂x1

+
∂σ23
∂x2

= ρ

(
∂2u

∂t2
− a2 ∂4u

∂t2∂x22

)
, (72)
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with

σ23 −
a

2

∂σ13
∂x1

+ a2
(

1

2

∂2σ13
∂x1∂x2

+
∂2σ23
∂x22

)
= f, (73)

at x2 = 0, where stresses are expressed through displacements via (4).
Thus, an original problem of nonlocal elasticity has been transformed to

that expressed in terms of local stresses. Over a narrow near-surface zone
of width of order η = a/l, the solution to the latter problem should be
complemented by the boundary layer component, calculated in Section 5.
The equation of motion (72) was initially derived in [10]. However, the O(η)
correction to the boundary conditions is of order of magnitude higher than
O(η2) correction to the equations of motion.

Let us now return back to condition (16) for j = 2, which has not been
taken into account throughout the asymptotic derivation in Section 5. Re-
taining the terms up to O(η2), we have from (26) and subsequent formulae
in Section 5

s∗23 = p
(0)
23 + η

(
p
(1)
23 + q

(0)
23

)
+ η2

(
p
(2)
23 + q

(1)
23

)
= σ

(0)
23 + η

(
σ
(1)
23 −

1

2

∂σ
(0)
13

∂ξ1

∣∣∣∣
ζp=0

e−ζq

)

+ η2

(
σ
(2)
23 +

∂2σ
(0)
23

∂ζ2p
+

1

2

(
∂2σ

(0)
13

∂ξ1∂ζp

∣∣∣∣
ζp=0

− ∂σ
(1)
13

∂ξ1

∣∣∣∣
ζp=0

)
e−ζq

)
,

(74)

or, equivalently

s∗23 = σ∗23 −
η

2

∂σ∗13
∂ξ1

∣∣∣∣
ζp=0

e−ζq + η2

(
∂2σ∗23
∂ζ2p

+
1

2

∂2σ∗13
∂ξ1∂ζp

∣∣∣∣
ζp=0

e−ζq

)
. (75)

Re-writing the last formula in the original variables and substituting it into
condition (16) for j = 2 we obtain at x2 = 0

σ23 − a
(
∂σ23
∂x2

+
∂σ13
∂x1

)
+ a2

(
∂2σ23
∂x22

+
∂2σ13
∂x1∂x2

)
= 0. (76)

At the same time, using (75), the original boundary condition (2) can be
written as (x2 = 0)

σ23 −
a

2

∂σ13
∂x1

+ a2
(
∂2σ23
∂x22

+
1

2

∂2σ13
∂x1∂x2

)
= f, (77)
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which is in contradiction to the extra condition (76), following from (16) at
j = 2. Thus, as might be expected, the asymptotic solutions, derived in
Section 5, do not satisfy the integral formulation. Moreover, the violation
of the condition (16) at j = 2 for the nonlocal stress s23 means that the
studied antiplane problem is ill-posed within the framework of the integral
formulation. In fact, the reduction to a differential setup may be treated as
a method for solving nonlocal equations initially presented in the integral
form. Then, the conditions (16) are related to the solvability of integral
equations with the exponential kernel e−|x|/a, see e.g. [26] for greater detail.
The ill-poseddness of the static problem of a cantilever nonlocal elastic beam
has been earlier revealed in [27].

Nevertheless, the differential formulation analysed in this paper still has
a certain potential. In particular, the spotted inconsistency might not be
a feature of materials with only one of the stresses demonstrating nonlocal
behaviour, analogously to the consideration in [20], dealing with simplified
dilatational gradient elasticity. In the latter case only one of the conditions
(16) has to be satisfied. Obviously, these observations hold true for more
elaborated problems.

7. Nonlocal shear surface wave

Rewrite now formulae (72) and (73) through displacement, neglecting the
terms of O(η2). Then, in the homogeneous case (f = 0)

∂2u

∂x21
+
∂2u

∂x22
=

1

c22

∂2u

∂t2
, (78)

with (
∂u

∂x2
− a

2

∂2u

∂x21

) ∣∣∣∣
x2=0

= 0. (79)

Taking the displacement u as

u = Ueik(x1−ct)−kγx2 , (80)

we obtain

γ =

√
1− c2

c22
, (81)
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with the associated dispersion relation

C =

√
1− 1

4
K2, (82)

where, as above,

C =
c

c2
and K = ak. (83)

Over the long-wave region of interest k ∼ 1/l.
We can also adapt for the considered case the refined boundary conditions

derived in [5] within 3D integral nonlocal framework for a Gaussian kernel,
giving (

∂u

∂x2
− a

2
√
π

∂2u

∂x21

) ∣∣∣∣
x2=0

= 0. (84)

This results in a similar dispersion relation

C =

√
1− 1

4π
K2, (85)

which also supports a non-local shear surface wave.
The dispersion curves for relations (82) and (85) are plotted in Figure 2.

C

K

Figure 2: Dispersion curves for the relations (82) (solid line) and (85) (dashed line).
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As expected, the dispersive effect due to nonlocality is visible at non-zero
wave numbers.

8. Conclusions

The counter-example presented in Section 2 shows that the integral and
differential models in nonlocal elasticity are not equivalent. This example is
inspired by a related plane-strain time-harmonic problem, considered in [10].
Apparently, the solution in [10] also does not satisfy the equations of motion
in nonlocal stresses.

The full differential nonlocal formulation studied in Section 3 supports
an antiplane surface wave, in contrast to the conventional differential setup,
neglecting the effect of boundary layers associated with nonlocal stresses.
The boundary layers in Section 3 are similar to those, determined from the
nonlocal integral formulation with the Gaussian kernel [5, 6].

Although boundary layers in nonlocal and gradient elasticity demonstrate
a formal similarity, their physical nature appears to be quite different. In
nonlocal elasticity the boundary layers are due to a rapid change in the
integration domain near the surface, characteristic of localised kernels, in-
volving a small internal size. On the contrary, singular perturbation in the
differential equations of gradient elasticity often come as higher order terms
at homogenisation of periodic structures, resulting in the so-called spurious
boundary layers, e.g. see [24, 4, 17]. The latter are the short-wave side prod-
ucts of long-wave asymptotic procedures. Spurious solutions also arise in
refined theories for thin elastic plates and shells, e.g. see [13]. The analogy
between asymptotic schemes for thin and periodic structures is addressed in
[7].

Another delicate issue is that the basic integral relations for nonlocal
stresses generally need to be revisited when tackling boundary layers. Indeed,
sticking with the assumption that the continuous integral relations originate
from the homogenisation of the associated discrete chain or lattice, e.g. see
[12], we may expect that the asymptotic procedure fails at the scale of an
internal size, characteristic for nonlocal boundary layers. This stimulates the
development of more elaborated approaches, combining discrete boundary
layers and continuous outer solutions. However, it might be expected that the
effect will be only on coefficients at higher-order terms in effective boundary
conditions.
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