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On the Membership of Invertible Diagonal
Matrices

Paul Bell and Igor Potapov*

Department of Computer Science,
University of Liverpool, Chadwick Building,
Peach St, Liverpool L69 7ZF, UK.,
{pbell,igor}@csc.liv.ac.uk

Abstract. In this paper we consider decidability questions that are re-
lated to the membership problem in matrix semigroups. In particular we
consider the membership of a particular invertible diagonal matrix in a
matrix semigroup and then a scalar matrix, which has a separate geo-
metric interpretation. Both problems have been open for any dimensions
and are shown to be undecidable in dimenesion 4 with integral matrices
and in dimension 3 with rational matrices by a reduction of the Post
Correspondence Problem (PCP). Although the idea of PCP reduction is
standard for such problems, we suggest a new coding technique to cover
the case of diagonal matrices.

1 Introduction

In this paper we consider decidability questions that are related to the member-
ship problem in matrix semigroups. The membership problem for a semigroup
with only one generator (“is a matrix B a power of a matrix A”) was known
as the “orbit problem” and was shown to be decidable (in polynomial time) by
Kannan and Lipton in 1986 [6]. The most natural generalization of the the “orbit
problem” is the membership problem for matrix semigroups, given by a list of
generators.

Problem 1. The membership problem. Let S be a given finitely generated
semigroup of n X n matrices from Z"™*™. Determine whether a matrix M belongs
to S. In other words, determine whether there exists a sequence of matrices
My, M, ..., M in S such that My - Ms--- My, = M.

Paterson [9] showed that the problem is undecidable even for 3 x 3 integral
matrices when he considered a special case of the membership problem for matrix
semigroups - the mortality problem (determination of whether the zero matrix
belongs to a matrix semigroup). It was show in [5] that the mortality problem
is undecidable even for a case of two generators where the dimension of the
matrices is at least 24.

* Work partially supported by The Nuffield Foundation grant NAL/00684/G.



The current research in this area is focused on long standing open problems
in low dimensions such as freeness, membership or vector reachability prolems
for 2 x 2 matrices and on the problems that are open in any dimension, like
the membership problem of a unity matrix in a matrix semigroup [1]. A related
problem, also open at the moment, asks whether the semigroup S contains a
diagonal matrix [2]. In this context, we consider the following problem:

Problem 2. Given a multiplicative semigroup S generated by a finite set of n xn
integer matrices and an invertible diagonal matrix Mp. Decide whether the
semigroup S contains the matrix Mp.

In this paper we show that above problem is undecidable in dimension 4 and
in case of rational matrices it is undecidable in dimension 3. As a corollary of
the above fact we show that the membership of a scalar invertible matrix is also
undecidable for a 3 x 3 rational matrix semigroup and 4 x 4 integral matrix
semigroup. One of the interpretations for a scalar matrix is geometric scaling
that alters the size of an object. So checking the membership of a scalar matrix
gives us an answer to the following geometric problem:

Problem 3. Scaling problem. Given a finite set of linear transformations and
a scalar ¥ € N. Decide whether it is possible to have a combination of such
transformations that enlarges the size of an object k times.

Both Problem 2 and Problem 3 are shown to be undecidable by a reduction of the
Post Correspondence Problem (PCP) to the membership problem in an integral
matrix semigroup. The idea of PCP reduction is quite common in algorithmic
matrix problems [5,9,10], but in this paper we use a different technique. In
particular, in the process of coding the words and indices, we design a set of
matrices in such a way that only the correct order of matrix products leads to
a particular matrix in a semigroup. In other words we design the semigroup
generator set as a set of “tiles” that should be connected in the product with
appropriate order, otherwise the product preserves some parts that cannot be
reduced later.

2 Notations and Definitions

In what follows we use traditional denotations N, Z, ZT and Q for the sets of
naturals, integers, non-negative integers and rationals, respectively.

A semigroup is a pair (S,-), where S is a set and - is an associative binary
operation on S. A semigroup (S,-) is generated by a set A of its elements iff
every element of S is a finite product a;, - a;, - ... - a;, where a;; € A. The set
of n x n matrices over integers is denoted by Z™*". It is clear that the identity
element for a semigroup (Z"*",-) is the identity matrix that we denote by E,
(or E). Minor M7!"/! of a matrix M is just the matrix formed from the selected

sk
rows i1, ..., % and columns ji,...,J;

a1 - Qip iy51 7 i,y
_ .. . 1.5 _ .
M= . T. . Mz’l..lk -

Gn,1 " Gpn Qir,jr * Qig,



We denote an empty word by e. The concatenation of two strings w and v is
a string obtained by appending the symbols of v to the right end of w, that
is, if w = ajas...a, and v = b1by...b, then the concatenation of w and v,
denoted by w - v or wv, is ayas - ..a,b1bs ...b,. We denote a word a - ak- --a by
a®. The reverse of a string is obtained by writing the symbols in reverse order; if
w is a string as shown above, then its reverse w® is a,, ...aga;. The inverse of a
character a is written a~! and is the unique character such that a -a~! is equal
to the identity element. For any word w, we define suff, (w) to be the suffiz of
length n from the word w.

We also define a notation for use with words called an inverse palindrome.
This is a word in which the second half is equal to the reverse and inverse of the
first half of the word. For example if w is an inverse palindrome, then it can be
written w = z - (2)~! for some word z. It is clear that any inverse palindrome
is equal to the identity element.

2.1 Two Mappings Between Words and Matrices

Now we introduce two mappings 9 and ¢ that give us an embedding from words
to matrices. Let us consider the mapping 1) between {0,1}" and 2 x 2 matrices:

¢:€H((1)(1)>=E @b:OH((l)?):MO ¢21'—><;(1)>=M1

Yrwy ..o wp o My, X ..o X M, .

It is a well known fact that the mapping 1 is an isomorphism between {0,1}"
and elements of the matrix semigroup generated by 2 x 2 matrices My and
M. Since for every matrix with non-zero determinant there is only one unique
inverse matrix, we can also define a similar mapping . It can be defined using
inverse matrices of the semigroup generator. Mapping ¢ is also an isomorphism
between {0, 1}" and elements of the matrix semigroup generated by 2 x 2 matrices
{My LM 1 1} :

cp:el—>((1)(1)>:E g0:0|—>((1)_3>:M0_1 cp:lt—)(_é?):Ml_l

. -1 -1
Qrwy ..o wp = Ms X X M,

Note that the mappings from w € {0, 1} to w® € {0,1}* and from 1 (u) to
(u®) are bijective. Another very useful property of these mapping is that they
can be used to define a free semigroup and group:

Proposition 1. [4, 11] The semigroup or group generated by the pair of matrices
¥(0), ¥ (1) is free.

Moreover since the semigroup generated by {¢(0),4(1)} is free we can express
an equality on words in terms of matrix equality:



Lemma 1. [10] Given two words u,v € X*, u = v iff p(u®) = (¢(v))~L.

(From Lemma 1 and the fact that matrices ¢¥(w) and p(w) have inverse
matrices (elements) for any word w € {0, 1}*, the following lemma holds:

Lemma 2. [10] Given a binary alphabet X, a finite sequence of pairs of words

mn X*:

(UI; ’1)1), RS (uka Uk)
and a finite sequence of indexes {i;} with {i; € {1..k}}. The word u = u;, -.. .-u;,
is equal to the word v =v;, -...-v;, if and only if

p(u) x P(v) =

2.2 Reduced words and their cyclic permutation

Let I' = {0,1,071,171} where 0 = (0), 1 = (1), 07! =¢(0) and 171 = (1).
For any word, u, such that

U=y Y2 Yn, Wi€TI)

we say that u is a reduced word if y; # y;rll, (1 <i < n),iewu does not contain
a subword of the type yy ! for any character y € I'.

Let P be the semigroup generated by the matrices {¢(0), (1), (0), (1)}
shown above, using multiplication as the associative operator. We define an
isomorphic mapping, w, from any element of P to its reduced word in I':

w:X2’2|—>F* | XeP

We shall also define |w(X)| to be the number of characters in w(X) for any
matrix X. It is clear that w(E) = ¢ therefore |w(E)| = 0. Let wg(X) denote the
kth symbol of w(X) and wr(X) denote the final symbol of w(X).

For any sequence T = (t1,t2,---,t,) we define a k-cyclic permutation (or
k-cyclic shift) to be the result of moving all elements to the right k¥ times with
elements overflowing from the right being inserted to the left. Thus if we shift
this sequence k places to the right we get the sequence suffy,(T)-T - (suffy, () ~1)®
where 0 < k < n.

3 PCP Encoding

In this section we show the idea of reducing the Post Correspondence Problem to
the membership problem for an invertible diagonal matrix. Post’s correspondence
problem (in short, PCP) is formulated as follows: Given a finite alphabet X and
a finite sequence of pairs of words in X*: (uq,v1),. (uk,vk) Is there a finite
sequence of indexes {i;} with {i; € {1..k}}, such that Uiy tee Wiy, = U4y vy, 7
PCP(n) denotes the same problem with a sequence of n pairs. Without loss of
generality we assume that the alphabet X is binary.

Let us construct a generator of a matrix semigroup S. For an instance of the
PCP with n pairs of words the generator contains 4n + 2 different matrices.



1. For each pair (u;,v;), we will create four matrices:
— Matrix of type 1: U122 = p(uf), Ugg = (0°1),U8 =1
— Matrix of type 2: UL2 = p(uft), U3 (0"1),U55 =2
~ Matrix of type 3: V,'? = (0), Vi'§h =¢( 1),V9 =1
~ Matrix of type 4: Vi3 = 4(0), Vyj' = $(0°1), V3 =3
2. A single matrix, M, where Ml’2 = E:M;f =o(1),M? =5
3. A single matrix, N, where N11,22 =E Ngf =¢(1),N> =7

C»J

We assign zero to all matrix elements not defined above. Now we state the
reduction lemma and give an example of such an encoding below.

Lemma 3. An instance of PCP has a solution iff the corresponding semigroup
S contains the matriz Mp

Mp =

cocoocor
coor o
corRroO
o~ocoOo
[l N = e N )

210

Ezample 1. Given an instance of the PCP, P = ((101,1),(0,01010) ). We will
construct an example of how our coding will represent this problem in a semi-
group and what a solution to the problem will look like.

We are given two separate ‘tiles’ and need to construct a solution to the
PCP. We can see that Py, P», P; is one such solution. We will have a semigroup
generator G of ((4 xn) + 2) = 10 matrices G1,G3, - .., G1o where:

Matrix Number| Word part | Index Part |Factor part
Matrix 1 : G115 = p(101) [G135 = ¢(01) [GigE =1
Matrix 2 : G212 = 9(101) |Gay = 9(01) |Galt =2
Matrix 3 : G315 = ¢(0) G33s = 9(001)|G32 2 = 1
Matrix 4 : 041 ; = ¢(0) G4§’Z = ¢(001) 042’2 =2
Matrix 5 : G5}’§ = (1) ng’i = y(01) G5g’g =1
Matrix 6 : __ |Geys = 9(1) _ |Gegs = (01) [Geoo =3
Matrix 7 : G7i'§ = 1(01010) G7§’2 = 9(001) G7g’g =1
Matrix 8 : Gsyp = $(01010)| Gy = ¥(001)|Gs5's = 3
Matrix 9(M) : |[Go1a=E Goys =90(1) [Gozz=5
Matrix 10(N) : [G1io73 = E G10§’Z =y(1) GlOg g =17

As stated before, a sequence from P giving a solution of PCP is 1,2,1 thus we
can define the following matrix product 2 = Gg - G2 - Gs - G1 - G1o - G - G7 - G5.
We will now show this gives the requires form of a matrix.

Consider the word part of the matrix first, W(£2) = E-¢(101)-(0) - ¢(101)-
E-(1)-4(01010) -¢(1) = E. Now consider the index part, I(2) = ¢(1) - p(01)-
©(001) - (01) -4p(1) -4»(01) -4(001) - 4(01) = E. Finally we have the factorization
part as a (integer) product, I(£2) = 5%x2x1x1x7%x3%1x1= 210. This is indeed
a matrix is of the required form and is a solution of the above PCP instance.

In the next section we prove Lemma 3 by showing the correctness of the
presented reduction.



3.1 Correctness of the reduction

Let S be a semigroup that is constructed by the above rules for an instance of
the PCP problem. We start by showing the word equation coding in minor M11’22 .
Given a sequence of pairs of words in a binary alphabet A = {0,1} :

(ul,vl), sy (un,vn).

Let us construct the sequence of pairs of 2 x 2 matrices using two mappings ¢
and t: (Qo(ul)aw(vl))v AR (QO(Un), ¢(Un))

Instead of equation v = v we would like to consider a concatenation of two
words u® - v that is a palindrome in the case where u = v. Now we show a
matrix interpretation of this concatenation. We associate 2 X 2 matrix C' with
a word w of the form «® - v. Initially we can think that C is an identity matrix
corresponding to an empty word. The extension of a word w by a new pair of
words (ur,v,) (i.e. that gives us w' = uf* - w - v,.) corresponds to the following
matrix multiplication

CIU’ = Cuf~w~vr = (P(Uf) X Cw X ¢(UT) (1)

According to Lemma 2 v = w;, - ... u;, = v, -...-v;, = v for a finite
sequence of indexes {i;} with {i; € {1..k}} if and only if p(u®) x ¥(v) is equal
to the identity matrix. So the question of the word equality can be reduced to
the problem of finding a sequence of pairwise matrix multiplications that gives
us the identity matrix. Note that not only an inverse palindrome but also all its
cyclic permutations are equal to the identity element.

Lemma 4. Any k-cyclic permutation of an inverse palindrome of length n is
a concatenation of two distinct (i.e. non-overlapping) inverse palindromes when
1<k<n.

Proof. We are given a word w = wy - ws - - - w, which is an inverse palindrome
(i.e. it can be written as w = z - (2f1)71).
For a k-cyclic shift of w we will get a word of the form:

w' = suffy,(w) - w - (suffy (w)®)~! | 1<k<n

In an inverse palindrome, element wy is inverse to w,, and ws is inverse to w, 1
etc. we can see that any cyclic permutation simply changes the order of the
multiplication from left to right (i.e. wy - w, becomes w, - wy). Each time we
shift right, the first sub-word increases by size 2 whilst the sub-word on the right
decreases by size 2. Thus any cyclic shift of an inverse palindrome gives either
one or two inverse palindromes (depending whether & = n).

Now by the definition of an inverse palindrome, each opposite pair from the
centre outwards is inverse to each other and thus in any such word all elements
cancel to give w = e. For any k-cyclic shift, we get one or two sub words which are
inverse palindromes. In terms of matrices, this means all such cyclic permutations
produce the identity matrix.



Since we cannot control the order of a matrix product in the semigroup we
cannot directly apply the idea of pairwise multiplication. So we show that it is
possible to avoid the pairwise matrix multiplications problem by increasing the
dimension from 2 to 5 using the idea of relative matrices for index encoding.

The idea is to design such associated “tiles” for the above matrices that they
disallow any products that cannot be represented as pairwise multiplications. In
particular, a sequence of “tiles” in an incorrect order preserves some parts that
cannot be reduced later.

We show now that using two specially designed minors of 5 dimensional
matrices, Mg”f and M2, we can guarantee such a property. It is easy to see that
the minor M? controls the exact number of appearences of auxiliary matrices and
the minimum number of main matrices to avoid an empty word solution. This is
achieved by assigning unique prime values to some matrices and by employing
the fundamental theorem of arithmetic regarding prime factorization.

We will now prove that the index coding will only result in the identity
matrix in the case that the matrix multiplication is of the correct form. The
initial conditions of the following lemma are satisfied by the prime factorization
in the last diagonal element of each matrix.

Lemma 5. Let S be a set containing matrices M = (1), N = (1), U; =
©(0%1) and V; = (0°1) where 1 <i < n. Let P be a set of matrices where each
member of P is the product of at least one U and V matriz and exactly one M
and N matrix from set S. The identity matriz is o member of the set P iff it is
a cyclic permutation of the following sequence:

MU, -Uy,---Ug -N-V; Vi, - Vi,

Proof. < ;From the definition of the lemma, we know there is 1 matrix of type
M, 1 matrix of type N and at least 1 matrix of type U and V. Thus we will
prove by induction that any multiplication of the above forms gives the identity
element.

Let us prove the base case, when n = 1:

MU, -N-Viy = (1) - 9(0"1) - (1) -9(0"1) = E
Let us consider a matrix multiplication of the form U,,41 - N - V,41:
P(0"11) - 9p(1) - 9(0"11) = 9(1) = N (1)
We now assume the inductive hypothesis that for any n:
M-Uy---U, -N-Vi ---V;y =E

But since we showed in (1) that U,y1 - N - V.41 = N, we can substitute this
into the above expression to get the same result for n+1. Thus this product gives
the identity matrix by the principle of induction.

We now prove that if the above form is equal to the identity matrix, all cyclic
permutations are aswell.



We can clearly see that in terms of atomic matrices, the given form of matrix
product is an inverse palindrome as defined in lemma 4. This can be seen by
looking at an example :

MUy, -UyN - Vi, - Vi, = (101021 - (1010711

But as shown in lemma 4, any cyclic permutation of an inverse palindrome
is equal to two smaller inverse palindromes (except for the trivial case where
we cycle a multiple of the number of matrices and get the original word back).
Further, we showed that inverse palindromes are clearly equal to the identity
element. Thus any cyclic shift of the above sequence gives the identity matrix.
= We now move to the reverse direction of the proof; proving that all identity
elements must be a cyclical permutation of the following form:

M-U;, -Uy---Ug, -N-Vi ---Vi, - Vi,

We have four different matrix “types”. We shall show that these elements
cannot produce the identity element in any way other than the above form.

We first consider only U and V matrices in a product. We define a sequence
of matrices by (Y;,,Yi,,---,Y:,.) where Y; € {U;,V;}. For any k, w(Uy) = 0
and wr(Uy) = 1. Similarly, wy (V) = 071 and wr(V;) = 171. Therefore any
multiplication of these matrices will not have any consecutive inverse pairs since
1-07'# E and 17! - 0 # E. More formally,

w(ﬁ }/;k>‘ :i|w(}/lk)| , Y E{Ulka} (2)
k=1 k=1

We will now prove that if we have a matrix sequence containing any con-
secutive products U; - V; (similarly for V; - U;), it will never be able to be fully
cancelled using just one M and N matrix:

Let X = U; - V; where 1 < 4,5 < n. Given that X = ¢(0°1) - 4(071) and
w(X) =011(071)7171, we can see w;(X) = 0. Since for all Y € S, wr(Y) =1 or
171, no matrix can be pre-multiplied to reduce the length of w(X). Given that
wr(X) = 171, we can only post multiply by M to reduce the length of w(X)
because wi (M) = 1. Therefore U; - V; - M = p(0%1) - (0?) and w(U; - V; - M) =
0?1(0~!)/. Again, no matrix can be pre-multiplied, but we can post-multiply by
some Uy since only w;(U) = 0. We have three cases, where (k < j), (k = j)
and (k > j) giving matrices ¢(0%1) -4 (077F) - (1), ©(0°1) and p(01) - p(0*~71)
respectively. Since wg of these three matrices equals 1 it can only cancel with an
N matrix. In all cases, there are now either 0 or 0~! symbols on the right of the
product. It can be seen however that further multiplications by the remaining
U,V matrices will not fully cancel any of these products.

A similar argument holds for X = Vj; - U;. Therefore if any matrix sequence
contains consecutive elements U;, V; or V}, U, its product cannot equal the iden-
tity matrix.

We now consider a matrix M in a product. We have four cases to consider.




1. Given w(U;-M) = 0?11, we see that it cannot be reduced to zero size because
only N cancels with the final symbol leaving U; and (2) shows that using
only U and V matrices never gives the identity matrix.

2. M - Uj; is of the correct form as shown in the first part of the proof.

3. V; - M is of the correct form as shown in the first part of the proof.

4. Given w(M -V;) = 1(071){171. We cannot post-multiply by any remain-
ing matrix type to reduce the number of matrix elements. We can pre-
multiply this product by N but this again leaves only U and V matrices.
Pre-multiplying by V; gives a product: w(V; - M - V;) = (0~1)U+91-1 equal
to Vj4; which cannot reduce to zero length because the M matrix has been
used and only M cancels with the last element.

Since each matrix type has an inverse, the same situation occurs with the N
matrix. Therefore any matrix product containing (U; - M), (M - V;), (V; - N) or
(N - U;) will never be able to result in the identity element.

Thus the sequence must of the following form to produce the identity matrix:

"'%1'M'Uj1"'an'N'Vkm"'vk1'M'Ull"'Ulp'N'th"'

This pattern can repeat indefinitely, but since we only have a single M and
N matrix:

Vi Vi, M -Uj, - Uj, -N-Vj, - Vi, |mp€Zt,neN
U, -~ U, -N-Vj -V -M-Uy, Uy, |m,peZ*,neN

Since (1) is only inverse to (1) and each U,V matrix sequence contains
exactly one of these matrices, the number of U matrices must equal the number
of V matrices, thus m + p = n.

For the first equation, let us define two sub-sequences of matrices a; =
":W17M7Uj17' "JUjm) and ap = (Uj(n—p+1)"' 'annaN:Vkpa' "JVkl)'

Assume the first equation is equal to the identity element. Now assume the
contrary that a; # M. There is an equal number of U and V matrices and the
U matrices follow the M matrix therefore the last matrix in the sequence must
be a U matrix. wr of any U is always 1. If ae = N then it will cancel with this
element but leave a non-identity element in «; (since a; # M). Thus as # N and
since it has an equal number of U and V matrices and the U matrices preceed all
V' matrices, the first matrix in the sequence must also be some U matrix. But as
shown in (2) the product of U matrices only increases the size of the sequence.
The reverse argument also holds if as # N. Thus the resulting matrix cannot
be the identity element unless a; = M and as = N.

Define a4 [i] to be the i’th element of the sequence. Now we prove that a; [(m+
1) —k]-a1[(m+1) 4+ k] = E where (0 < k < m). Let us assume by contradiction
that their exists some k where a;[(m+1) —k]-a1[(m+1)+k] # E, i.e. 2 opposite
elements who are not inverse to each other. Therefore we have:

Voo MUy =$(0°1) - (1) - (0"1) [a#b

(Vi

m

If a > b then it will give a matrix (0% %) - p(1). Since M has been used and
N is not in this sequence however, we only have U and V matrices which (2)



shows cannot reduce the length of |w(10(027°) - ©(1))| (and |M| =1). Ifa < b
then it gives a matrix ¢(0°~?1) which is equal to Uy_,). Again, since M has
been used, there are only U and V' matrices left which cannot reduce to M giving
a contradiction.

Similarly for as we get opposite matrices produced which gives the same
result that all opposite matrices from the central element (N) are inverse.

Thus in the first equation given above, it must be of the form:

v Vi -M-U;,---U;, ---Ug -N-V; ---V,

fn—m+1

We can clearly see that this is a cyclic permutation of the form given in the
first part of the proof and the form of equation 2 is a cyclic permutation of
equation 1, thus both must be equal to the identity matrix.

The proof of above lemma, ends the proof of reduction from Lemma 3 since
the PCP has a solution if and only if the semigroup S contains the matrix Mp.
Thus the following Theorem holds:

Theorem 1. Problem 2 is undecidable in dimension five.

3.2 Reduction to lower dimensions
Now we can reduce the dimensions used and state some corollaries.
Corollary 1. Problem 2 is undecidable in dimension 4.

Proof. The element M7, in our previous construction, is a scalar value and is
commutative in all matrices since all other elements along row and column 5 are
zero. Therefore we can multiply minor M. ?i’f by M2 and we will still preserve this
valuesaicross the multiplication without changing the structure of multiplications
of M37.

Corollary 2. Problem 3 is undecidable for linear transformations defined by a
finite set of integral 4 x 4 matrices.

Proof. In order to prove the undecidablity of Problem 3 we can show that the
scalar matrix M = 210 - B4 is undecidable. We use the same idea as we did for
Problem 2 with the only difference being that we extend the generator of the
semigroup by the following matrix R:

2000 0 O
0 210 0 O
0 0 2100
0 0 01

It is easy to see that the above matrix commutes with all other matrices in
the semigroup, since the minor M1122§ is a scalar matrix and M} is the identity
element. On the other hand we cannot use more than one copy of matrix R since
the determinant of any matrix from a semigroup that uses more than one copy



of R will be more than 210%. So the matrix M = 210- E, is reachable if and only
if the matrix

SO = OO

0
0
0
1

210

SO O
T oo ~RO

is reachable and does not use R, that in turn is undecidable.

In fact we can prove an even stronger claim that membership of any non-
unimodular scalar matrix over rationals is undecidable in dimension four for
rational matrix semigroups.

Corollary 3. Given a semigroup S generated by a finite set of n X n matrices
over rationals and a scalar k € Q such that k # 1. It is undecidable to check
whether the scalar matriz k - E belonds to S for any n > 4.

Proof. We use Lemma 3 to show the undecidablity of the membership problem
for a scalar matrix k - E4 by repeating the proof of Corollary 2 and introducing
another matrix R that is now equal to

We now use the suggestion of an anonymous referee to use our technique
with different bijections ¢ and ¢ to get an undecidability result in dimension 3
with rational matrices.

Corollary 4. The problem of determining if a matriz 210 - E3 is a member of
a multiplicative semigroup with rational matrices is undecidable in dimension 3

Proof. We show this result by using a different mapping for ¢ and v which form
a free semigroup. We change this mapping for the separate minors Mllg and

M22”33 . The mapping is such that the central element M2 is always equal to 1 for
all but one of the generators. This allows us to merge the two smaller minors
into a single 3*3 matrix.

1 1
b0 = (19) vz 0= (39) ez = (47) waz0 = (51

2

Yz (@) = (éi) Yarzg () = (33) ez (0) = (é ?1) Pz 1) = ((1) _11)

2 2

All mappings from e give E2. We can see that any product of the Mll,’g
mapping matrices will give a 1 in element MZ. Similarly, any product of the
M22”33 mapping matrices will give a 1 in element MJ3. These matrices also form



a free group and we can therefore use them to embed the PCP problem within
a 3*3 matrix as before. However, we must now multiply the whole matrix by
the scalars 2,3,5,7 that were previously in MJ. This means we cannot use this
method for an arbitrary scalar matrix but only specific ones (in this case we use
the matrix 210 - E).

4 Conclusion and Some Remarks

In this paper we have proved that the membership problem of a particular in-
vertible diagonal matrix is undecidable for a 4 x 4 integral matrix semigroup.
Then as a corollary of this fact we have shown that the membership of a partic-
ular invertible scalar matrix is undecidable in dimension 4 for an integral matrix
semigroup and in dimension 3 for rational matrix semigroup. Moreover we have
shown that in dimension 4 the membership of any non-unimodular scalar ma-
trix is undecidable for a rational matrix semigroup. The same problems for lower
dimensions and the membership problem for an arbitrary diagonal matrix in a
matrix semigroup are still open.
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