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Abstract

In this paper, we consider decidability questions that are related to the membership problem in matrix semigroups. In particular,
we consider the membership of a given invertible diagonal matrix in a matrix semigroup and then a scalar matrix, which has a
separate geometric interpretation. Both problems have been open for any dimensions and are shown to be undecidable in dimension
4 with integral matrices by a reduction of the Post Correspondence Problem (PCP). Although the idea of PCP reduction is standard
for such problems, we suggest a new coding technique to cover the case of diagonal matrices.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider decidability questions that are related to the membership problem in matrix semigroups.
The membership problem for a semigroup with only one generator (“is a matrix B a power of a matrix A”) was known
as the “orbit problem”, and was shown to be decidable (in polynomial time) by Kannan and Lipton in 1986 [7]. The
most natural generalization of the “orbit problem” is the membership problem for matrix semigroups, given by a list
of generators.

Problem 1 (The Membership Problem). Let S be a given finitely generated semigroup of n × n matrices from Qn×n .
Determine whether a matrix M belongs to S. In other words, determine whether there exists a sequence of matrices
M1,M2, . . . ,Mk in S such that M1 M2 · · · Mk = M.

Paterson [9] showed that the problem is undecidable even for 3 × 3 integral matrices when he considered a special
case of the membership problem for matrix semigroups — the mortality problem (determination of whether the zero
matrix belongs to a matrix semigroup). It was shown in [6] that the mortality problem is undecidable even for a case of
two generators where the dimension of the matrices is at least 24. The most general class of matrix semigroups with
a decidable membership problem that is currently known is a class of row-monomial matrices over a commutative
semigroup [8].
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The current research in this area is focused on long standing open problems in low dimensions such as freeness,
membership or vector reachability problems for 2 × 2 matrices and on the problems that are open in any dimension,
like the membership problem for the identity matrix in a matrix semigroup [1]. A related problem, also open at the
moment, asks whether the semigroup S contains a diagonal matrix [2]. In this context, we consider the following
problem:

Problem 2. Given a multiplicative semigroup S generated by a finite set of n × n integer matrices and an invertible
diagonal matrix MD, decide whether the semigroup S contains the matrix MD.

In this paper we show that above problem is undecidable in dimension 4. As a corollary of the above fact, we
show that the membership of any given scalar matrix k · I , where k 6= 0,±1, is also undecidable for a 4 × 4 rational
matrix semigroup. One of the interpretations for a scalar matrix is geometric scaling that alters the size of an object.
So checking the membership of a scalar matrix gives us an answer to the following geometric problem:

Problem 3 (Scaling Problem). Given a finite set of linear transformations with integer coefficients and a scalar
k ∈ Z \ {0,±1}, decide whether it is possible to have a combination of such transformations that enlarges the size of
an object by k times.

We exhibit a particular scalar for which Problem 3 is undecidable. Both Problems 2 and 3 are shown to be
undecidable by a reduction of the Post Correspondence Problem (PCP) to the membership problem in an integral
matrix semigroup. The idea of PCP reduction is quite common in algorithmic matrix problems [6,9,10], but in this
paper we use a different technique. In particular, in the process of coding the words and indices, we design a set of
matrices in such a way that only the correct order of matrix products leads to a particular matrix being in a semigroup.
In other words we design the semigroup generator set as a set of “tiles” that should be connected in the product with
an appropriate order; otherwise the product preserves some parts that cannot be reduced later.

2. Notations and definitions

In what follows, we use traditional denotations N, Z, Z+ and Q for the sets of naturals, integers, positive integers
and rationals, respectively.

A semigroup is a pair (S, ·), where S is a set and · is an associative binary operation on S. A semigroup (S, ·) is
generated by a set A of its elements iff every element of S is a finite product ai1ai2 · · · aik , where ai j ∈ A. The set of
n × n matrices over integers is denoted by Zn×n . It is clear that the identity element for a semigroup (Zn×n, ·) is the
identity matrix that we denote by In (or I ). The submatrix M j1,..., jl

i1,...,ik
of a matrix M is just the matrix formed from the

selected rows i1, . . . , ik and columns j1, . . . , jl

M =

a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 M j1.. jl
i1..1k =

ai1, j1 · · · ai1, jl
...

. . .
...

aik , j1 · · · aik , jl

 .
We denote an empty word by ε. The concatenation of two strings w and v is a string obtained by appending the
symbols of v to the right end of w; that is, if w = a1a2 · · · an and v = b1b2 · · · bn then the concatenation of w and v,
denoted by w · v or wv, is a1a2 · · · anb1b2 · · · bn . We denote a word aa · · · a︸ ︷︷ ︸

k

by ak . The reverse of a string is obtained

by writing the symbols in reverse order; if w is a string as shown above, then its reverse wR is an · · · a2a1. The inverse
of a character a is written a−1 and is the unique character such that a · a−1 is equal to the identity element. For any
word w, we define suffn(w) to be the suffix of length n from the word w.

We also define a notation for use with words called an inverse palindrome. This is a word in which the second half
is equal to the reverse of the first half of the word using inverse elements. For example if w is an inverse palindrome,
then it can be written w = z · zR = z · (z)−1

= ε for some word z where z denotes the same word, z, but using inverse
elements. For example w = w1w2w3w3w2w1 = ε is an inverse palindrome.
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2.1. Two mappings between words and matrices

Now we introduce two mappings ψ and ϕ that give us an embedding from words to matrices. Let us consider the
mapping ψ between {0, 1}

∗ and 2 × 2 matrices:

ψ : ε 7→

(
1 0
0 1

)
= I ψ : 0 7→

(
1 2
0 1

)
= M0 ψ : 1 7→

(
1 0
2 1

)
= M1

ψ : w1w2 · · ·wr 7→ Mw1 Mw2 · · · Mwr .

It is a well known fact that the mappingψ is an isomorphism between {0, 1}
+ and the elements of the matrix semigroup

generated by 2 × 2 matrices M0 and M1. Since for every matrix with non-zero determinant there is only one unique
inverse matrix, we can also define a similar mapping ϕ. It can be defined using inverse matrices of the semigroup
generator. The mapping ϕ is also an isomorphism between {0, 1}

+ and elements of the matrix semigroup generated
by 2 × 2 matrices {M−1

0 ,M−1
1 }:

ϕ : ε 7→

(
1 0
0 1

)
= I ϕ : 0 7→

(
1 −2
0 1

)
= M−1

0 ϕ : 1 7→

(
1 0

−2 1

)
= M−1

1

ϕ : w1w2 · · ·wr 7→ M−1
w1

M−1
w2

· · · M−1
wr
.

Note that the mappings from w ∈ {0, 1}
+ to wR

∈ {0, 1}
+ and from ψ(u) to ϕ(uR) are bijective. Another very

useful property of these mappings is that they can be used to define a free semigroup and group:

Proposition 4 ([4,12]). The semigroup and group generated by the pair of matrices ψ(0), ψ(1) is free.

Moreover, since the semigroup generated by {ψ(0), ψ(1)} is free, we can express an equality on words in terms of
matrix equality:

Lemma 5 ([10]). Given two words u, v ∈ X∗, u = v iff ϕ(uR) = (ψ(v))−1.

From Lemma 5 and the fact that matrices ψ(w) and ϕ(w) have inverse matrices (elements), for any word
w ∈ {0, 1}

∗, the following lemma holds:

Lemma 6 ([10]). Given a binary alphabet X, a finite sequence of pairs of words in X∗:

(u1, v1), . . . , (uk, vk)

and a finite sequence of indices i1, i2, . . . , im with i j ∈ {1..k}. The word u = ui1 · · · uim is equal to the word
v = vi1 · · · vim if and only if

ϕ(uR) · ψ(v) = I.

2.2. Reduced words and their cyclic permutation

Let Γ = {0, 1, 0−1, 1−1
} where 0 ≡ ϕ(0), 1 ≡ ϕ(1), 0−1

≡ ψ(0) and 1−1
≡ ψ(1). For any word, u, such that

u = y1 y2 · · · yn, (yi ∈ Γ )

we say that u is a reduced word if yi 6= y−1
i+1, (1 ≤ i < n), i.e. u does not contain a subword of the type yy−1 for any

character y ∈ Γ .
Let P be the semigroup generated by the matrices {ϕ(0), ϕ(1), ψ(0), ψ(1)} shown above, using multiplication as

the associative operator. We define an isomorphism, ω, from P to its reduced word in Γ , i.e. ω : P → Γ ∗. As an
example, ω(ϕ(0)ψ(1)ψ(0)) = 01−10−1.

We shall also define |ω(X)| to be the number of characters in ω(X) for any matrix X . It is clear that ω(I ) = ε;
therefore |ω(I )| = 0. Let ωk(X) denote the kth symbol of ω(X) and let ωF (X) denote the final symbol of ω(X).

For any sequence T = (t1, t2, . . . , tn), we define a k-cyclic permutation (or k-cyclic shift) to be the result of moving
all elements to the right k times, with elements overflowing from the right being (re)inserted to the left. Thus if we
shift this sequence k places to the right we get the sequence suffk(T ) · T · suffk(T )−1, where 0 ≤ k ≤ n.
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3. PCP encoding

In this section, we illustrate the idea of reducing the Post Correspondence Problem to the membership problem for
an invertible diagonal matrix. Post’s correspondence problem (in short, PCP) is formulated as follows:

Given a finite alphabet X and a finite set of pairs of words in X∗
× X∗: {(u1, v1), . . . , (uk, vk)}, is there a finite

sequence of indices i1i2 . . . im with i j ∈ {1..k}, such that ui1ui2 · · · uim = vi1vi2 · · · vim ?
PCP(n) denotes the same problem with a sequence of n pairs. Without loss of generality, we assume that the

alphabet X is binary [11].
Let us define a class of semigroups that has an undecidable membership problem for invertible diagonal matrices.

For an instance of the PCP with n pairs of words, we define a generator G containing 4n + 2 different matrices as
follows:

(1) For each pair (ui , vi ), we will create four matrices:
• Matrix of type 1: A1,2

1,2 = ϕ(u R), A3,4
3,4 = ϕ(0i 1), A5

5 = 1

• Matrix of type 2: B1,2
1,2 = ϕ(u R), B3,4

3,4 = ϕ(0i 1), B5
5 = 2

• Matrix of type 3: C1,2
1,2 = ψ(v),C3,4

3,4 = ψ(0i 1),C5
5 = 1

• Matrix of type 4: D1,2
1,2 = ψ(v), D3,4

3,4 = ψ(0i 1), D5
5 = 3

(2) A single matrix, J , where J 1,2
1,2 = I, J 3,4

3,4 = ϕ(1), J 5
5 = 5

(3) A single matrix, K , where K 1,2
1,2 = I, K 3,4

3,4 = ψ(1), K 5
5 = 7.

We assign a value of zero to all matrix elements not defined above. Now we state the reduction lemma and give an
example of such an encoding below.

Lemma 7. An instance of PCP has a solution iff the corresponding semigroup S with generator G defined as above
contains the matrix MD

MD =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 210

 .
Example 8. Given an instance of the PCP, P = ((101, 1), (0, 01010)), we will construct an example of how our
coding will represent this problem in a semigroup, and what a solution to the problem will look like.

We are given two separate ‘tiles’ and need to construct a solution to the PCP. We can see that P1, P2, P1 is one
such solution. We will have a semigroup generator G of ((4n)+ 2) = 10 matrices G1,G2, . . . ,G10 where:

Matrix number Word part Index part Factor part

Matrix 1 : G1
1,2
1,2 = ϕ(101) G1

3,4
3,4 = ϕ(01) G1

5,5
5,5 = 1

Matrix 2 : G2
1,2
1,2 = ϕ(101) G2

3,4
3,4 = ϕ(01) G2

5,5
5,5 = 2

Matrix 3 : G3
1,2
1,2 = ϕ(0) G3

3,4
3,4 = ϕ(001) G3

5,5
5,5 = 1

Matrix 4 : G4
1,2
1,2 = ϕ(0) G4

3,4
3,4 = ϕ(001) G4

5,5
5,5 = 2

Matrix 5 : G5
1,2
1,2 = ψ(1) G5

3,4
3,4 = ψ(01) G5

5,5
5,5 = 1

Matrix 6 : G6
1,2
1,2 = ψ(1) G6

3,4
3,4 = ψ(01) G6

5,5
5,5 = 3

Matrix 7 : G7
1,2
1,2 = ψ(01010) G7

3,4
3,4 = ψ(001) G7

5,5
5,5 = 1

Matrix 8 : G8
1,2
1,2 = ψ(01010) G8

3,4
3,4 = ψ(001) G8

5,5
5,5 = 3

Matrix 9(J) : G9
1,2
1,2 = I G9

3,4
3,4 = ϕ(1) G9

5,5
5,5 = 5

Matrix 10(K) : G10
1,2
1,2 = I G10

3,4
3,4 = ψ(1) G10

5,5
5,5 = 7
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All other matrix elements are equal to 0. As stated before, a sequence from P giving a solution of PCP is 1,2,1;
thus we can define the following matrix product Ω = G9 · G2 · G3 · G1 · G10 · G6 · G7 · G5. We will now show this
gives the required form of matrix.

Consider the word part of the matrix first: W (Ω) = I · ϕ(101) · ϕ(0) · ϕ(101) · I · ψ(1) · ψ(01010) · ψ(1) = I .
Now consider the index part, Ind(Ω) = ϕ(1) · ϕ(01) · ϕ(001) · ϕ(01) ·ψ(1) ·ψ(01) ·ψ(001) ·ψ(01) = I . Finally, we
have the factorization part as a (integer) product, Fac(Ω) = 5 · 2 · 1 · 1 · 7 · 3 · 1 · 1 = 210. This is indeed a matrix is
of the required form, and is a solution of the above PCP instance.

In the next section, we prove Lemma 7 by showing the correctness of the presented reduction.

3.1. Correctness of the reduction

Let S be a semigroup that is constructed by the above rules for an instance of the PCP problem. We start by showing
the word equation coding in submatrix M1,2

1,2 . Given a sequence of pairs of words in a binary alphabet A = {0, 1}:

(u1, v1), . . . , (un, vn).

Let us construct the sequence of pairs of 2 × 2 matrices using two mappings ϕ and ψ : (ϕ(u1), ψ(v1)), . . . , (ϕ(un),

ψ(vn)).
Instead of the equation u = v, we would like to consider a concatenation of two words u R

· v that is a palindrome
in the case where u = v. Now we show a matrix interpretation of this concatenation. We associate the 2 × 2 matrix Y
with a word w of the form u R

· v. Initially, we can think that Y is an identity matrix corresponding to an empty word.
The extension of a word w by a new pair of words (ur , vr ) (i.e. that gives us w′

= u R
r · w · vr ) corresponds to the

following matrix multiplication:

Yw′ = Yu R
r ·w·vr

= ϕ(u R
r ) · Yw · ψ(vr ). (1)

According to Lemma 6 u = ui1 · · · uim = vi1 · · · vim = v for a finite sequence of indexes i1i2 . . . im with i j ∈ {1..k}

if and only if ϕ(u R) · ψ(v) is equal to the identity matrix. So the question of word equality can be reduced to the
problem of finding a sequence of pairwise matrix multiplications that gives us the identity matrix. Note that not only
an inverse palindrome but also all its cyclic permutations are equal to the identity element.

Lemma 9. Any k-cyclic permutation of an inverse palindrome of length n is a concatenation of two distinct (i.e.
non-overlapping) inverse palindromes when 1 ≤ k < n.

Proof. We are given a word w = w1w2 · · ·wn which is an inverse palindrome (i.e. it can be written as w = z · z−1).
For a k-cyclic shift of w, we will get a word of the form:

w′
= suffk(w) · w · suffk(w)

−1
| 1 ≤ k < n.

In an inverse palindrome, element w1 is inverse to wn and w2 is inverse to wn−1 etc. We can see that any cyclic
permutation simply changes the order of the multiplication from left to right (i.e. w1 ·wn becomes wn ·w1). Each time
we shift right, the first sub-word increases by size 2 whilst the sub-word on the right decreases by size 2. Thus any
cyclic shift of an inverse palindrome gives either one or two inverse palindromes (depending on whether k = n). �

Now by the definition of an inverse palindrome, each opposite pair from the centre outwards is inverse to each
other, and thus in any such word all elements cancel to give w = ε. For any k-cyclic shift, we get one or two sub
words which are inverse palindromes. In terms of matrices, this means that all such cyclic permutations produce the
identity matrix.

Since we cannot control the order of a matrix product in the semigroup, we cannot directly apply the idea of
pairwise multiplication. So we show that it is possible to avoid the pairwise matrix multiplications problem by
increasing the dimension from 2 to 5 using the idea of relative matrices for index encoding.

The idea is to design such associated “tiles” for the above matrices that they disallow any products that cannot be
represented as pairwise multiplications. In particular, a sequence of “tiles” in an incorrect order preserves some parts
that cannot be reduced later.
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For each matrix M ∈ S, we can guarantee such a property by using two specially designed submatrices of the five
dimensional matrices, M3,4

3,4 and M5
5 . It is easy to see that the submatrix M5

5 controls the exact number of appearances
of auxiliary matrices and the minimum number of main matrices to avoid an empty word solution. This is achieved by
assigning unique prime values to some matrices and by employing the fundamental theorem of arithmetic regarding
prime factorization.

We will now prove that the index coding will only result in the identity matrix when the matrix multiplication is
of the correct form. The initial conditions of the following lemma are satisfied by the prime factorization in the last
diagonal element of each matrix. Note also that the M, N matrices correspond to J 3,4

3,4 , K 3,4
3,4 respectively, and the

Ui , Vi matrices are the same subparts of the matrices A, B,C, D of generator G from Lemma 7.

Lemma 10. Let S be a set containing matrices M = ϕ(1), N = ψ(1), Ui = ϕ(0i 1) and Vi = ψ(0i 1) where
1 ≤ i ≤ n. Let P be a set of matrices where each member of P is the product of at least one U and V matrix and
exactly one M and N matrix from set S. The identity matrix is a member of the set P iff it is a cyclic permutation of
the following sequence:

M · Ui1 · Ui2 · · · Uin · N · Vin · · · Vi2 · Vi1 .

Proof. ⇐ From the definition of the lemma, we know there is one matrix of type M , one matrix of type N and at
least one matrix of type U and V . Thus, we will prove by induction that any multiplication of the above forms gives
the identity element.
Let us prove the base case, when n = 1:

M · Ui1 · N · Vi1 = ϕ(1) · ϕ(0i1 1) · ψ(1) · ψ(0i11) = I.

Let us consider a matrix multiplication of the form Un+1 · N · Vn+1:

ϕ(0n+11) · ψ(1) · ψ(0n+11) = ψ(1) = N . (2)

We now assume the inductive hypothesis that for any n:

M · Ui1 · · · Uin · N · Vin · · · Vi1 = I.

But since we showed in Eq. (2) that Un+1 · N · Vn+1 = N , we can substitute this into the above expression to get
the same result for n + 1. Thus, this product gives the identity matrix by the principle of induction.

We now prove that if the above form is equal to the identity matrix, then all cyclic permutations are as well.
We can clearly see that in terms of atomic matrices, the given form of the matrix product is an inverse palindrome

as defined in Lemma 9. This can be seen by looking at an example:

M · Ui1 · Ui2 · N · Vi2 · Vi1 = ϕ(10i110i21) · ψ(10i210i11).

But as shown in Lemma 9, any cyclic permutation of an inverse palindrome is equal to two smaller inverse
palindromes (except for the trivial case where we cycle a multiple of the number of matrices and get the original
word back). Further, we showed that inverse palindromes are clearly equal to the identity element. Thus any cyclic
shift of the above sequence gives the identity matrix.
⇒ We now move to the reverse direction of the proof; proving that all identity elements must be a cyclical permutation
of the following form:

M · Ui1 · Ui2 · · · Uin · N · Vin · · · Vi2 · Vi1 .

We have four different matrix “types”. We shall show that these elements cannot produce the identity element in
any way other than in the above form.

We first consider only U and V matrices in a product. We define a sequence of matrices by (Yi1 , Yi2 , . . . , Yin )where
Yi ∈ {Ui , Vi }. For any k, ω1(Uk) = 0 and ωF (Uk) = 1. Similarly, ω1(Vk) = 0−1 and ωF (Vk) = 1−1. Therefore any
multiplication of these matrices will not have any consecutive inverse pairs, since 1 · 0−1

6= I and 1−1
· 0 6= I . More

formally,∣∣∣∣∣ω
(

n∏
k=1

Yik

)∣∣∣∣∣ =

n∑
k=1

|ω(Yik )|, Yk ∈ {Uk, Vk}. (3)
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We will now prove that if we have a matrix sequence containing any consecutive products Ui · V j (similarly for
V j · Ui ), it will never be able to be fully cancelled using just one M and N matrix:

Let X = Ui · V j where 1 ≤ i, j ≤ n. Given that X = ϕ(0i 1) · ψ(0 j 1) and ω(X) = 0i 1(0−1) j 1−1, we can see
ω1(X) = 0. Since for all Y ∈ S, ωF (Y ) = 1 or 1−1, no matrix can be pre-multiplied to reduce the length of ω(X).
Given that ωF (X) = 1−1, we can only post multiply by M to reduce the length of ω(X) because ω1(M) = 1. Therefore
Ui · V j · M = ϕ(0i 1) · ψ(0 j ) and ω(Ui · V j · M) = 0i 1(0−1) j . Again, no matrix can be pre-multiplied, but we can
post-multiply by some Uk since only ω1(U ) = 0. We have three cases, where (k < j), (k = j), and (k > j), giving
matrices ϕ(0i 1) · ψ(0 j−k) · ϕ(1), ϕ(0i 11), and ϕ(0i 1) · ϕ(0k− j 1), respectively. Since the ωF of these three matrices
equals 1 it can only cancel with an N matrix. In all cases, there are now either 0 or 0−1 symbols on the right of the
product. It can be seen, however, that further multiplications by the remaining U, V matrices will not fully cancel any
of these products.

A similar argument holds for X = V j ·Ui . Therefore, if any matrix sequence contains consecutive elements Ui , V j
or V j ,Ui , its product cannot equal the identity matrix.

We now consider a matrix M in a product. We have four cases to consider.

(1) Given ω(Ui · M) = 0i 11, we see that it cannot be reduced to zero size because only N cancels with the final
symbol, leaving Ui , and (3) shows that using only U and V matrices never gives the identity matrix.

(2) M · Ui is of the correct form as shown in the first part of the proof.
(3) Vi · M is of the correct form as shown in the first part of the proof.
(4) We have ω(M · Vi ) = 1(0−1)i 1−1. We cannot post-multiply by any remaining matrix type to reduce the number

of matrix elements. We can pre-multiply this product by N , but this again leaves only U and V matrices. Pre-
multiplying by V j gives a product: ω(V j · M · Vi ) = (0−1)( j+i)1−1, equal to V j+i , which cannot reduce to zero
length because the M matrix has been used and only M cancels with the last element.

Since each matrix type has an inverse, the same situation occurs with the N matrix. Therefore any matrix product
containing (Ui · M), (M · Vi ), (Vi · N ) or (N · Ui ) will never be able to result in the identity element.

Thus the sequence must be of the following form to produce the identity matrix:

· · · Vi1 · M · U j1 · · · U jn · N · Vkm · · · Vk1 · M · Ul1 · · · Ulp · N · Vhq · · ·

This pattern can repeat indefinitely, but since we only have a single M and N matrix:

Vim · · · Vi1 · M · U j1 · · · U jn · N · Vkp · · · Vk1 | m, p ∈ Z+, n ∈ N (4)

Uim · · · Ui1 · N · V j1 · · · V jn · M · Ukp · · · Uk1 | m, p ∈ Z+, n ∈ N. (5)

Since ϕ(1) is only inverse to ψ(1) and each U ,V matrix sequence contains exactly one of these matrices, the
number of U matrices must equal the number of V matrices, and thus m + p = n.

For Eq. (4), let us define two sub-sequences of matrices α1, α2 such that

α1 = (Vim , . . . , Vi1 ,M,U j1 , . . . ,U jm )

α2 = (U j(n−p+1) , . . . ,U jn , N , Vkp , . . . , Vk1).

Assume that Eq. (4) is equal to the identity element. Now assume by contradiction that α1 6= M . There are an
equal number of U and V matrices, and the U matrices follow the M matrix; therefore the last matrix in the sequence
must be a U matrix. ωF of any U is always 1. If α2 = N , then it will cancel with this element but leave a non-identity
element in α1 (since α1 6= M). Thus α2 6= N , and since it has an equal number of U and V matrices and the U
matrices precede all V matrices, the first matrix in the sequence must also be some U matrix. But as shown in Eq. (3),
the product of U matrices only increases the size of the sequence. The reverse argument also holds if α2 6= N . Thus
the resulting matrix cannot be the identity element unless α1 = M and α2 = N .

Define α1[i] to be the i th element of the sequence. Now we prove that α1[(m +1)− k] ·α1[(m +1)+ k] = I where
(0 ≤ k ≤ m). Let us assume by contradiction that there exists some k where α1[(m + 1)− k] · α1[(m + 1)+ k] 6= I ,
i.e. two opposite elements who are not inverse to each other. Therefore we have:

Va · M · Ub = ψ(0a1) · ϕ(1) · ϕ(0b1) | a 6= b.

If a > b, then it will give a matrix ψ(0a−b) · ϕ(1). Since M has been used and N is not in this sequence, however,
we only have U and V matrices which Eq. (3) shows cannot reduce the length of |ω(ψ(0a−b) · ϕ(1))| (and |M | = 1).
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If a < b, then it gives a matrix ϕ(0b−a1), which is equal to U(b−a). Again, since M has been used, there are only U
and V matrices left, which cannot reduce to M , giving us the contradiction needed.

Similarly, for α2 we get opposite matrices produced, which gives the same result that all opposite matrices from
the central element (N ) are inverse.

Thus Eq. (4) given above must be of the form:

Vim · · · Vi1 · M · Ui1 · · · Uim · · · Uin · N · Vin · · · Vin−m+1 .

We can clearly see that this is a cyclic permutation of the form given in the first part of the proof, and the form of
Eq. (5) is a cyclic permutation of Eq. (4); thus both must be equal to the identity matrix. �

The proof of above lemma ends the proof of reduction from Lemma 7, since the PCP has a solution if and only if
the semigroup S contains the matrix MD . Thus the following Theorem holds:

Theorem 11. Problem 2 is undecidable in dimension five.

3.2. Reduction to lower dimensions

Now we can reduce the dimensions used and state some corollaries.

Corollary 12. Problem 2 is undecidable in dimension 4.

Proof. The element M5
5 , in our previous construction, is a scalar value and is commutative in all matrices since all

other elements along row and column 5 are zero. Therefore we can multiply submatrix M3,4
3,4 by M5

5 and we will still

preserve this value across the multiplication without changing the structure of multiplications of M3,4
3,4 . �

Corollary 13. Problem 3 is undecidable for linear transformations defined by a finite set of integral 4 × 4 matrices.

Proof. In order to prove the undecidability of Problem 3, we can show that the scalar matrix M = 210 · I4 is
undecidable. We use the same idea as we did for Problem 2, with the only difference being that we extend the
generator of the semigroup by the following matrix R:

210 0 0 0
0 210 0 0
0 0 1 0
0 0 0 1

 .
It is easy to see that the above matrix commutes with all other matrices in the semigroup, since the submatrix M1,2

1,2

is a scalar matrix and M3,4
3,4 is the identity matrix. On the other hand, we cannot use more than one copy of matrix R

since the determinant of the top left block M1,2
1,2 of any matrix from the semigroup that uses more than one copy of R

will be more than 2102. So the matrix M = 210 · I4 is reachable if and only if the matrix
1 0 0 0
0 1 0 0
0 0 210 0
0 0 0 210


is reachable and does not use R, that in turn is undecidable. �

In fact we can prove an even stronger claim: that membership of any non-unimodular scalar matrix over the
rationals is undecidable in dimension four.

Corollary 14. Given a semigroup S generated by a finite set of n × n matrices over the rationals and a scalar k ∈ Q
such that k 6= ±1, whether the scalar matrix k · I belongs to S for any n ≥ 4 is undecidable.
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Proof. We use Lemma 7 to show the undecidability of the membership problem for a scalar matrix k · I4 by repeating
the proof of Corollary 13 and introducing another matrix R that is now equal to

k 0 0 0
0 k 0 0
0 0 k

210 0
0 0 0 k

210

 . �

4. Conclusion and some remarks

In this paper we have proven that the problem of the membership of a particular invertible diagonal matrix is
undecidable for a 4×4 integral matrix semigroup. Then as a corollary of this fact, we have shown that the membership
of a particular invertible scalar matrix is undecidable in dimension 4 for an integral matrix semigroup. Moreover, we
have shown that in dimension 4, the membership of any non-unimodular scalar matrix is undecidable for a rational
matrix semigroup. Recently, our results were improved in [5], where the authors reduced the number of matrices
needed in the generator from 30 to just 14. The same problems for lower dimensions and the general membership
problem for an arbitrary diagonal matrix in a matrix semigroup are still open.

Unfortunately, we have not been able to extend this result to cover the membership of the identity matrix in a
semigroup. The reason for this is that we use a particular encoding which relies upon the fact that certain matrices
(which we denoted M, N ) only appear in a correct solution once. If we are allowed to use these matrices more than
once, we can get a sequence of cycles, none of which contain a correct solution to PCP, but when multiplied together,
they appear to. By using a prime number coding in the determinant of these matrices, we can avoid this problem of
multiple cycles, at the expense of not being able to encode the identity matrix. This therefore remains an open problem
(for any dimension greater than 3), though it was shown to be decidable for 2 × 2 integer matrix semigroups [3].
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