Analysing co-evolution among artificial 3D
creatures

Thomas Miconi and Alastair Channon

University of Birmingham
Edgbaston B152TT
Birmingham, UK
t.miconi@cs.bham.ac.uk

Abstract. We present results from our work on the coevolution of ar-
tificial creatures similar to those introduced by Sims [7]. In the present
article we are mostly concerned with coevolutionary analysis. Coevolu-
tion is prone to complex dynamics which are often difficult to analyse.
We introduce an improved analysis method based on Master Tourna-
ment matrices [5], which we argue is both less costly to compute and
more informative than the original method. Based on visible features of
the resulting graphs, we can identify particular trends and incidents in
the dynamics of coevolution and look for their causes. Finally, consid-
ering that coevolutionary progress is not necessarily identical to global
overall progress, we extend this analysis by cross-validating individu-
als from different evolutionary runs, which we argue is more appropriate
than single-record analysis method for evaluating the global performance
of individuals.

1 Introduction

Coevolution has been introduced in artificial evolution as an alternative to tra-
ditional evolutionary methods based on fixed, explicitly defined fitness functions
such as the genetic algorithm. The use of coevolutionary methods is based on
the assumption that constant mutual adaptation between evolving individuals
will lead to ever-increasing levels of fitness. This assumption of progress through
mutual adaptation is the basis for arms race hypothesis [2]. Rosin & Belew [6]
summarise the transposition of the “arms race” concept to artificial evolution:

Since the parasites are also evolving with a fitness based on a competition’s
outcome, the success of a host implies failure for its parasites. When the para-
sites evolve to overcome this failure, they create new challenges for the hosts;
the continuation of this may lead to an evolutionary “arms race” (...) New
parasite types should serve as a drive toward further innovation, creating ever-
greater levels of complexity and performance by forcing hosts to respond to a
wider range of more challenging parasite test cases.

The assumption which underlies artificial coevolution, therefore, can be
stated as follows: coevolution is expected to lead to an “arms race” (formally



defined as a sequence in which newer individuals consistently outperform their
ancestors), which is expected to result in superior individuals. Unfortunately
the fundamentally local nature of natural selection (based on differential gene
propagation within a given, current environment which is local both in space
and time) means that several problems may hinder this intuitive mechanism.

First, it is well-known that the “arms race” metaphor begs the question of
intransitivity in the global fitness landscape: if an organism A can be said to be
superior to B, and B is superior to C, it is not necessarily the case that A should
always be superior to C. This may lead to the appearance of “cycles” [5] [9] or
“circularities” [8] in the dynamics of evolution.

Moreover, the arms race concept refers to a historical progress, in which
newer individuals outperform ancestral ones against their ancestral opponents:
performance and progress are evaluated against the history of a particular evolu-
tionary trajectory. However, such a progress is not necessarily related to global,
overall progress towards superior individuals in the wider context of the whole
search space. Nolfi & Floreano [5] have shown that these two notions of progress
are not as correlated as it may seem. They performed two coevolutionary ex-
periments based on a predator-prey scenario, with one important difference: in
one run, coevolution occurred in a straightforward manner, by pitting individ-
uals of a given generation against the champion of the previous generation (a
method inspired by Sims [7], which we also use in the present article). In the
other run, however, individuals of a given generation were evaluated not only
against the current opposing champion, but also against the previous champions
of the opponent population, following the “Hall of Fame” technique suggested by
Rosin & Belew [6]. Unsurprisingly, the second type of experiment led to a more
robust arms race, in that newer individuals were significantly better at outper-
forming their own ancestors. However, in some circumstances, when the authors
compared the results of coevolution with a Hall of Fame against “naked” coevo-
lution, they found that individuals evolved using the Hall of Fame were defeated
by individuals evolved without it. While progress had been more straightforward
and unambiguous, it had also been more limited in scope. This difference be-
tween historical progress with regard to a given evolutionary history, and overall
superiority, is an important topic in this article.

2 DMonitoring and analysis of coevolution

If progress can occur in competitive coevolution, it is important that it be prop-
erly detected. Several types of statistics have been proposed for analysing the
results of coevolutionary processes, with a stress on the identification of progress.

First, Cliff & Miller’s “Current Individual vs. Ancestral Opponents” method
(CIAO) [1] and Nolfi & Floreano’s “Master Tournament” method [5] both pit the
champions of each generation against each other, and displaying the result as a
grid of coloured dots, in such a way that dot (n,m) is coloured if the champion of
generation n in one population defeats the opposing champion of generation m,
and left blank otherwise. CTAO pits the champion of a population at generation



n against the champions of each previous generation in the opposing population,
thus resulting in a triangle of dots. Master Tournament performs general con-
frontation between all champions of all generations, producing a square matrix
of dots. The Master Tournament square can be seen as the collation of two CIAO
triangles (one for each population) joined along their common hypotenuse, the
diagonal of the square.

generations prey generations prey

generations predator
generations predator

Fig. 1. Master Tournament matrices, taken from Nolfi & Floreano [5] in a predator-
prey experiment. Black (resp. white) dots indicate a victory for the champion of the
predator (resp. prey) population. The picture of the left represents an “ideal” situation
of perfect progress, in which each champion is able to defeat all previous opponents.
The picture on the right represents the results of a real experiment.

These methods have the advantage of providing reasonably complete infor-
mation about an entire evolutionary run. However this completeness comes at a
price. An obvious problem with these methods is their combinatorial complexity.
Since N? evaluations are needed to obtain a complete table ((N? — N)/2 in the
single-population case), as soon as N becomes even moderately large, calculat-
ing the figure is a time-consuming process. Of more concern to the analyst is
the fact that the resulting figures are often somewhat obscure: although “ideal”
conditions of progress lead to a very simple figure, these ideal conditions are
rarely met in practice. Real experiments often produce disorderly arrangements
of dots from which it may be difficult to extract any meaning at all.

A more recent technique for observing progress in coevolution has been pro-
posed by Stanley & Miikkulainen under the name of Dominance Tournament [8].
Dominance Tournament was developed for single-population coevolution, but
can be readily extended to multiple populations. In a dominance tournament
analysis, one must keep track of every new individual that defeats all previ-
ously dominant individuals. Dominance is defined recursively: The first dominant
strategy d; is the champion of the first generation; then, at every generation,
the current champion becomes the new dominant strategy d; if it can defeat all
previous dominant strategies d;<;. When two populations coevolve against each
other, the method is adapted by specifying that a new dominant strategy must
be able to defeat all dominant strategies from the other population.

Thus the dominance tournament method concentrates on a sequence of indi-
viduals which are seen as particularly important, due to their recursive superi-



ority relationship. Dominance, in this context, is not synonymous with absolute
superiority: some earlier individuals may be able to defeat the current dominant
strategy. However such individual are seen as “idiosyncratic strategies”, similar
to parasites specialised against a (supposedly superior) host.

Dominance Tournament has the advantage of being much easier to compute
than Master Tournament, since at any time the total number of dominant strate-
gies against which candidates are to be tested is significantly lower than the total
number of generation champions. It is also much easier to analyse, since it can
be represented as a one-dimensional series of ticks along a time-coordinate axis,
each tick corresponding to the appearance of a new dominant strategies. How-
ever, the massive simplification of the statistics eliminates a lot of information,
and it is not clear exactly how precisely the Dominance Tournament captures
the global trajectory of a given run.

Finally, both types of method must be applied to the history of a particular
run: they essentially rely on “single record” analysis. They are useful in study-
ing the trajectory of evolution and the presence (or absence) of coevolutionary
progress. However it would be quite wrong to deduce anything from them about
general progress in the sense of overall superiority over the whole search space.

3 Artificial creatures

In the following sections we describe our own model for the evolution of artificial
creatures in a physically realistic 3D environment. This model is broadly similar
to the one introduced by Sims [7]. Besides minor technical modification, the
most important difference between our system and Sims’ is that our creatures
are controlled by standard neural networks, based on classical McCulloch & Pitts
neurons with sigmoid or radial activation functions, in contrast to Sims’ creature
which were controlled by functional networks, including arithmetic functions,
tunable oscillators and logic operators (among others) as elementary building
blocks. A complete description of (and justification for) the system can be found
in a previous publication [4].

Morphology: As in Sims’ model, the creatures are branching structures com-
posed of rigid 3D blocks. The blocks (or “limbs”) are connected to their parent
limb by a hinge joint, except for the first (“root”) limb. The genetic specification
of a creature is given as a tree of nodes. Each of these nodes contain morphologic
and neural information about one limb. Each node is responsible for storing the
description of its limb’s physical connection with its parent node’s limb. The
morphologic information in each genetic node specifies the dimensions of the
limb (width, length and height), the orientation of this limb with regard to its
parent (in the form of two parameters indicating polar angles with the zz and
the zy planes, that is longitude and latitude, in the frame of reference of the par-
ent limb), the direction of movement which may be either vertical or horizontal
(that is aligned either with the y or with the z axis of the limb), and a boolean
flag for reflection which governs symmetric replication along the zz plane of its



parent. A limb also contains neural information, as described in the following
paragraphs.
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Fig. 2. Organisation of a fictional creature pictured in the bottom-right corner. Limb

0 has no sensor (S) or actuator (A). Limb 1 is reflected into two symmetric limbs la
and 1b, which share the same morphologic and neural information.

Creature control and neural organisation: Our creatures are controlled by
neural networks. As in Sims’ model, each limb contains a set of neurons. Ge-
netic information about a given neuron specifies the activation function for this
neuron, a threshold/bias parameter 8, and connection information. The activa-
tion function may be either a sigmoid (m) or the hyperbolic tangent
tanh(o + 0) where o is the weighted sum of inputs. The main difference between
sigmoid and tanh is that the first has values in [0, 1] while the latter has values
n [—1,1]. Connection information specifies, for each connection, the source of
this connection (that is the neuron whose output is received through this con-
nection) and a weight value. Neurons can only be connected with other neurons
from the same limb, from adjacent limbs, or from the root limb. Each neuron
may receive a variable number of connections, up to a maximum value (3 in the
present experiments).

Sensor neurons and actuator neurons are handled specially. The first type
of sensor neuron is a proprioceptive neuron, which measures the current angle
formed by the hinge joint to which this neuron’s limb is attached, scaled within
the [—1, 1] range. Two other types of sensors exist, each of them measuring re-
spectively the x and y coordinates of the centre of a specific object (an inert
cube) in the frame of reference of the limb, squashed through the tanh function.
Every limb has exactly one proprioceptor, and may have any number of other
sensors (within the maximum number of neurons for each limb). Actuator neu-
rons command the movement of each limb, that is, its rotation around its joint.
The output of an actuator indicates the desired angular velocity at this joint.
Their inputs are defined similarly as other neurons, but their activation function
is always a scaled hyperbolic tangent of the form tanh(o +threshold). Each limb
has exactly one actuator.

Ezpression of the genome: The creatures are constructed according to the
information contained in the genetic nodes. A very simple developmental sys-



tem translates the genotype into a corresponding phenotype, and may introduce
additional complexity if the genetic information dictates it. Our system uses
only one developmental feature, adapted from Sims: bilateral symmetry. In our
model, each genetic node (corresponding to a limb) may possess a “reflection”
flag, which means that when this node is read and the corresponding limb at-
tached to its parent, a symmetric copy of this limb will also be created. Any
further sub-limbs will similarly be duplicated in a symmetric fashion, which
leads to the appearance of bilaterally symmetric branches. Our present design
allows for only one type of symmetry, namely symmetry along the parent’s zz
plane. When a given limb is randomly generated, its reflection flag is set with
probability P,.; (for this paper, P..y = 0.1).

Genetic operators: We use three genetic operators, broadly similar to those
used by Sims. Crossover is performed by simply aligning the genetic nodes of
both parents in two rows, then building a new list of genetic nodes by con-
catenating the left part of one parent with the right part of the other. Grafting
corresponds to the removal of a branch (that is a limb and all its sub-limbs),
and its replacement by a branch taken from another individual. Connectivity
information is adapted and maintained: the neurons of the trunk establish the
same connections with the new branch as they had with the old one, and simi-
larly the new branch has the same connection with its new trunk as it had with
its previous trunk. Mutation occurs by sequentially modifying each parameter
within a genome (from limb size to connection weight) with a given probability
Py, and also removing a limb and adding a new, randomly generated limb,
also with probability P,,,: (in this paper, Py,+ = 0.04).

4 Experiments and Results

4.1 The evolutionary algorithm

We use the same task as Sims [7]: two creatures compete for control of a single
cube. The cube is placed in the center of the world, and the creatures start on
each side of the cube. After a fixed amount of time has elapsed, distances d; and
dy between the centre of the root limb of each competitor and the centre of the
cube are computed. The score of each contestant is the difference between these
distances, di — ds for competitor 1 and do — d; for competitor 2. Lower score
correspond to superior creatures.

The evolutionary algorithm is also similar to Sims’. For every run, creatures
are divided into two populations. At every generation, creatures of each popula-
tion are evaluated against the current champion of the opposing population. The
creature which obtains the best score becomes the new champion of this pop-
ulation. Survival rate is 50%, which means that half the population is replaced
at every generation. Selection of parents occurs by direct tournament selection
based on score. New individuals are created with equal probability by one of
three operations: grafting between the two individuals, crossover between the
two parents, or three successive applications of the mutation operator to one of
the parents. Then the mutation operator is applied to the resulting creature and



produces the final offspring. If the developed phenotype of an offspring creature
contains two intersecting non-adjacent limbs, or too many limbs, the creature is
deemed non viable, and the reproductive operation chosen is repeated as often as
necessary until a viable creature is produced. Each run covers 500 generations.

Fig. 3. Creatures evolved from four different runs. See text for details.

The system produced a wide variety of behaviours, some of which are illus-
trated in Figure 3. In the top-left frame, one creature catches the cube in a
pinching motion and draws it towards its trunk limb before its opponent man-
ages to reach it. In the top-right frame, two creatures use different methods to
move toward the cube. In the bottom-left frame, one creature manages to push
its opponent away from the cube, even though the other creature had reach the
cube first. In the bottom-right frame, a two-armed creature is chasing the box
that is being pushed aside by its opponent.

4.2 Coarse-grained Master Tournament matrices

To monitor the progress of evolution, we chose to introduce a modified version
of the Master Tournament method. In our case the original method would be
difficult to apply, since computing the whole Master Tournament matrix for
500 generations would be computationally prohibitive. Furthermore, as we men-
tioned in the introduction, Master Tournament grids are often difficult to read
and analyse.

Our method consists in simplifying the Master Tournament by a “coarse-
graining” operation. Instead of performing a full tournament between the cham-



pions of all N generations, we pick a fixed number k£ of champions and use this
sample to produce a coarse-grain Master Tournament matrix. This means that
we only perform tournaments between champions of generations which are in-
teger multiples of the N/k fraction. In our example, we chose to condense our
500 generations into a 50x50 tournament grid, which means that we need to
select the champions of every tenth generation (roughly) in each population. By
sampling 10% of the generations, computing costs for head to head competitions
are divided by 100.

Like any sampling process, coarse-graining incurs a loss of information. How-
ever, the information which is lost by coarse-graining is essentially short-term,
small-scale information. When analysing the results of a coevolutionary experi-
ment, we are usually interested in long-term trends, especially regarding evolu-
tionary progress Coarse-graining adequately preserves this type of larger-scale
information. In particular, the question of whether or not a given individual
can consistently outperform older ones, which is the crucial aspect of the “arms
race” concept, is not affected by coarse-graining. Moreover, coarse-graining can
actually make a Master Tournament matrix more descriptive by suppressing
spurious, irrelevant information: as we make clear in the following paragraphs,
coarse-grained Master Tournament matrices may exhibit discernible, informative
features which are often difficult to observe in full matrices.

4.3 Reading a coarse-grained Master Tournament matrix

Figure 4-left shows a coarse-grained Master Tournament matrix for a particular
run. Each (m,n) location is marked with a dark square point if the champion
of population 1 generation 10 * m defeats the champion of population 2 at gen-
eration 10 * n, or with a light cross mark otherwise. The y = z line, drawn in a
lighter shade, provides a time axis for the actual run. Points on this line indicate
how the actual run went along, indicating the victorious population at each gen-
eration. On a coarse-grained Master Tournament matrix, vertical patterns are
related to individuals from population 1, while horizontal patterns are related
to individuals from population 2.

A first observation for this run is that the y = x line goes through several re-
gions of different colour. This means that the champions of the two populations
successively outperform each other, an indicator of healthy competition. How-
ever, the particular patterns of this alternation provide a better insight about
the course of evolution in this run.

Identifying similar phenotypes from their competitive profiles: The graph in
Figure 4-left contain many similar lines and columns. In particular, it may be
seen that many columns offer strikingly similar patterns of dark and light marks,
although with appreciable variation. Each column, however, corresponds to the
competitive profile of a champion in population 1: it accounts for its successes
and failures against every champion of population 2. Two identical columns
denote two individuals that defeat the same opponents, and are defeated by the
same opponents. It is not too far-fetched to assume that similarity in competitive
profile is linked to similarity in phenotypes.



Similarity is not identity, and much variation can be seen. However there are
at least two columns which offer a significantly different profile to the neigh-
bouring columns, namely columns 31 and 46. These two columns can be said to
represent different types from their neighbours, due to the difference in compet-
itive profiles. In particular they are unique in being able to defeat the opponents
in rows 41-43.
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45 45

40 40

35 35
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25 25
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15 15

10 10

Fig. 4. Coarse-grained Master Tournament matrix for two different runs.

The significance of the high similarity in columns after 12 can be seen as an
indication that, at least in population 1, evolution seems to have settled on a
particular type of creature, which is marginally “fine-tuned” in the later course of
coevolution. This capacity to indicate phenotypical convergence is an interesting
property of coarse-grained Master Tournament matrices.

Evidence of breakdowns in arms race: The arms race concept implies that
newer individuals are consistently able to outperform their ancestors. Break-
downs in the arms race are associated with a loss of adaptive function, since an
ability (to defeat some individuals that could be defeated by ancestors) has been
lost by the newer individual [3].

Breakdowns or interruptions in arms races are easy to locate on a Master
Tournament matrix. Any dark mark occurring immediately above a light mark,
or any light mark occurring immediately on the right of a dark mark, indicates
such an interruption: it means that a given individual (from population 2 in
the first case, from population 1 in the second case) was unable to defeat an
opponent that could be defeated by its ancestor. Such breakdowns may be very
short events, indicating a prompt recovery. Alternatively they may result in a
long-term loss, or even permanent loss of the capacity to defeat some particular
individuals.

Let us take the example of the first horizontal stripe of lighter marks, at
rows 9-11. These rows correspond to particularly fit individuals which are able
to defeat a large number of opponents (all of them for row 11). In particular, they
have no difficulty defeating the champions of generations 12 to 18 in population

45

50



1, as can be seen from the fact that their rows are void of dark marks in the
section between columns 12 and 18.

Yet the same graph shows that, from generation 12 onwards, the first bisec-
tant encounters a series of dark marks, indicating superiority of the champions of
population 1. This indicates that by generation 12, the current champion of pop-
ulation 2 had become unable to defeat individuals that earlier ancestors could
defeat. How did this come to be ? If the champion of population 2 at generation
11 was good enough to defeat all opponents that population 1 would ever come
up with, why was it displaced with one that would prove to be inferior ?

Causes for breakdowns in arms races: This alternation between a lighter
stripe and a sudden block of dark marks indicates a dramatic example of a
breakdown in the arms race. In this particular case, the cause can be identified
as over-specialisation. While it is true that the champion of generation 12 in pop-
ulation 2 was potentially able to defeat a large number of opponents, population
2 managed to come up with a new individual which was even better (that is
obtained a lower differential distance to the cube) against the current champion
of population 1. Unfortunately this change, while beneficial in the short term,
proved fatal when population 1 managed to evolve a counter-strategy which
defeated this specialised opponent. This allowed the newly evolved type of indi-
vidual in population 1 to take the lead, even though previous champions from
population 2 would have been able to defeat it.

Figure 4-right shows the results of a different run. This figure exemplifies
several other informative patterns. In particular, let us look at the centre of
the matrix, at row and column 25. At that point, we see that the first bisectant
encounters a kind of wedge, composed of two stripes of dark marks - one vertical,
one horizontal. Can we infer some meaning from this pattern 7 The wedge shape
indicates that a successful change in population 1 (indicated by the appearance
of a different competitive profile, leading to a distinct, darker series of columns)
has led to a dramatic breakdown in the arms race on the side of population 2.
The appearance of this new champion in population 1 has upset the hierarchy in
population 2: the previous champion was no longer the best possible candidate
against this new opponent. Confronted with the new, successful champion of
population 1, population 2 has settled on a new champion, which happened to
perform better, or at least less badly, than others against this particular new
opponent (though not well enough to actually defeat it). This new “champion
of fortune”, however, was not particularly well-rounded and performed badly
against a large range of opponents. Innovation in population 1 has caused a
confusion in population 2.

This idea of new individuals breaking down the arms race by upsetting the
hierarchy and voiding previous adaptations in their opponents is not necessarily
linked to wedge-like patterns, but simply to the appearance of a new type of
opposing champions. For example, Figure 4-left contains several dark horizontal
lines, apparently isolated. In particular, the individual in row 31 indicates that
this champion suddenly lost much of its ancestors’ aptitudes against opposing
champions. What is the cause of this loss 7 If we track the point at which this



new, poorly performing champion occurs (by locating its intersection with the
first bisectant) and observe the corresponding column, we notice that the indi-
vidual from population 1 at column 31 has a subtly different pattern from its
predecessors. The poor performance of population 2 at generation 31 is thus
caused by the emergence of a new opponent which upsets the hierarchy in pop-
ulation 2 and propels an apparently poor individual to the rank of “champion”.

These interruptions in the arms race (temporary or long-term) that can be
observed on the coarse-grained Master Tournament matrix are an indication of
the local nature of co-evolution. Because co-evolution is only concerned about
the immediate present, it may directly induce a loss of ability against past or
future opponents. This loss may occur spontaneously (as in over-specialisation)
or may be provoked by a change in the opposing population (as in “confusion”).

5 Cross-validation of coevolutionary runs

Master Tournament matrices, however informative, can only describe perfor-
mance within the context of a particular run. This is not necessarily sufficient
to express the general level of performance of an individual in the larger context
of the entire search space. In order to detect whether a given individual may re-
ally be called superior, it is not enough to confront it to the population against
which it evolved. Such a test could be seen as a confusion between the training
set and the test set. Given several evolutionary runs, if we want to obtain a
more global view of each individual’s performance, the most simple method we
can use is simply to test each individual not only against its own opponents,
but also against other populations of other runs. In other words, we expect that
cross-validating individuals from different evolutionary runs would provide more
reliable information about their global efficiency.

Figure 5 shows, for each champion of all 50 generations in each population,
the number of champions of all other opposing populations that it is able to
defeat. 13-A and 13-B are population 1 and 2 from the left-hand side matrix
in Fig. 4, while 3-A and 3-B are population 1 and 2 from the right-hand side
matrix. This graph is interesting both for its similarities and its difference with
the individual Master Tournament matrices in Figure 4.

Within this larger context, the best performing individuals are the champi-
ons of generations 34 and 36 from population 13-B, with a score coming close
to the maximum 150, meaning that they can defeat almost all other champi-
ons. Looking at the corresponding rows in Fig. 4, we observe that they indeed
obtain ‘clean sheets’ against all their opponents. However, this is also the case
with rows 11 and 28-30, yet these ones obtain a much lower score on the cross-
validation graph. This indicates a difference in performance that could not have
been deduced from Master Tournament (coarse-grained or not) or Dominance
Tournament analysis, nor indeed from any single-record analysis method alone.

Similarly, we see that population 3-A seems to perform rather poorly when
compared to others. Specifically, after generation 10, all champions of population
3-A obtain much lower performance that champions in population 13-A. This is



Fig. 5. Cross-validation of each individual in each of the four populations shown in
Fig. 4. 13-A and 13-B are population 1 and 2 from the left-hand side matrix, while 3-A
and 3-B are population 1 and 2 from the right-hand side matrix in Fig. 4.

in contrast with the corresponding Master Tournament matrices, in which it can
be seen that some champions of population 3-A are able to defeat all opposing
champions from population 3-B (columns 25-26 and 33), while no champion in
population 13-A shows such a perfect record. Again, a single-record analysis
could not have detected this apparent superior performance of individuals from
population 13-A.
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