
Neuroevolution of Agents Capable of Reactive

and Deliberative Behaviours in Novel and
Dynamic Environments

Edward Robinson, Timothy Ellis and Alastair Channon

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
edd@edd-robinson.net, t.s.ellis@cs.bham.ac.uk, alastair@channon.net

Abstract. Both reactive and deliberative qualities are essential for a
good action selection mechanism. We present a model that embodies
a hybrid of two very different neural network architectures inside an
animat: one that controls their high level deliberative behaviours, such as
the selection of sub-goals, and one that provides reactive and navigational
capabilities. Animats using this model are evolved in novel and dynamic
environments, on complex tasks requiring deliberative behaviours: tasks
that cannot be solved by reactive mechanisms alone and which would
traditionally have their solutions formulated in terms of search-based
planning. Significantly, no a priori information is given to the animats,
making explicit forward search through state transitions impossible. The
complexity of the problem means that animats must first learn to solve
sub-goals without receiving any reward. Animats are shown increasingly
complex versions of the task, with the results demonstrating, for the first
time, incremental neuro-evolutionary learning on such tasks.

Keywords: Artificial Life, Neural Networks, Incremental Evolution, Re-
active and Deliberative Systems, Novel and Dynamic Environments.

1 Introduction

In this paper we present work showing animats that use neural networks to dis-
play high level deliberative decision making whilst retaining reactive qualities.
Deliberative planning has traditional roots in “Good Old Fashioned Artificial
Intelligence” (GOFAI) as a search-based method for the design of behaviour
systems. There are issues however with its application in dynamic and novel
environments. Reactive models of action selection on the other hand can be
very successful in dealing with unpredictable and dynamic environments. How-
ever, since these systems generally have only a short look-ahead the individual
complexity of behaviour that can emerge is limited. Both reactive and deliber-
ative qualities are essential for a good action selection mechanism: deliberative
mechanisms for long term goal seeking and reactive capabilities for dealing with
unforeseen events [1, 2].

A complex problem has been designed to demonstrate our model, which we
have called the ‘river-crossing task’ or RC task. In this problem an animat must



2

cross a river by building a bridge made out of stones collected from locations
in a 2D grid-world environment. Importantly, animats are evolved to solve this
problem without any task-specific information. Animats are embodied with two
very different neural networks. The first acts as a deliberative style decision net-
work: it makes high level choices about the sub-goals that need to be achieved,
given current internal and external states. The actions that the animats choose
may for example be ‘head to the nearest stone’, ‘avoid the traps’ or ‘head to
the resource’. Once an animat has made a decision, the second (reactive) neural
network acts as a navigation tool, taking care of low level actions, such as which
direction to move in next. In the RC environment there are several classes of
objects that the animats can interact with. Grass objects take up most environ-
mental space; the animat can place other objects onto them. Stones are movable
objects: they can be picked up and dropped on grass or water. If one is dropped
on water then the water object is converted into a grass object. Water objects
are dangerous. If an animat moves onto one and does not place a stone down
then the animat drowns. Traps are lethal to animats, which die if they move onto
one. Resource objects offer rewards to animats, if they can reach them. None
of this information is given a priori to the animats, ruling out the possibility of
explicit forward search through state transitions.

Payton [3] used gradient fields to represent the state-space of a problem and
as an internalised plan. Unlike more traditional search based models, gradient
fields can be generated efficiently, and do not suffer from the same local-minima
problems as other wave based mechanisms such as potential fields [4]. However,
the gradient fields approach does not deal well with changing environments and
so is often coupled with a Brooks inspired [5] subsumption architecture [3]. An-
other issue with gradient fields is that they have to be laboriously constructed.

We describe in the next section a biologically inspired gradient based model
which does not suffer from local minima nor any of the other problems associated
with other gradient based models. It is computationally efficient and simple to
initialise. We also describe a decision network which is designed to allow animats
to manipulate the navigation model. We show experimental results in section 3
and conclude in Section 4.

2 The Model

The movements of the animats in the environment are dictated by a shunt-
ing model introduced in [6, 7]. Yang and Meng were interested in motion plan-
ning models that could react quickly in real-time, allowing a robot or robot-
manipulator to perform collision-free motion planning.

Neural networks have been used extensively and successfully for robot control
problems. Often controllers specify a robot’s behaviour based upon sensory input
from the environment; this makes them good for dynamic environments, which
are likely to change continuously. The model in [6, 7] uses neural networks in
a very different way. Instead of using the network to specify behaviour by, for
example, mapping the actuators of the robot to the outputs of the network, the



3

network’s activation landscape itself directly specifies the robot’s movements
through the environment.

Their model consists of a neural network composed of an n-dimensional lat-
tice of neurons `, where each neuron represents a possible state of the system.
Therefore any system that can be fully described by a set of discrete states can
be represented. This is referred to as the ‘configuration space’ of the robot [8].
In the case of the simulated robot in their studies, the configuration space was
the discretised 2D Cartesian workspace. Each neuron is connected to a subset of
the lattice—<i ⊂ `. This subset is called the receptive field, and represents all
the states that are reachable from the current state. It is useful to note that if,
as in Yang and Meng’s simulated robot example, the state space is simply the
2D coordinates of the environment that we wish the agent to navigate, there is
always a simple one-to-one relationship between neurons and locations.

The transition function used to specify inter-neuron dynamics is based on
the ‘shunting equation’, inspired by Hodgkin and Huxley [9] and Grossberg [10].
Yang and Meng designed two versions of this transition function: one which
helped to control activity saturation in the network, and a simpler one which
did not. In our study we found that the more elaborate transition function was
not necessary, since out model did not develop saturation problems; the function
is shown in equation 1.

dxi

dt
= −Axi + Ii +

k∑

j=1

wij [xj ]+ . (1)

Alpha (A) represents the passive decay rate, which determines the degree to
which each neuron’s activity diminishes towards an idle state. The function [x]+

can be described as max(0, x). The connection weight (or synapse strength) wi,j

between neurons is simply specified as the Euclidean distance between the cell
and its neighbour within the receptive field. k is the receptive field size and is
set to 8 to represent the direct neighbours in a 2d grid-world environment. Iota
(I) is equal to E in the case of a target, and −E for an obstacle, where E is a
large integer.

Once the network is configured, and the targets and obstacles established,
neural activity can be used to navigate a robot by gradient ascent. At each
time-step the robot looks at the level of activity in each grid-cell that it is
connected to (its neighbours), because they are all the states that it can reach,
and picks the one with the highest value. As a result of the network’s dynamics,
positive activity entered at neurons that map to targets propagates through
the network, whilst negative activity that is inputted into neurons mapping to
obstacles cannot propagate globally. Due to the nature of the leaky integrator
function in the model, the activity contribution from a target decreases with
distance from that target source, leaving a trail of activity back to the target.

This system therefore allows a robot to navigate a dynamic environment,
avoiding obstacles and heading towards targets. Using the shunting network to
control movement throughout the environment means that high level actions



4

such as ‘head to the target whilst avoiding obstacles’ can be carried out flaw-
lessly and quickly. The highly dynamic nature of the network means that when
the environment changes (e.g. an obstacle moves), a new activity path can be
generated quickly. In the RC task there are four different classes of objects (Re-
source, Stone, Water and Trap) that have Iota values associated with them.
Grass states are considered empty states to allow activity to flow through the
environment. For target acquisition and obstacle avoidance there are two types
of value: positive and negative. In our implementation of the model however, we
allow a class to be specified with no value at all. Setting Iota to 0 for a class
means that no external activity will be inputted into any of the neurons in that
class. The animat will ignore the object present at that location, and may or
may not pass over it while moving through the environment.

2.1 The Decision Network

The outputs of the decision network are used to set the Iota values for the object
classes. Using this network, the animat can manipulate the activity landscape in
the shunting network in a way that allows it to string together multiple actions
in parallel to create more complex behaviours.

Fig. 1. The decision network controller. The output neurons are P = pick up/put down;
R = resource; S = stone; W = water; T = trap. The input neurons are g = grass; r =
resource; s = stone; w = water; t = trap.

The decision network is a feed-forward neural network with a single hidden
layer of four neurons (figure 1). The input layer represents the current state
of the animat, or more precisely, the object class situated on and the carrying
status of the animat. The inputs are single values of 1 or 0 and they feed through
weighted links into the hidden layer neurons, where tan activation functions are
applied to the summed input values. The neurons in the output layer represent
Iota values for the object classes needing them (four). Output neurons have tan
activation functions and two fixed thresholds. Neurons with activations over 0.3
or under -0.3, after being processed through the activation function, output 1
and -1 respectively. Any activation values in the range [−0.3; 0.3] resolve to 0.

Output neurons then, have three possible outputs: -1, 0 or 1. The Iota values
of all the objects (except grass) in the environment are set based upon the



5

output of the decision network neuron associated with that class. If a neuron
has a negative output then all of the objects in that class will have a negative
Iota value (-15 in our simulations). Similarly, a positive neuron output sets all
the objects in that class with positive Iota values (+15 in our simulations).
Finally, a neuron with an output of zero sets the objects in that class with Iota
values of 0. Having an Iota value of 0 means that the objects have no external
activity inputted into them: their activation values in the shunting network will
be solely based upon those of their neighbours. To get a clear understanding
of the purpose and ability of the decision network, two examples of resulting
shunting network activity landscapes are shown in figure 2. Each landscape is
different because of the Iota values of object classes. In the first landscape for
example, the Iota values result in positive activity propagating from the resource
neuron, through the rest of the network attracting the animats, while negative
activity repels animats from the traps.

Fig. 2. A typical environment (left) and two activity landscapes (middle, right). Iota
values in the first (middle) landscape a are: resource = 15; stone = 0; water = 0; trap
= -15. In the right landscape b, resource = 15; stone = 15; water = -15; trap = -15.
Environment legend: stone = small square; resource = circle; trap = cross; water =
four dots.

Landscape b represents the same environment, but with different Iota values
for object classes, and so the animat acts differently. Activity from the resource
would no longer be able to propagate through the river, but since the stones have
positive activities, the animat moves to the nearest one (still avoiding traps). One
of the output neurons on the decision network is not used to provide an Iota value
for motion. Instead, its output is used to make a decision about whether or not
to pick up or drop stones: the other actions an animat can take in our system. If
the output is positive then the animat will attempt to pick up whatever object
it is currently situated on in the grid-world. If negative then the animat will
attempt to drop an object.



6

2.2 Evolution of Decision Networks

We used a steady-state genetic algorithm (GA) to search the weight-space, with
fitness based upon animat performance in evaluation. Tournament selection was
used for each iteration, with three animats evaluated and the worst performer
replaced by a new offspring created from a combination of the other two.

An animat has a set of chromosomes: one for each neuron in its decision
network. Each chromosome contains the floating point values for the weights of
its neuron’s input connections. For each of an offspring’s (output and hidden)
neurons, there is a probability Pwhole = 0.95 that the corresponding chromosome
will be inherited from just one parent; which parent this is copied from is then
chosen at random. Otherwise (probability Pmix = 0.05) the offspring will instead
inherit a new chromosome whose genes are a mixture of both parents’ versions of
the same chromosome, combined by single-point crossover. Finally, each weight
has a probability of Pmut = 0.001 of having a mutation value from N(0, 0.4)
added to it. All mutations are bounded to within [−1; 1].

3 Experimentation

For each experiment, a population of 250 animats is initialised with random chro-
mosomes, hence with random decision network weights. Animats are evaluated
singularly on the RC task in a 20x20 cell grid-world. They are only rewarded
when they reach a resource state: if they fail to reach it then their fitness is zero.
Similarly, if the animat performs any action that leads it to either drowning
in the river or moving onto a trap, the evaluation task ends and the animat’s
fitness is zero. Animats are placed randomly to the left of the river and stones
and traps are distributed randomly inside the environment. The animat’s de-
cision network inputs are updated whenever the animat’s state changes; then
the shunting model updates the activity landscape with new Iota values and
the animat moves to the neighbouring cell with the highest activity. If the pick
up/put down neuron is activated then the animat will attempt to pick up/put
down whatever it is on or carrying. At each iteration of the GA three animats are
randomly selected. Each animat is evaluated on the same randomly generated
environment to ensure fairness; a new environment is randomly generated in the
next iteration of the GA.

First we tested animats by evaluating them on one environment that con-
tained a river two cells wide. Due to the problem complexity, and because the
animats had to learn to solve sub-problems before even receiving any fitness,
all of the population’s individuals had zero fitness and search was random. To
overcome this problem we exposed the animats to three trials of increasing diffi-
culty. Figure 3 shows three randomly generated versions of the three maps used.
The randomly positioned objects are the traps and stones: the same river and
resource locations are always used. The first map that the animats are tested on
already has a completed bridge. To solve this task the animats simply have to
learn to avoid traps and the river and get to the resource. To solve the second
and third maps an animat has to build a bridge, with the bridge needing to be



7

smaller (one cell wide) for the second map than the third (two cells wide)1. This
system provides a route for incremental evolutionary learning and can be seen as
a simplification of a more complex general world-environment in which animats
encounter opportunities for reward, of varying degrees of difficulty.

Fig. 3. Examples of the three environments that animats are evaluated in.

3.1 Experimental Results

For each task the animats solved out of the three they received a score of 100. If
they failed a task they were awarded a score of 0 only for the task they failed. In
each simulation, data showing how many versions of each task had been solved
in the previous 250 tournaments was collected in 250 tournament intervals. Since
there were three animats taking part in each tournament, the maximum number
of tasks solved in this period, for each map, was 750. Table 1 shows results from
15 simulations. Once 80% (ie. 600) of animats tested per iteration could solve
all versions of the task they were shown, the simulation was stopped.

In all simulations the animats quickly evolved behaviours that could be used
to solve the simplest map, where they needed only to know how to avoid dangers
like water and traps. They didn’t need to interact with stones to solve this task,
making the process simple. The next two maps were substantially harder to solve,
and the time taken to solve them reflects this. Results showed that contrary to
previous observations: the third map was not harder to solve than the second,
even though it required a specific strategy. The second intermediate map could
1 Observations of the simulation showed that animats were solving a map with a single

celled river by picking up stones and dropping them on the river indiscriminately.
They were attracted to both the resource and the river; since the river was closer,
they would deposit a stone on the nearest river cell. Although once they had done
this they could complete the task, because they were still attracted to the river they
would often keep depositing stones there. Eventually they would deposit enough
stones to create a gap so large that the activity from the resource attracted them
enough for them to reach it. Using a deeper river stopped animats for being rewarded
for developing this ‘brute force’ behaviour.



8

Table 1. The mean, best and worst number of tournaments needed for 80% of the
animats evaluated in a 250-iteration period to have solved each map.

Map Mean Best Worst Stdev

1 5700 4000 8250 1203.4
2 99084.6 13000 437750 139542.4
3 99083.3 13000 437750 139544.4

be solved in two ways: the ‘brute force’ approach (above)1 or the ‘correct’ way,
described below. Since the third map could only be solved in the correct way,
animats that learnt this behaviour also solved the second map in the same way;
this accounts for the similar (usually identical) time taken to solve both harder
maps. However, the exclusion of either of these maps in the learning process
would have lead to sub-optimal behaviour evolving.

Fig. 4. Results from the simulation which solved all the tasks in the fastest time. Map
1 was learnt in around 6000 tournaments, while maps 2 and 3 took 13000 tournaments
each.

The observed ‘correct’ behaviour for solving the harder maps can be described
as follows: When the animats are on grass and not carrying anything they head
to the nearest stone, whilst avoiding the river and traps. Once they reach a stone
they pick it up; they are then situated on grass, but now carrying a stone. Next,
they adjust the shunting model so they are attracted to the resource, ignoring
the river/other stones and avoiding traps. Once they reach the river they deposit
a stone; they are now back to being on grass and not carrying. If activity can
propagate from the resource to the animat (because of a completed bridge) they
head to the resource. Otherwise they return to a stone and repeat.

The RC problem is particularly difficult because of the lack of reward avail-
able leading to long periods of stasis between solving the easy and the harder
maps. During this time the animats phenotypic behaviour does not change by



9

much; they keep solving the easy task and failing the harder ones. It is possible
that selection pressures are preventing change from taking place gradually as
one might expect. Animats beginning to learn to solve the harder tasks, for ex-
ample by starting to pick up stones, may disrupt and forget previous behaviours
causing them to fail the simple task - most likely due to sharing connections for
the different behaviours [11]. Figure 4 shows the results of the simulation with
the quickest time to solve all tasks, and although it is the fastest, the nature of
the graph is the same for all runs: the simpler task is learnt quickly, then there is
a stasis period until by chance animats are born that can solve the harder tasks.
This advantageous behaviour then quickly propagates through the environment
until the vast majority can solve all tasks.

Fig. 5. A dynamic environment: In Part B the wall is about to move and block the
animats path; instantly the animat starts building in a new direction and crosses suc-
cessfully (Part C)

One advantage of the shunting model as shown in [6] was that it was highly
reactive to a dynamic environment. We tested this ability in our system by
evaluating animats that had been evolved to solve the three maps. Animats
were shown the map in part A of Figure 5. The map has a larger river than they
have been shown during evolution. Also, it has a movable wall of traps. The
animat begins building a bridge through the shortest route of the river (part
B); once the animat gets halfway across however the wall is moved, blocking
the animats path (part C). Without hesitation the animat continues to build its
bridge in the new required direction and navigates across the bridge.

4 Conclusions and Future Work

We have developed and presented a model that allows animats to develop com-
plex behaviours such as building a bridge in the RC task, by using an incremental
approach. Through the use of an adapted version of Yang and Meng’s shunting
model animats manipulate an activity landscape by utilising a decision network.
This approach allows high level behaviours such as ‘find a stone without drown-
ing or falling into traps’ to be carried out without any further requirements from



10

the animat other than the evolved desire to do so. Further, animats that are only
shown the simpler three maps used in the evolutionary process can solve a novel
and dynamic version of the task. Due to the lack of hard-coded constraints, this
model could be used with many different environments without needing to make
changes.

One draw-back of the current model is that it requires incremental versions
of the task to be shown to the animat. Using a larger environment could allow
these tasks to be situated in the same realm, but we chose to implement them
as separate worlds. This approach leads to problems as more complex environ-
ments are constructed. To address this issue, future work will include methods
for allowing the animats to generate intrinsic motivations, which has been shown
to be imperative in mental development [12]. The intrinsic motivation will en-
courage an animat to solve sub-components of complex problems without the
need of an outside critic guiding them.

References

1. Tyrrell, T.: Computational Mechanisms for Action Selection. PhD thesis, Univer-
sity of Edinburgh (1993)

2. Benjamin, M.R.: Virtues and limitations of multifusion based action selection.
In: Agents ’00: The Fourth International Conference on Intelligent Agents. (2000)
23–24

3. Payton, D.W., Rosenblatt, J.K., Keirsey, D.M.: Plan guided reaction. IEEE Trans.
on Systems, Man, and Cybernetics 20(6) (1990) 1370–1382

4. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations
for mobile robot navigation. In: IEEE Int. Conf. on Robotics and Automation.
(1991) 1398–1404

5. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot.
and Auto. 2(3) (1986) 14–23

6. Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot
motion planning. Neural Networks 13(2) (2000) 143–148

7. Yang, S.X., Meng, M.: An efficient neural network method for real-time motion
planning with safety consideration. Robotics and Autonomous Systems 32(2-3)
(2000) 115–128

8. Schultz, A.C.: Adapting the evaluation space to improve global learning. In Belew,
R., Booker, L., eds.: Proceedings of the Fourth International Conference on Genetic
Algorithms, San Mateo, CA, Morgan Kaufman (1991) 158–164

9. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. Journal of Physiology. 116
(1952) 500–544

10. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architec-
tures. Neural Networks 1 (1988) 17–61

11. Seipone, T., Bullinaria, J.: The evolution of minimal catastrophic forgetting in
neural systems. In Mahwah, N., ed.: Twenty-Seventh Annual Conference of the
Cognitive Science Society, 1991-1996, Lawrence Erlbaum Associates (2005)

12. White, R.W.: Motivation reconsidered: The concept of competence. Psychological
Review 66(5) (1959) 297–333


