
The
�

-Strikes-Out Algorithm: A Steady-State Algorithm for
Coevolution

Thomas Miconi and Alastair Channon
University of Birmingham

Edgbaston B152TT
Birmingham, UK

txm@cs.bham.ac.uk

Abstract— We introduce the � -strikes-out algorithm, a sim-
ple steady-state genetic algorithm for competitive coevolution.
The algorithm can be summarised as follows: Run competitions
between randomly chosen individuals, keep track of the number
of defeats for each individual, and remove any individual which
has been defeated � times. Naive application of the algorithm in
2-population problems leads to severe disengagement. We find
that disengagement can be eliminated (for all tasks involving
real-valued continuous scores) by determining ‘victories’ and
‘defeats’ between fellow members of the same species, using
competitions against a single member of the opposing species
as a point of comparison. We apply our algorithm to the “box-
grabbing” problem for artificial 3D creatures introduced by
Sims. We compare our algorithm with Sims’ original Last
Elite Opponent algorithm, and describe (and explain) different
results obtained with two different implementations differing
mainly by the harshness of their selection regimes.

Coevolution is a generic term describing any situation in
which two or more lineages evolve in such a way that the
fitness landscape of each lineage is determined (at least in
part) by the evolving features of other lineages. The defining
concept of coevolution is that of coupled fitness landscape.
A consequence of such a situation is that evolutionary
changes in one lineage may alter the fitness landscape of
other coevolving lineages, and therefore prompt evolutionary
changes in these lineages as well, which may in turn alter
the fitness landscape of other lineages, etc.

It has been argued that such a process of constant mutual
adaptation may lead to some form of global progress over
time, through incremental accumulation of adaptive features.
This idea forms the core of the concept of “evolutionary arms
race” introduced by Dawkins and Krebs [1]. Rosin and Belew
[2] summarise the transposition of the arms race concept to
artificial evolution:

Since the parasites are also evolving with a fitness based
on a competition’s outcome, the success of a host implies
failure for its parasites. When the parasites evolve to
overcome this failure, they create new challenges for
the hosts; the continuation of this may lead to an
evolutionary “arms race” (. . .) New parasite types should
serve as a drive toward further innovation, creating ever-
greater levels of complexity and performance by forcing
hosts to respond to a wider range of more challenging
parasite test cases.

Unfortunately, despite early successes such as those re-
ported by Hillis [3], it soon emerged that coevolution was
prone to complex dynamics which often led to unexpected
results. As Ficici [4] pointed out, it did not help that

many early works in coevolution relied on somewhat vague
assumptions regarding evolutionary progress, often linking
it with an increase in complexity1. While it was generally
expected that coevolving entities should become “better”,
what exactly “better” meant was usually not made explicit
precisely.

Besides this problem of ambiguous expectations, it was
quickly recognised that coevolution often follows dynam-
ics which contradict any acceptable notion of long-term
progress. An early identified problem is that of intransitivity
in the global fitness landscape (even if A defeats B and
B defeats C, it is still possible that C may defeat A),
which may lead to coevolutionary “cycles” or “circularities”
[8], [9]. This feature also underlies other problems such as
opportunism, in which seemingly promising, sophisticated
solutions are displaced by trivial solutions which exploit one
specific weakness; a symmetric problem is that of over-
specialisation, in which a given solution is being overly
refined with regard to its current competitive environment,
only to be displaced by a trivial solution which poses
a completely different problem (Watson and Pollack [10]
call such phenomena “focusing on the wrong thing”). As
we will see, opportunism and over-specialisation may be a
major hindrance on the road to progress if the algorithm is
vulnerable to it.

Another difficulty which may arise is that of disengage-
ment, or loss of gradient [10]. This occurs mostly in � -
species situations, when one competing species “out-evolves”
the others, in such a way that members of this successful
species can defeat all of their opponents. The result is that
the opposing species lose any meaningful gradient to guide
their evolution, which becomes effectively random.

I. COEVOLUTIONARY ALGORITHMS

The overwhelming majority of algorithms in use for
competitive coevolution are generational. Large parts of
the population are evaluated and replaced simultaneously.
A common algorithm is precisely the one introduced by

1The widespread idea that evolution or coevolution creates a driving
force towards increasing complexity (beyond the mere stochastic increase
inherent to any random branching process with a hard lower bound) has
been dismissed in no uncertain terms by most prominent specialists; let
us mention Dawkins [5], Maynard-Smith and Szathmary [6] and of course
Gould [7].

Sims [11], also called the “Last Elite Opponent” model: at
every generation, each individual from population � is pitted
against the current champion of population � . The resulting
score is used as a fitness value for selection and reproduction,
as well as choosing a new champion for population � (the
individual from � which obtained the best score against the
current champion of �). Then the same process is applied
to population � , using the new champion of population �
for evaluation, and the cycle starts over again.

A problem with this approach is that, since the referent
(that is, the individual used for evaluation) changes at every
generation, so does the direction of selection pressure. This
may result in an unstable selective process, in which the
direction of the selective pressure changes so fast that no
overall progress can occur: even though selection mechan-
ically improves the population from one generation to the
next (with regard to the current selective environment defined
by the current population), this may fail to translate into a
longer-term historical progress as implied by the arms race
concept.

To enhance the stability of the process, an archive may be
used. An archive is a collection of previously encountered
individuals which are kept for evaluation purposes so as to
provide a more stable selective pressure. A simple option is to
keep the champions of the � previous generations (which is
the “basic” method used by Nolfi and Floreano [8]); however
this only reduces instabilities over a scope of � generations
backwards, so � should be high; furthermore, if evolution
stabilises, then champions from contiguous generations will
tend to be similar to each other, which may reduce the
diversity of the selective pressure provided by � successive
champions.

Another possibility is to maintain a “Hall of Fame” con-
taining the champions of all previous generations, then pick �
opponents at random from this population at every evaluation
[2]. The consequences of such a method are interesting.
Because newer individuals have to prove their worth against
champions of all previous generation, the selective process
will mechanically favour individuals able to defeat many
(ideally all) of their predecessors, thereby encouraging a
proper arms race. However, as Nolfi and Floreano point
out, this also means that an ever larger portion of the
selective process becomes fixed, diminishing the importance
(and expected benefits) of coevolutionary dynamics: “ As the
process goes on, there is less and less pressure to discover
strategies that are effective against the opponent of the
current generation and greater and greater pressure to develop
solutions (. . .) against opponents of previous generations”
[8]. Because of this ‘ossification’ of the selective process,
selection becomes tailored to the particular history of that
run, which may hamper generality. Nolfi and Floreano report
that in their more complex settings, individuals evolved
through ‘naked’ coevolution were better at defeating indi-
viduals evolved through “Hall of Fame” coevolution than
the reverse. This happened even though individuals evolved
with a Hall of Fame were demonstrably better at defeating

their own ancestors, indicating a more successful arms race.
While progress had been more straightforward, it had also
been more limited in scope2.

In Nature, the process of replacement is quite different
from these approaches. Individuals (or lineages) are usually
not massively decimated and replaced at discrete instants
in time. Individuals and lineages are constantly exposed
to a varying selective pressure. Evaluation does not occur
against a few selected champions, or against an (impossi-
ble) archive, but against the current population itself. The
process of selection, elimination and replacement is gradual
and asynchronous, and therefore, so is the change in the
selective landscape. Furthermore, evaluation occurs contin-
uously, often through random encounters against random
opponents, until an individual (or a lineage) cannot keep
up with the selective environment and is eliminated. The
population maintains its own archive, but ossification is
prevented through continuous removal of elements which
appear unfit.

While this process has no global direction, and is ap-
parently not oriented towards any particular overarching
goal (complexity, intelligence, etc.), it nevertheless produces
remarkable examples of smaller-scale mutual optimisation
patterns (the “arms races” identified by Dawkins [1] as a
prominent source of adaptive complexity in Nature), the
local, interlaced “eddies” of the evolutionary maelstrom.
Capturing these dynamics is precisely the justification of
using coevolution for optimisation. How can we translate
the asynchronous, steady-state pattern of natural coevolution
into practical algorithms capable of producing useful results
for human operators?

II. (LACK OF) STEADY-STATE COEVOLUTIONARY
ALGORITHMS

Despite the popularity of steady-state models for tradi-
tional genetic algorithms, it is not easy to find examples of
steady-state coevolutionary algorithms. One such method is
Reynold’s Steady-State Genetic Programming (SSGP) algo-
rithm for the game of Tag [12]: in this system, evaluation and
replacement do occur in a one-at-a-time fashion. However,
evaluation still occurs in a synchronous way (the fitness of
an individual is the result of its interaction with 6 other
individuals randomly chosen within the population).

In Paredis’ Life-Time Fitness Evaluation (LTFE) system
[13], the fitness of each individual is evaluated after the
result of its last 20 encounters. 20 interactions between
fitness-selected individuals are performed, their fitnesses are
updated, a new individual is created by recombining two

2These results, as well as those obtained by Ficici, hint at a necessary
distinction between local progress (newer individuals are better than their
immediate predecessors against their local, current opponents), historical
progress (newer individuals are better than their predecessors against their
ancestral opponents) and global progress (newer individuals are better than
their predecessors against the entire search space). The first one is all that
natural selection is concerned with. The second one is a definition of an arms
race, and can be brought about by using an archive. The latter is the real
objective of coevolutionary optimisation; unfortunately it is not necessarily
brought about by the former two.

selected parents, the initial fitness of the new individual
is evaluated by pitting it against 20 opponents, the new
individual is inserted in the population (it is not specified
whether another individual should be deleted) and the cycle
starts again. Thus evaluation occurs in a one-time manner for
many individuals, while superior candidates have their fitness
refined through subsequent competitions. This concentrates
computational power on promising solutions, although at the
expense of exploration.

III. THE � -STRIKES OUT ALGORITHM

We propose a simple algorithm to capture the desired
properties described above. In the context of one-population,
symmetric coevolution, the proposed algorithm can be de-
scribed as follows:

1: Pick two individuals A and B from the population at
random.

2: Pit them against each other; determine the winner and
the loser of the confrontation (if any).

3: If the loser has been defeated � times over its entire
history, remove it from the population and replace it with
a new individual.

4: Start again.
From this description we can make several observations

about the algorithm. First, it is truly a steady-state algorithm.
Population change occurs in a one-at-a-time fashion, while
evaluation occurs continuously. Poorly adapted candidates
are rejected early, while promising solutions are constantly
re-evaluated against the changing environment, until this
environment proves too much for them. In effect, in the
� -strikes out algorithm, the population acts as a self-
maintaining archive, constantly updating and reevaluating
itself.

In addition, the dynamics of the algorithm in terms of
evaluations and reproductions are globally predictable. After
an initial transient phase, a steady regime will settle in which,
on average, one new individual will be created for every �
evaluations. Thus � provides a convenient control of the
balance between exploration and exploitation.

The algorithm shares another common feature of steady-
state genetic algorithms: simplicity (both in concept and
in implementation). It removes the necessity for managing
generational changes among populations. The only overhead
is to keep track of the number of defeats for each individual,
which is usually easy.

The algorithm is flexible in that various adaptations are
possible, especially with regard to the choice of parents
for the new individual. One possible method is to replace
the loser with a recombination of itself and the winner,
or with a mutated version of itself or of the winner. This
method has the advantage of being easily implemented, and
is also quite conservative: it makes it likely that some of
the genetic material of the loser will be preserved in the
new offspring, which may be desirable in some situations but
not in others. A more neutral method consists in replacing
the loser with a recombination of parents chosen after some

particular statistic, such as their number of victories, the ratio
between victories and defeats, etc.

A consequence of the algorithm as described above is
that defeats are never forgotten. This implies that even
individuals with a high victories-to-defeats ratio, indicating
high performance, can be eliminated when their number of
defeats reaches N (which is bound to happen at some point).
If one wants to counter this, a possible modification consists
in specifying that the loser will only be replaced if it has
suffered � defeats over its last � competitions: defeats
which happened more than � contests ago are ‘forgiven’.
Introducing this finite memory window has several conse-
quences, both positive and negative: it has the advantage of
ensuring that only currently unadapted individuals will be
removed. However it also means that there is no longer an
immediate relation between the number of contests and the
number of creations of new individuals (although the impact
will be small if most eliminations occur before � contests,
as is likely to be the case for most new individuals).

IV. THE TWO-POPULATIONS CASE: ELIMINATING
LOSS-OF-GRADIENT

A. The naive approach to two-populations problems

The description given in the previous section applies to
one-population, symmetric problems. However, when the
problem is based on competition between two or more
species, the algorithm must be modified (if only because
competitors cannot be recombined together, or replaced by
each other, since they belong to different species). A naive
transposition could be expressed as follows: take one indi-
vidual from each population, pit them against each other,
and if the loser of this confrontation has reach his � th
defeat, replace it with a new individual created through some
suitable reproductive strategy.

Unfortunately, early experiments (based on the experi-
mental settings described in the following section) showed
that this naive method consistently induced severe cases of
disengagement, or loss of gradient. At some point, one of
the populations (say, population �) would find a somewhat
effective method to solve the problem, while individuals from
population � would still be in an early, poorly adapted stage.
This adaptation would propagate throughout population �
in such a way that eventually, every individual from �
would be able to defeat every individual from � . At this
point, every competition would lead to a defeat for the
individual from � , so all individuals from � would receive
the same selective information (uninterrupted losses), leading
to a uniform selective pressure. No gradient would allow the
algorithm to favour one individual from � over the other.
This would effectively remove any selective direction and
lead to a non-selective evolution based solely on random
drift.

Loss of gradient, also called disengagement, is a well-
known problem of coevolutionary dynamics. Several reme-
dies have been proposed, often based on a distinction be-
tween the two populations (“hosts”, which are to be op-

Fig. 1. ‘Ricocheting’ oblique evaluation: two individuals �	� and
��
 are pitted against a common individual � � . Their performances
are compared, which provides a winner and a loser: victories and
defeats counters are updated accordingly. Then a new individual �

is compared with � � based on its performance against ��
 . Because
the performance of � � against ��
 is already known, this only
requires one additional competition.

timised, and “parasites” which are an instrument of this
optimisation). Cartlidge [14] suggest to punish parasites
which prove too effective. Ficici and Pollack [15] (followed
in this by De Jong [16]) propose the more radical approach of
selecting parasites directly after their capacity to discriminate
between hosts. In addition to this, Bongard [17] choose to
save tests which are currently too difficult for later reuse.

We noticed, however, that without using any of these
various techniques, Sims’ original algorithm was not subject
to loss of gradient when applied to similar experiments. We
found that one cause of this immunity was that in Sims,
selective gradient was obtained through comparison of real-
valued, continuous scores, instead of binary victory/defeat
indicators. To use the real-valued scores directly in our
algorithm would be difficult, however: we would need to
compare scores obtained against different individuals, which
might be unfair; also finding an equivalent to the concept of
‘ � -strikes out’ with continuous scores might be non-trivial.

B. Oblique evaluation eliminates disengagement

There is another way. The fundamental reason why the
LEO generational algorithm appears immune to disengage-
ment and loss of gradient lies not only in the use of real-
valued scores, but also in the way individuals are ‘evaluated’:
the reproductive success of an individual is not determined
by its isolated performance against a member of a competing
species; rather, it is determined by comparing its performance
with the performance of fellow members of the same species,
against a common opponent. This, together with real-valued
scores, effectively eliminates loss of gradient, even in the
case when one species ‘out-evolves’ the other: even if all
individuals from a species are thoroughly beaten by their
competitors, the difference in the severity of their defeats
will provide a usable gradient.

Following this approach, instead of directly evaluating
individuals through their interactions with opponents from
the other population, we decide instead to firmly limit the

selective process to a comparison between fellow members
of the ������� species. This is done by comparing the results of
two individuals against one single member of the opposing
population. This process of oblique evaluation effectively
ensures that a usable gradient will always be present.

Thus “victories” and “defeats” are defined as follows: two
individuals ��� and ��� from population � are pitted in turn
against the same member ��� of population � ; whichever of
��� and ��� obtains the best score (if any) is the winner, and
the other one is the loser. We then apply the same “ � -strikes-
out” algorithm as described in the previous section, with this
new definition of victories and defeats.

One final refinement is necessary to complete the algo-
rithm. At first sight, oblique evaluation seems to double the
amount of computation required for evaluation: while only
one interaction was needed in the naive method, now two
interactions are necessary to obtain an evaluation. However
this is merely illusory, because some of the information
gained in one evaluation can be used in the next: after pitting
both ��� and ��� against �
� , we now pick an individual ���
at random from � , oppose it to ��� , and compare its score
against the (already known) score obtained by ��� against
the same individual ��� . The process is then repeated with
��� , ��� and yet another individual ��� , etc. Thus evaluation
is constantly “ricocheting” from one population to the other,
always using some of the information found in the previous
round in the next. Each new evaluation only requires one
new interaction. The process is illustrated in Fig. 13.

C. Disengagement, oblique evaluation, and selective inspi-
ration from Nature

Disengagement / loss-of-gradient is usually seen as a
troublesome impediment to “proper” coevolution. However,
it might be argued that it is actually an expected feature
of coevolution. In Nature, a situation in which one lineage
is utterly out-evolved by others to the point of being un-
able to defeat any opponent, corresponds essentially to an
extinction event. But the basis of Van Valen’s original Red
Queen hypothesis [18] is precisely that such events occur
continuously because of coevolution (the Red Queen effect
imposes a constantly changing environment, and species
routinely fail to adapt and go extinct with a probability which
is independent of the species’ age). Thus disengagement is
actually the direct expression of the Red Queen effect, within
the more restricted environment of artificial coevolution.
Therefore, to fight disengagement, we should not try to copy
Nature as faithfully as possible; rather, it is preferable try and
find which factors cause it and, if feasible, eliminate them.

In essence, the process of oblique evaluation implicitly
present in the LEO algorithm (and explicitly present in
ours) counters the Red Queen effect by separating inter-
specific and intra-specific competition; more precisely, it
removes inter-specific competition altogether, and replaces it

3If �
 has reach the maximum number of defeats and must be replaced,
then the result of the opposition between � � and the new �
 is now unknown,
and cannot be used for further comparisons. In this case we keep � � as the
current referent for the next round.

with purely intra-specific competition. Individuals are not in
direct competition for survival with members of the opposing
species, as they are in Nature; instead, they compete for
survival solely against members of their own population.
In Nature, competition occurs between all individuals, both
between and within species. The consequence, through the
Red Queen effect, is that species routinely go extinct. In the
context of artificial evolution, however, competition between
species is an unwanted feature (one might say a ‘bug’) of
evolution: we are interested in optimising individuals, but
we do not want any species to go extinct (i.e. we do not
want disengagement to occur). Disengagement occurs when
the algorithm does not, or cannot, produce meaningful intra-
specific competition.

Our conclusion is that the use of real-valued, continuous
scores, even though it always provides a readily available
gradient between individuals, is not sufficient to prevent
disengagement in itself. This latent gradient must be properly
exploited by emphasising intra-specific competition against
inter-specific competition. Algorithms which do just this
(such as Sims’ algorithm, or our own corrected algorithm)
effectively eliminate disengagement. This may be seen as
a case of analysing natural evolution, and “carving it up”
to pick precisely what can be useful to us, leaving aside
unwanted features.

V. EXPERIMENTS AND RESULTS

A. Experimental settings

1) The task: Our experiments are based on the simulation
of artificial three-dimensional (3D) creatures controlled by
neural networks, similar to those introduced by [11]. Crea-
tures are composed of rigid blocks linked by hinge joints.
Their neural networks are distributed throughout their limbs.
Initially creatures also have four kinds of external sensors,
measuring the and ! distances of either the opponent
or the box, within the frame of reference of the limb in
which the sensor exists; in our later experiments we remove
the ! -sensors. These external sensors come in addition to
internal proprioceptors which measure the current angle at
the joint between a limb and its parent limb. There is one
such proprioceptor for each limb, except of course for the
‘root’ limb which has no parent. Each limb (except the
root limb) also has an actuator neuron, which specifies the
current desired angular speed around the joint between this
limb and its parent. The software platform being used is
essentially a reimplementation of Sims’ model, the main
difference being our use of usual McCulloch-Pitts neurons
instead of Sims’ more complex neurons, with an improved
genetic encoding and developmental system. A complete
description and justification of our platform can be found
in another paper [19]; source code and video captures can
be found at www.cs.bham.ac.uk/˜txm.

The task being considered is the “box-grabbing” contest
described in [11]. Two creatures compete to gain control of a
cubic box. At the beginning of each contest, the box is placed
at the centre of the environment. Both competing creatures

are placed on opposite sides of the box, at a certain distance
from it. As in Sims, creatures are pushed behind a diagonal
plane slanted by 45 degrees so they cannot gain an undue
advantage by their height. Both creatures are then left to act
for a given period of time. At the end of the evaluation period,
the score for each creature is determined in the following
way: if one creature is at distance "$# from the box (as defined
by the distance between the centre of the creatures’ closest
limb to the box, and the centre of the box) and the other at
distance "�% , then the former creature’s score is & �
' & �& �)(& � , while
the latter’s is & ��' & �& �)(& � .

2) Methodology: To make our comparison as meaningful
as possible, we follow Sims’ choice of using two species,
which we arbitrarily call A and B. We maintain this separa-
tion throughout our experiments and analysis. We then pro-
ceed to compare our own implementation of Sims’ original
LEO algorithm (described in the introduction of this paper)
with a 2-strikes-out algorithm, using oblique “ricocheting”
evaluation, as described above. For both algorithms, the pop-
ulation is divided into 2 species containing 100 individuals
each.

We performed our comparisons by pitting champions ob-
tained with one algorithm against champions (of the opposite
population) obtained with the other algorithm, at discrete
points in time, in order to track the relative performance
of both algorithms over time. Thus those comparisons were
‘equal effort’ comparisons: we only opposed champions
obtained after equal numbers of simulated contests (that
is, champions obtained by either algorithms with equal
computational costs). To do this, we evenly sampled 25
champions in each population of every run. This was done by
picking the current champion of each population after 6000,
12000, 18000, etc. contests had been simulated (our runs
were allowed to proceed for 150000 simulated contests)4.

This created two sets of 25 champions (one set for
population A and one set for population B) for each run of
each algorithm. We then proceeded to oppose the champions
obtained by each algorithms at a given time, against champi-
ons obtained by the other algorithm at the same time. That is,
for each � in the *+#-,.,/%-021 range, we pitted the � th champion
of each run generated by one algorithm, against the � th
champions of all runs generated by the other algorithm. Note
that we only pitted individuals from A-populations against
individuals from B-populations.

For every � in the *+#-,., %�021 range, this amounts to #�%435#2%63
%�78%-9-9 competitions in total: the � th A-champions of 12
LEO runs against the � th B-champions of 12 NSO runs,
plus the � th A-champions of 12 NSO runs against the � th
B-champions of 12 LEO runs The repartition of victories
between both algorithms, for each � , gives a ‘snapshot’ of
the relative performance of both algorithms at a given point

4In the LEO algorithm the champion is automatically defined by the
algorithm as the current member of one population which obtained the
best score against the current champion of the opposing population. In the
NSO algorithm, we simply picked as a current champion the individual
within the population which had accumulated the highest number of victories
throughout its history.

Fig. 2. Four creatures from four different runs, evolved with the ‘harsher’ versions of both algorithms (top row: LEO algorithm, bottom
row: 2SO algorithm). In the top-left picture, one creature has managed to enclose the box between its symmetric arms. The protrusions
on each arm will induce a ‘locking’ effect which will secure the creature’s grip, allowing it to resist the attempts of its opponent. In the
top-right picture a large creature has pinched the box and has begun to retreat, with the opposing ‘caterpillar’ creature following it. In the
bottom-right picture a very simple, 3-limbed creature has used sinusoidal motion to get to the box and is using exactly the same motion
to go backwards, dragging the box as a result. In the bottom-right corner one creature has managed to snatch the box between its arms
and will slowly move away from its unsuccessful opponent.

in time (namely, after �:3�;�<-<-< contests have been simulated).

B. Results

Our initial experiments compared a plain, ‘naked’ 2-
strikes-out algorithm (2SO) against an implementation of
Sims’ LEO algorithm. These early implementations put em-
phasis on maintaining existing genetic material, in an attempt
at avoiding premature convergence detected in preliminary
test experiments. Thus the replacement method for the 2SO
consisted in replacing the eliminated individual with either
a mutated copy of itself, or a recombination between itself
and its latest defeater. Similarly our implementation of Sims’
algorithm was genetically conservative, with a 50% survival
rate and a similarly lenient replacement method in which
the eliminated individual contributed genetic material to its
replacer. More precisely, at each generation, the following
cycle was iterated: three individuals were randomly chosen,
and the individual with lowest fitness (i.e. having obtained
the lowest score against the current champion of the opposing
population) was replaced either with a mutated copy of
itself, or with a recombination of itself and one of the
two others. This was repeated until 50% of the population
had been replaced. With these initial settings, the 2-strikes-
out algorithm outperformed the LEO algorithm by a wide
margin.

However, we decided to reimplement our version of Sims’
algorithm to make it much closer to the original, which

implied significantly harsher replacement policies: we low-
ered the survival rate to 20% and selected parents from the
survivors only, with a roulette-wheel selection method based
on the same normalised fitness function as used by Sims.
We also brought a few changes to the platform, such as
removing ! -sensors (leaving only sensors for the distance
in the direction of the -axis of the limb) and changing
various parameters. This led to a massive improvement in
the performance of the LEO algorithm, which significantly
outperformed various N-strikes-out algorithms.

This prompted us to introduce a less conservative replace-
ment policy in our 2-strikes-out algorithm: new individuals
would be generated from parents selected based on their
number of victories only (eliminated individuals would no
longer contribute to the genome of their replacer). On the
other hand we introduced a time window beyond which
ancient defeats, were ‘forgiven’. We found that the resulting
algorithm produced initially weaker creatures, but exhibited
more reliable progress, and eventually managed to equal the
LEO algorithm after enough cycles had elapsed. The long-
term behaviour of these curves indicate similar performance
of newer champions in the long run. Our interpretation is
that under these settings, the LEO algorithm produces well-
adapted designs faster than the 2SO algorithm.

Fig. 3 shows the results of our equal-effort comparisons
between the LEO algorithm and the 2SO algorithm. Some of
the creatures evolved in our early experiments were shown

Fig. 3. “Equal effort” comparison between LEO and 2SO: repar-
tition of victories in head-to-head competitions between current
champions generated by both algorithm at discrete points in time.
The top graph shows results for early, ‘lax’ implementations of both
algorithms. The bottom graph shows results with increased selection
pressure and less conservative reproduction. See text for details.

in another paper [19]. Fig. 2 shows four creatures evolved
with the improved versions of our algorithms.

Through visual inspection, we determined that the supe-
riority of the NSO method in our early experiments was in
great part caused by the instability of the LEO algorithm.
Typically, both populations would come to some interesting
degree of adaptiveness and functionality, but then one of
the populations would come up with simplistic individuals
which would exploit a particular weakness of the oppos-
ing champion. Because these individuals would do rather
well against the opposing champion (no matter how poorly
they performed otherwise) they would be promoted to new
champions of their own population, thereby upsetting the
hierarchies of both populations, and forcing evolution to start
again from scratch.

A common source of instability was “sensor hijacking”:
one creature would exhibit an effective locomotive behaviour,
which would unfortunately be dependent on the position
of its opponent because the input from a particular sensor
would be able to dramatically influence the behaviour of the
creature: the successful individual would be dependent on
the presence, or absence, of the opponent within a certain
distance (either through evolved dependence, or through
fortuitous, spurious connections which would not have been

eliminated by evolution). Therefore, all the opponent had to
do to outperform this fragile behaviour was to foil this expec-
tation - which often happened simply by staying motionless,
or falling on one side. This is a specific type of opportunism,
exploiting weaknesses in evolved neural controllers. This is
what prompted us to simplify the set of sensors by removing
! -sensors altogether.

Our reimplementation of the algorithm significantly re-
duced this problem. However the fundamental instability
of 3D physics implies that in some circumstances, small
differences (or even different random seeds) can have large
consequences: for example, a creature might “only just”
scrape the box away on one occasion, but fail on others,
which may result in completely different outcomes for the
contest. The improved LEO algorithm was still occasionally
fragile to such situations, in which one creature would ‘get
lucky’ during a particular contest by performing some action
that would fail most of the time. This one-time success would
allow the creature to become a champion, despite its lack of
reproducibility.

While instability can be observed by visual inspection, it
can also be identified in a more objective manner through
simple analysis tools. We drew coarse-grained tournament
matrices (CGTM) of several runs, both with Sims’ algorithm
and ours. A Tournament Matrix [8] is drawn by pitting
all champions of one population against all champions of
the other population, but is computationally expensive and
the resulting graph is often difficult to analyse in practice.
A CGTM consists in simply taking a limited number of
champions for each population over the whole run (in this
case, 25, evenly sampled exactly in the same way as for our
equal-effort comparisons) and often produces more readable
outputs [20]. The graphs shown in Fig. 4 indicate that 2-
strikes-out runs produce a more stable evolutionary process
than LEO runs. With the 2-strikes out runs, even when
patches of different colours are scattered over the graph, a
distinct division of the graph in two zones (one darker zone
near the bottom-right and one lighter zone near the top-left)
can be observed. Such a pattern is difficult to identify in the
LEO runs.

In comparison, the 2SO algorithm followed a more steady
approach, at the price of taking much longer to come up
with really efficient results. While in the LEO algorithm the
design of competing creatures would often be completely
transformed over a few generations, the NSO used largely
incremental modifications of working designs, with the oc-
casional profound change (when a new individual would
displace an eliminated champion to which it would not be re-
lated). While no utterly non-adaptive champions were found
in the NSO algorithm, the curves indicate that appearance
and tuning of successful designs took significantly longer
than in the improved LEO algorithm.

VI. CONCLUSION AND FUTURE WORK

We have introduced the N-strikes-out algorithm as a
steady-state algorithm for coevolution. This seems to be
the first truly steady-state coevolutionary algorithm, in that

Fig. 4. Coarse-Grained Tournament Matrices (CGTM): For each run, 25 champions are evenly sampled from each population and then
pitted against each other in an all-against-all manner. Point =?>A@CB�D is a dark square if champion > of population A defeated champion B
of population B, a light cross otherwise. Top row graphs describe 2-strikes-out runs, bottom row graphs describe LEO runs. 2SO runs
exhibit a pattern of darker/lighter separation, which is difficult to identify in the more chaotic grids generated by LEO runs. For more
details on CGTM graphs see [20].

both evaluation and replacement occur asynchronously, in a
steady-state fashion. We compared this algorithm against the
Last Elite Opponent method introduced by Sims. With our
original settings, using conservative replacement method and
low selection pressure, a 2-strikes-out algorithm significantly
outperformed the LEO algorithm. However, with an in-
creased selection pressure and more explorative replacement
methods, the LEO algorithm produced well-adapted designs
much faster than the 2SO algorithm (though both methods
obtained similar performance in the late stages of evolution).

Comparing our algorithm with Sims’ original algorithm is
significant for two reasons. First, it was apparently the only
algorithm ever used in successful coevolutionary experiments
involving artificial 3D creatures of this type. Second, it
has been used (under different forms) in several studies.
However the comparisons performed in this paper are still
very preliminary, if only because we have used a simple,
‘naked’ LEO algorithm. More work, and more comparisons
(including with refined versions of the LEO algorithm) is
needed to determine the general properties of N-strikes-out
algorithms, and how they can be adapted or improved.

REFERENCES

[1] R. Dawkins and J. R. Krebs, “Arms races between and within species,”
Procs of the Royal Society of London, Series B, vol. 205, pp. 489–511,
1979.

[2] C. D. Rosin and R. K. Belew, “New methods for competitive coevo-
lution,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[3] W. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Physica D, vol. 42, pp. 228–234, 1990.

[4] S. G. Ficici, “Solution concepts in coevolutionary algorithms,” Ph.D.
dissertation, Brandeis University, May 2004.

[5] R. Dawkins, “Human chauvinism,” Evolution, vol. 51, no. 3, 1997.
[6] J. M. Smith and E. Szathmary, The Major Transitions in Evolution.

Oxford University Press, 1995.

[7] S. J. Gould, Full House / Life’s Grandeur - The Spread of Excellence
from Plato to Darwin. London: Jonathan Cape, 1996.

[8] S. Nolfi and D. Floreano, “Coevolving predator and prey robots:
Do “arms races” arise in artificial evolution?” Artificial Life, vol. 4,
no. 4, pp. 311–335, 1998.

[9] E. D. Jong, “Intransitivity in coevolution,” in Procs 8th Intl Conf on
Parallel Problem Solving from Nature (PPSN 04), 2004.

[10] R. A. Watson and J. B. Pollack, “Coevolutionary dynamics in a min-
imal substrate,” in Procs GECCO 2001, L. Spector, E. D. Goodman,
A. Wu, and W. B. Langdon, Eds. Morgan Kaufmann, 2001.

[11] K. Sims, “Evolving 3d morphology and behavior by competition,” in
Procs 4th Intl Works on Synthesis and Simulation of Living Systems
(ALIFE IV), R. Brooks and P. Maes, Eds. MIT Press, 1994, pp.
28–39.

[12] C. W. Reynolds, “Competition, coevolution and the game of tag,” in
Procs 4th Intl Works on Synthesis and Simulation of Living Systems
(ALIFE IV), R. Brooks and P. Maes, Eds. MIT Press, 1994.

[13] J. Paredis, “Coevolutionary computation,” Artificial Life, vol. 2, no. 4,
1995.

[14] J. Cartlidge and S. Bullock, “Learning lessons from the common
cold: How reducing parasite virulence improves coevolutionary op-
timization.” in Congress on Evolutionary Computation (CEC 2002),
D. Fogel, Ed. IEEE Press, 2002.

[15] S. G. Ficici and J. B. Pollack, “Pareto optimality in coevolutionary
learning,” in Advances in Artificial Life: 6th European Conference
(ECAL 2001), J. Kelemen and P. Sosik, Eds. Springer, 2001.

[16] E. D. De Jong and J. B. Pollack, “Ideal evaluation from coevolution,”
Evolutionary Computation, vol. 12, no. 2, 2004.

[17] J. Bongard and H. Lipson, “‘managed challenge’ alleviates disen-
gagement in co-evolutionary system identification,” in Genetic and
Evolutionary Computation Conference (GECCO 2005). MIT Press,
2005.

[18] L. V. Valen, “A new evolutionary law,” Evolutionary Theory, vol. 1,
pp. 1–30, 1973.

[19] T. Miconi and A. Channon, “An improved system for artificial crea-
tures evolution,” in Procs 10th Intl Conf on Simulation and Synthesis
of Living Systems (ALIFE X), L. Rocha, M. Bedau, D. Floreano,
R. Goldstone, A. Vespignani, and L. Yaeger, Eds. MIT Press, 2006.

[20] ——, “Analysing coevolution among artificial creatures,” in Procs
Evolution Artificielle 2005 (EA 05), E. G. Talbi, Ed. Springer-Verlag,
2005.

