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Abstract
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1. Introduction

Code-share (henceforth CS) agreements are contratigeen two carriers in which one air-
line, acting as Marketing Carrier (MC), is allowedsell seats on a flight operated by the other
airline, acting as Operating Carrier (OCn recent years, such agreements have become in-
creasingly popular (Brueckner and Whalen, 2000gBkaer, 2003).

The large expansion of code-sharing agreementslisative of their mutual advantage for
the involved airlines. In addition to providing tedits in the form of cost saving, risk reduction
and network expansion, CS is relevant becauseipase the way to more integrated forms of
cooperation such as an alliance or even a mergee¢Bner and Pels, 2005; Gaggero and Bar-
tolini, 2012). Indeed, to harmonize the activitiéshe airlines involved, CS comprises the def-
inition of a set of commercial and operational agnents concerning, amongst others, pricing,
seat inventory and frequent flyer programs (ChehRoss 2000; latrou and Alamdari, 2005).

Because these agreements may reduce the functiohthg market, they are often under
the scrutiny of antitrust authorities (Gayle, 20Ggyle and Brown, 2014). In Europe, Article
101 of the European Treaty prohibits agreementsdezt two or more independent market op-
erators, which restrict competition. This Articke similar in spirit to the first Section of the
Sherman Act (1890) in the US legislatibBoth sets of norms, albeit with minor differences,
accept that code-sharing agreements can be allowpdnciple, only if they are in favor of
consumers, and, more specifically, when the astitcommission expects that the agreement
would not increase fares and/or would not lead tedaiction in the competitiohFor this rea-
son, code-sharing agreements are evaluated caseséynd decisions are taken in terms of the
impact on prices or on consumer surplus. Such ib@signay also involve the imposition of
such remedies as slot conditions or frequency éeez

The theoretical literature has also highlighted ékistence of different factors playing in
favor and against code-sharing agreements. Usangaation analysis Brueckner and Whalen
(2000) show that allied partners charge lower fatesreby increasing consumers’ surplus and
welfare. Brueckner (2001) uses a hub-and-spoke hodshow that both consumer and total
surplus rise after the formation of an alliance.afigues that the benefits of alliances arise be-
cause of lower fares set by the partner airlinehéninterline markets. Park (1997) finds that,
depending on the size of the market and on theau@ms of traffic density, complementary
alliances increase economic welfare, while parallénces reduce it. Bilotkach (2005) shows

IFor instance, the flight BA781 operated by Britisinways from London Heathrow to Stockholm Arlandaaiso
sold under the code AY5936 by Finnair. In this eplarBritish Airways is the operating carrier, whinnair is
the marketing carrier.

2In some cases companies are allowed to sign capmeagreements, which allow firms to collaborati¢haut
the risk of the intervention of the antitrust authy In Europe, airline industry exemptions ardlexhindividual

or block exemptions; in the US, antitrust immurstien both legislations, the use of exemptionsheen largely
decreasing over time.

3See for instance Lufthansa/SAS in 1995, British Iatid/Lufthansa/SAS in 2001, Lufthansa/SAS/United in
2002, KLM/Northwest in 2002, Lufthansa/Austrian2002, British Airways/SN Brussels in 2003, Britiglir-
ways/lberia/GB Airways in 2003, Air France/Alitalim 2004, SAS/Austrian 2005.
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that alliances without antitrust immunity are we#fanhancing. While he argues that the im-
pact of alliances with antitrust immunity on we#fas ambiguous, he concludes that alliances
increase total welfare, the larger the spoke-tdwepaaffic relative to traffic between hubs of
alliance partners. Czerny (2009) demonstrates ithiatline passengers are better off under
code-share agreement, whilst non-interline passerage worse-off.

Various empirical papers investigate the effect<C8f practices, mostly using US data.
Park and Zhang (2000) find that consumers werergénenade better off by the alliances in
the North American aviation markets. Armantier &idhard (2006) examine the influence of
the alliance between Continental Airlines and Neght Airlines on prices; they find evidence
of lower prices across markets in which the twdiregs establish a code-share agreement. A
companion study to Armantier and Richard (200&oisducted by Gayle (2008), who focuses
on the Delta/Continental/Northwest code-share ratka He also does not find empirical evi-
dence in favor of collusive pricing on the overlaggproutes served by these carriers. The con-
clusion that fares on code-share itineraries aesggér than in otherwise similar non-code-
share itineraries is also reached by Ito and L8R To sum up, most of the existing litera-
ture investigates the role of code-sharing agreésnam US routes providing a generally posi-
tive influence on consumer welfare.

This paper contributes to the literature on the @il CS in the airline industry in a number
of ways; first, it focusses on European airline kets and second, it explores whether different
types of code-sharing agreements are likely tocafiet only the level of fares, but also their
temporal profile. Our data cover several routekitig the main UK airports to some of the
largest European destinations and include postes fallected at different days before depar-
ture. As discussed in Gaggero and Piga (2011) asitb@n and Piga (2013), looking at how
fares evolve over time is relevant for consumerfavelbecause different passengers categories
(e.g. leisure or business) may be characterized Oifferent purchasing behavior. In general
leisure travelers book in advance and businesglgabook late. Thus, also in the occurrence
of no impact on the overall welfare, there carl btl a significant re-distributive effects. This
issue has not been investigated in previous wdrdsause the data structure does not allow to
consider it Moreover, we distinguish the impact of CS on theeftemporal profile studying
whether the airline under investigation code-sh#seflight or not, is the operating carrier or
the marketing carrier, there is a single or mudtipperator code-shared flight (e.g. unilateral or
parallel operations).

The econometric analysis is conducted by taking adcount the antecedent decision by
airlines to operate a flight in code-share. Fingt,estimate the likelihood that two carriers enter

“Many studies on airline pricing use DB1B databaswiged by the US Bureau of Transportation StatsstThis

database contains a random draw of 10 per cerit dBaairline tickets, collected on a quarterly isesince 1993.
In the current study we use posted fares retri@red daily basis from the Opodo website. Althouuh authors
acknowledge the advantage of using transactiors farstudy the airline pricing behavior in thoseeinstances
in which price-capacity relation is paramount, D1B database can be less useful in other casesibed does
not comprise the information on the date when itieet can be booked. Thus, with the DB1B databageriot

possible to track the fare changes over time agedu, we do in our work with posted fares.
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a code-share agreement, using a probit proceduitbelsecond step, we use this information
to “correct” the estimates in the carriers’ priciaguation (Heckman, 1979; Maddala, 1983;
Campa and Kedia, 2002). By analyzing the tempaw@dilp of airline fares, we identify three
main results. First, code-share increases farescedly for early bookers. Second, the fare
shift in code-shared flights is due to higher psicéfered by marketing carriers. Finally, when
flights are in unilateral code-share, the pricimgfite is flatter than under parallel code-share.

The remainder of paper is structured as followse Tiext section surveys the different
types of code-share agreements, as well as thenea@enerally considered to be effective in
inducing an airline to do code-share. Section 3gmés the data. Section 4 discusses the empir-
ical model and estimation. Section 5 concludes.

2. Code-share practices

Code-sharing agreements may differ depending oanabar of various dimensions (Heimer
and Shy, 2006; Whalen, 2007, Ito and Lee, 2007) istance, based on the geography of the
route, CS may be conducted under “parallel operatizvhen both airlines operate on the route
with their own aircraft and are alternatively thegecating or marketing carriers (e.g., Alitalia
and Air France on the route Paris-Rome), “unildteperation” when only one airline is the
operating carrier on the route (e.g. Air Francesrtime route Paris-Genoa and Alitalia is the
marketing carrier) and “behind and beyond routdijol typically involves routes with more
than one leg, operated by different carriers (@agis-Palermo with one stop-over in Rome, the
first leg Paris-Rome is operated by Air France aonde-shared by Alitalia, while Rome-
Palermo is operated by Alitalia and code-sharedibyrance). Because under behind and be-
yond route airlines complement each other, thisgaly is also identified with the term “com-
plementary” CS.

Code-share agreements may also vary according teedit inventory clause. If the airlines
decide to operate under “free-flow” or “free-sakgjreement, the information on the current
seat availability is shared between the airlines lamth the OC and the MC are able to sell as
many seats as they wish upon availability (Vind@D2 Abdelghany et al, 2009). Alternative-
ly, under the “block-space” agreement there is el time communication between the OC
and the MC because the allocation of capacity batwibe parties is determined in advance,
that is, the MC is assigned a pre-determined nurobseats to sell (Ito and Lee, 2005). Final-
ly, there can be minor differences in the way tinknas split the revenues and costs (European
Commission, 2007; Hu et al, 2013). For instancelearbehind and beyond route (i.e., when
the journey involves more than one carrier) thedifapproach is to split the fare according to
the weighted mileage. Alternatively, carriers cgmnea to specify a fixed revenue amount for
each leg of the journey. More generally, airlines enake special prorate agreements which
can be tailored to the case (Brueckner, 2003a, 2008 common form of special prorate
agreement is the so-calleet special prorate agreement, which sets the amoubeé tpaid to



the airline carrying the passenger based solelyemooking class of the passenger.

There are various reasons why airlines decide tocermeade-sharing agreements. A prima-
ry motivation is that the marketing carrier can axg its flight offer both in terms of destina-
tions and schedule without incurring the costs asids of additional investment in capacity; at
the same time, the operating carrier is likelygog higher load factors and therefore a higher
per-seat yield (Dresner and Windle, 1996; Brueckp@®dl).

Furthermore, CS often involves carriers with ugualstrong market position in their own
distinct countries of origin; thus, CS may be bemnalf to both carriers since they do not need
to create an own sales network in the other c&runtry. Such partner’'s network is ex-
pected to generate additional traffic, which wilba the exploitation of economies of scope
and density (Brueckner and Spiller, 1994; Cavesalet 1984; Flores-Fillol and Moner-
Colonques, 2007).

Code-sharing agreements may create a close linkelbat member companies, which is
conducive to tighter forms of cooperation, sucla gbobal alliance or a merger (Brueckner and
Pels, 2005; Gaggero and Bartolini, 2012). Indeetines that have formed a global alliance or
merged have first started their collaboration bglezgharing their flights (e.g., Air France with
Alitalia or British Airways with Iberia).

Previous arguments are positively evaluated bytrasti authorities; however, such other
reasons as the creation of a joint dominant pasitidhich are against the interest of consumers
because they are meant to weaken competition, mayehind the airlines’ decision towards
doing code-share (Bilotkach and Huschelrath, 20Cbnhsider the following example: airline
A, B and C serve an arbitrary route; A flies in therning, B in the afternoon and C in the
evening. A and C decide to sign a code-share agneeitinis gives more time options to pas-
sengers choosing A-C rather than B and therefaetbduct A-C is more likely to be picked,
all else being equdlMoreover, if A and C decide to share the sameuiattflyer program,
the combination of the two carriers becomes everematiractive, especially for business pas-
sengers, and, hence, A-C are more likely to inerdlasir joint market share. In the long run B
may decide to exit the route if this market becommgsrofitable. Furthermore, CS may consti-
tute a barrier to entry, as a potential entrant & fine threatened by the coordinated behavior
of A and C (Chen and Ross, 2000; Goetz and Shapdt?). A and C will enjoy a joint mo-
nopoly position, which may induce higher fares anddwer flight frequency (Richard, 2003)
and which, therefore, may require the interventibantitrust authorities.

The question whether CS reduces or increases ifanegestigated empirically mostly us-
ing US data. Armantier and Richard (2006) checktiwrefares increase or decrease, follow-
ing the code-sharing agreement between ContinAntates and Northwest Airlines in 1999.

>The point here is that passengers usually buyndickets. Assume that preferential departure amorn sched-
ules are randomly drawn, and there are three timdaws (morning, afternoon, evening), then theliil@od that

a passenger simultaneously finds a return flighsfséng her/his preferred schedule is 4/9 when taaiers are
involved in a code-sharing agreement and only lifBout CS. The disproportionate demand for carrerging

higher market shares and frequencies is informafigrred as ‘S-curve’.
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They use quarterly data on prices obtained fromUBeDepartment of Transportation (DOT)
for the period 1998-2001, so that their sample awsep both the ex-ante and ex-post agree-
ment period. They find evidence of lower pricesoasrmarkets in which Continental Airlines
and Northwest Airlines code-share, concluding timate-sharing agreements do not necessari-
ly lead airlines to collude.

Gayle (2008), who also focuses on the US marketguBiOT data, studies the effect on
fares due to the Delta/Continental/Northwest Ctaatle. Similarly, to the finding by Arman-
tier and Richard (2006), he does not observe aioe pncrease in the overlapping routes
served by these airlines. Park and Zhang (2000Qyzméour alliances in North Atlantic avia-
tion markets (British Airways / USAIr, Delta / Satse/ Swissair, KLM / Northwest, and
Lufthansa / United Airlines) and also provide evide of fare reductions on the routes served
by the allying carriers.

Ito and Lee (2007) consider a sample of US domégjiats which are operated by a sin-
gle carrier but that also includes information @keéts sold by marketing carriers. In their
work they identify the importance of unilateral esshare, which they refer to as “virtual code-
share”. They find that fares on routes charactdriaevirtual CS aret) above the fares under
parallel CS;ii) below the fares of an operating carrier without TBeir findings suggest that
virtual CS tickets are perceived as imperfect stuies relative to the non-CS tickets. This is
because passengers tend to consider the latt&yeasatrier’'s brand-name premium product,
whilst the former as a less desirable generic pbditherefore, they conclude that virtual CS
can be a form of product differentiation to attragh price sensitive consumers. A comple-
mentary research question addresses whether GSdsiated with traffic increase. The empir-
ical literature on this issue practically unanimgdsds evidence of higher passenger volumes
subsequent to a code-sharing agreement (ArmamtieRe&chard, 2006; Bamberger et al., 2004;
Gayle, 2008; Park and Zhang, 2000).

3. Data

The analysis relies on two main datasets; the éingt contains primary data on posted fares,
while the second one provides market structure areaslerived from secondary data obtained
from the UK Civil Aviation Authority (CAA).

Fares are retrieved using a web spider specificibrgned to capture the prices posted by
an on-line travel agent, Opofdrhe fare variableRare) is the final lowest price in British
pounds (taxes and fees included) available at tbment of the query for a round-trip non-
changeable and non-refundable ticket of a flightieg at a given scheduled date and return-

6See www.opodo.co.uk, which is owned and managefeny ingus, Air France, Alitalia, Austrian Airline8rit-
ish Airways, Finnair, Iberia, KLM, Lufthansa, angetglobal distribution system Amadeus. Thus, féisted on
Opodo are likely to represent the official pricéseach airline. Opodo, however, may not report pyomal of-
fers that an airline may post on its own website.



ing one week later. This time framework (week imédy has been chosen in order to avoid
such restrictions as the Saturday night stay-avbBich may occur for some flights if a shorter
interval has been selected.

Our data cover 310 days (from 8 April 2003 to 1braary 2004) and comprise 49 routes
(see Table 1) served by 14 full-service carrienstid Airways, Alitalia, Swiss, Aer Lingus,
KLM, Lufthansa, Scandinavian Airlines, Air Europair France, Czech Airlines, Tap Portu-
gal, Iberia, BMI British Midlands, Finnair).

For each day and route, the spider collected alfthund-trip posted fares that a hypothet-

ical consumer would pay if she booked her ticket(@;,14, 17, 21, 28, 35, 42, 49 and 56 days
before the departure date (i.e. booking days). Spéer also saved the time of departure and
arrival of each flight code.

We define therefore two observations as belonginpé same flight in code-share by ob-
serving whether they share the same departureramdldaimes, as well as the same origin and
destination airports, but have different flight esdspecific to each different airline. We col-
lected 7,526 different flight code pairs: 3,22308 and 4,303 not in CS.

The UK CAA provides census monthly data for thé $ek of flights operated between the
UK and Continental Europe during the period of gsial This dataset contains such infor-
mation as flight frequency, available seats andgrager flows; we use this information to con-
struct a measure of market concentration at reawel IHHI), as well as a measure of carriers’
network size at the endpoints of the rouReutes).

Moreover, information contained in the CAA databaflews us to distinguish between
the operating and marketing carriers on code-shiighds. Indeed, the CAA reports only the
statistics for the flights managed by the operatiagier; we can therefore classify in the Opo-
do dataset whether an observation for a code-slibghtirefers to either the operating carrier
or the marketing one.

Distances are collected from the World Airport Csideeb site’ the daily price of jet fuel is
obtained from Thompson Reuters datalfaBepulation density is downloaded from Eurostat.
More specifically, our data contain the followingriables of interest and controls:

* CS(Code share) is a dummy variable equal to 1 ifflight is code-shared, O other-

wise.

* MC (Marketing carrier) is a dummy variable equal ti the fare is set by a marketing

carrier and 0 if it is set by the operating catrrier

» Parallel is a dummy variable equal to 1 if there is a paralode-sharing agreement

and O if there is a unilateral code-sharing agregme

» BookingDay* indicates the number of days before departuréhdreconometric analy-

sis, we will normalize this variable on the unitamgerval to facilitate the representation
of the results. We use the following transformatiBookingDay=(BookingDay*-7)/(56
-7).

’See: http://www.world-airport-codes.com.
8See http://www.eia.gov/dnav/pet/pet_pri_spt_s1 nal.ht
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Distance is the route distance in 1,000 kilometers.

FuelPriceis the price of one gallon of jet fuel in dollars.

Hub is a dummy variable equal to 1 if a flight is cgted by an airline having a hub at
one (or at two) endpoint(s) of the route.

Population is the geometric mean of hundred inhabitants geared kilometers of the
two regions hosting the origin and destination @itR Regions are defined by the EU
Nomenclature of territorial units for statisticstia¢ county level (NUTS 2.

LCC is the total number of low-cost carriers operatinghe route.

AlliedCarriers is the number of marketing and operating Europeariers on the route
member of any global alliance (Oneworld, Skyteatar 8lliance and Wing).

Freguency is the total number of flights offered by the @arion the route in a month.
It includes flights offered as marketing carrierveall as operating carriers. It is often
used as a measure of the quality of the flight Buf@rueckner, 2004). However, high-
er frequencies also imply economies of density éSast al., 1984; McShan and Win-
dle, 1989).

RouteCityShare is the share of passengers flying on the route thestotal of the city
pair 10

HHI is the Herfindahl-Hirschman index at route lev@mputed as the sum of the
square of the passenger market shares of eachtiogezarrier providing non-stop ser-
vice on the route.

SameAlliance is a dummy variable equals 1 if there are at leastoperating carriers
belonging to the same global alliance on the route.

Holiday is a dummy indicating whether the departure détde flight falls during a
holiday period (i.e., main UK bank holidays and theek before and after Christmas
and Easter).

Routes is obtained by computing the total number of iné&ional (non-stop) routes that
the operating carrier runs from each of the twopeiras of the route, taking the high-
est value of the two. In the case in which there jparallel code-sharing agreement, we
compute the maximum for each carrier and then ke the average among the carri-
ers.

Morning, LateMorning, Afternoon andEvening are dummy variables equal to 1 if the
departure time is respectively in the morning (&i880.59am), late morning (10.00am-
1.59pm), afternoon (2.00pm-5.59pm), and evenin@of@m-1.59pm)Morning is set as
the omitted category in the regression.

Table 1 reports the main descriptive statisticshefvariables used in the analysis. Addi-
tional information on data employed in the analysiprovided in the Appendix (Tables A.1

® For a definition of NUTS2, seéitp://ec.europa.eu/eurostat/web/nuts/overview
19A route is an airport pair, e.g. London Gatwick {ifs- Rome Fiumicino (FCO), while a city pair is et ®f
routes linking the airports of two city areas., Lendon (LON) - Rome (ROM).
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and A.2).

4. Descriptive analysis

To gain a better understanding of the structureunfdata, and to complement the econometric
analysis provided in the next section, we now dbesdhe inter-temporal pricing behavior un-
der different regimes. For each booking day, Tableports the percentage of times that the
fare posted by the operating carri€p() is strictly larger or smaller than £5 relativethat of

the marketing carrierP,;); such an amount is deemed to define an econdmisighificant
difference.

The same table also reports the proportion of caden the difference between the two
fares is within the +/- £5 range. We observe thatdperating carrier is generally cheaper than
the marketing carrier. The table shows that, asldparture date approaches, the proportion of
cases where the fare posted by the MC is strictt @agnificantly larger than the fare posted
by the OC tends to decrease.

Table 1: Descriptive statistics.

Variable Mean  Std. Dev. Min Max
Fare 68.58 33.10 22.35 431.15
Cs 0.36 0.48 0.00 1.00
MC 0.13 0.34 0.00 1.00
Parallel 0.17 0.38 0.00 1.00
BookingDay* 29.10 14.71 7.00 56.00
Distance 0.80 0.42 0.24 2.42
FuelPrice 0.78 0.05 0.67 0.90
Hub 0.66 0.47 0.00 1.00
Population 0.28 0.19 0.05 0.99
LCC 1.65 0.71 0.00 4.00
AlliedCarriers 1.72 0.72 0.00 4.00
Freguency 388.78 182.67 30.00 824.00
RouteCityShare 0.45 0.22 0.02 0.83
HHI 0.57 0.19 0.31 1.00
Routes 22.70 17.73 2.00 54.00
SameAlliance 0.66 0.48 0.00 1.00
Morning 0.14 0.35 0.00 1.00
LateMorning 0.25 0.43 0.00 1.00
Afternoon 0.27 0.45 0.00 1.00
Evening 0.28 0.45 0.00 1.00
Holiday 0.06 0.24 0.00 1.00

(a) Number of observations: 2,956,562.



Table 2: Price operating carrier - Price marketiagier (percentage values)

1) 2) 3)
BookingDay* Py < Pyc Poc = Pyc Poc > Puc
7 55 31.37 13.63
10 55.1 33.35 11.55
14 55.17 31.92 12.91
17 54.85 33.26 11.89
21 54.56 33.92 11.52
28 52.87 37.55 9.58
35 49.83 41.9 8.27
42 47.2 44.86 7.94
49 46.22 46.13 7.65
56 45.4 46.8 7.8
Average 51.24 38.8 9.95

(a) Column (1):P0C < PMC if POC - PMC < _£5
(b) Column (2):P0C = PMC if —£5 < POC - PMC < £5
(C) Column (3):P0C > PMC if POC - PMC > _£5

Figure 1 reports the average fare for each bootagin the full sample and in three sub-
samples based on the type of carriers and on tenab/presence of a code-sharing agreement.

The figure shows that the pricing curve generallyréases through time, it flattens in the
period 10-17 days before departure, and then itimaes its positive trend. Apart from this
discontinuity, the shape of the pricing curve isyvelose to an exponential path.

Interestingly, by comparing the operating carrreCiS to the marketing carrier (which, by
definition, is also in CS), we observe that thégratis quite similar, but the fare range is shift-
ed upwards in the case of the marketing carriers Tésult provides preliminary evidence,
which will receive further attention later in theomometric analysis that, for a given flight, the
price posted by the marketing carrier is on avetagker than the one posted by the operating
carrier, irrespective of the booking day. This fimglseems to run contrary to the idea that CS
eliminates double marginalization, as often statedhe literature (Brueckner and Whalen,
2000; Brueckner, 2001; Brueckner, 2003; Bambergat.e2004; Chen and Gayle, 2007; Ito
and Lee, 2007; Gayle, 2013).

We exploit this characteristic in the econometnalgsis, where we assume that the relation betfaes and
time before departure can be approximated by &htrkine, after applying the logarithmic transfation.
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Figure 1: Mean price vs. Days before departure.

5. Econometric analysis

While the previous section has already broughteswe that code-share agreements appear to
have significant effects on prices, the econometnialysis can also yield more robust insights
on the relationship between code-share and thimestlinter-temporal pricing behavior. We
will do so by distinguishing how the temporal plefvaries when, relative to non-CS flights,
we consider flights) in CS;ii) operated by an OC and/or a M@) operated under parallel or
unilateral CS.



5.1. Methodology

In order to study the impact of code-share on #mpbral profile of fares, i.e. how posted
prices vary in accordance to the number of daysrbefeparture, we choose to model the tem-
poral profile of fares using a log linear relatibips as suggested by the approximation in Fig-
ure 1. Moreover, we normalize the booking day mkoa the unitary interval, so that all the
temporal effects are captured by a single varialniike other papers that use separate dum-
mies to measure how fares evolve over time (Bilctk&005; Gaggero and Piga, 2010; Dob-
son and Piga, 2013). This approach facilitatesraglttiteraction terms between the time varia-
ble and other regressors identifying different g/pécode-sharing agreements and thus simpli-
fies considerably the interpretation of the ensusgyplts relative to the case where each book-
ing day is represented by a separate dummy variable

Our econometric analysis also addresses anotheeg, seaous econometric aspect. Simply
put, the decision to operate a flight in CS is indiependent of factors that may affect the set-
ting of fares. Code-sharing agreements do not oatuandom and are usually affected by
some observable and unobservable characterisatsrthke the regressors and the error term
in the price equation correlated (Brueckner, 2003bgrefore, we need to correct for the se-
lection bias because, in this case, the use dftrelard Ordinary Least Squares (OLS) estima-
tor does not guarantee consistent estimates afatbificients in the price equatidh.

More specifically, we consider the following twage model: in the first stage, operating
carriers choose for which route, if any, they wambe engaged in a code-share agreement;
then, in the second stage, operating and markesingers set their fares. The setup we analyze
corresponds to a two-stage methods for switchiggession models, initiated in the seminal
work by Heckman (1979), and subsequently discussetextended in several other works
(Maddala, 1983; Winship and Mare, 1992; Kyriazidd®97; Puhani, 2000; Campa and Kedia,
2002; Fernandez-Val and Vella 2011). To correctlierselection bias, we implement the pro-
cedure described in Campa and Kedia (2002), whah lie summarized by the following
steps.

Step 1: Use a probit model to estimate the selectariablePr(D = 1]|X;) = ®(B,X,),
where ® is the cumulative normal distributioB, is a binary choice variabl&; is a matrix
containing a set of regressors ghds a parameter vector.

Step 2: Calculate the inverse Mills rati) (ising the estimated values of the probit model

A =D¢(p,X1)/®(B1X,) — (1 — D)p(B1X1)/ (1 - QJ([?le)), whereg is the density normal
distribution.

Step 3: Estimate by OLS the pricing equation iniclgdhe correction term: Y = ,X, +

2The endogenous causes for the formation of codessitreements are highlighted by Chen and Gayl@7(20
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Bt + €, whereX, is a matrix containing a set of regressors incigdl; 5, andf, are parame-
ters to be estimated, aads the error term.

Finally, it is worth mentioning some critical issud-irst, we have collected fares only on
European routes, although code-sharing agreemksat€@ncern intercontinental routes. Thus,
our analysis is, therefore, partial since it does eapture the effects of code-sharing agree-
ments (signed on European routes) on intercontihéamtes.

Second, data mainly refers to flights originatimgni UK, most of them, from London.
Although traffic from UK to the rest of Europe accts for about one fifth of international Eu-
ropean flights and all main European carriers dpeoa these routes, our study might not be
representative of the whole European airline ingugsome carriers should behave differently
on continental routes. The need to limit the analy flights originating from UK airports is
motivated by the need to match data on fares withrdlight information, which is only avail-
able for the UK.

Third, we have not collected fares charged by lostcarriers (LCCs). This is not a major
concern, as LCCs do not usually enter in code-spagreements. Nevertheless, LCCs are ac-
counted for in the analysis by controlling for theresence in the estimation of the code-
sharing agreement choice and in the pricing egoatio

Fourth, although, the process leading to code-spatécisions is very complex, in Section
5.2 we will describe some of the determinants of & $he route level. McMullen and Du
(2012) have recently developed a similar approachtfe US airline industry. The modelling
of the negotiation phase in a more comprehensivweisvaut of the goal of this paper, since our
primary interest is to study the effects of codersig agreements on fares.

5.2. Correcting for selectivity

In this subsection, we run a probit model to eviuhe probability for an operating carrier to
be engaged in a code-sharing agreement:

Pr(CSra = 11X17a,7a) = ®(BiXira + PrcTa), (1)

where subscripf defines the flight-code pair of the operating iea(s) andd the departure
date. The dependent variabl&sf,) is a dichotomous variable equal to one if thghfliis in CS
and zero otherwisep is the cumulative normal distribution. The vecxgg, comprises all the
variables presented in the descriptive statisticeet theMC, OC andParallel dummy varia-
bles and the set of dummy variables referring tfedint time windowsNlorning, LateMorn-

ing, Afternoon andEvening) and to holiday period$Hpliday). The termr,; represents the set of
month-year dummy variables included to accountafpossible common trend in code-sharing
agreements. Finally, it is worth noting that we@ett for the presence of other operating car-
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riers belonging to the same strategic alliancehenroute EameAlliance).This variable is in-
cluded in the selection equation but not in theipg equation and is therefore used as exclud-
ed instrument to allow the economic identificatafrthe model (Wooldridge, 2012).

Because all the variables above are invariant witfe booking day series and the time of
departure, we only need to estimate the model Ingidering one observation per flight code
pair/date. Standard errors are clustered by rogtekwo allow the residuals of different flight
code pairs (possibly of different airlines) withihee same route and week to be correlated. This
procedure aims to take into consideration possbteks that are route-week specific. The re-
sults of the probit estimates are reported in T&hleolumn (1). Most of the variables are sta-
tistically significant.

The coefficient onSameAlliance is highly significant indicating a preferentialaibe of
carriers to code-share a route with other operatengiers of the same strategic alliance (if
any)!3 The Hub variable has a negative sign, indicating thatieesrprefer not to provide ac-
cess to its Hub to competing firms. The negativeffacient of Population and the positive one
of Distance suggest that the airline is more willing to engag€sS on less dense and more dis-
tant destinations. A possible explanation is thatler those circumstances, it is more difficult
for a carrier to achieve high levels of capacit§iastion (Chen and Chen, 2003; latrou and
Alamdari, 2005).

Moreover, the presence oL&C reduces the likelihood to offer code-sharing agrests,
while the presence of carriers involved in soméaadle AlliedAirlines), as well as a high
flight frequency offered by the carrier on the ®Erequency) play in favor of thent? The
positive coefficient onRouteCityShare suggests that operating carriers prefer to linéirt
code-sharing agreements on those airport-pairéyauthin a city pair that is not characterized
by a large flow of passengers. These airport-gackide city airports such as London City,
etc. Because these airports usually host highngiiess-to-pay travelers, carriers usually pre-
fer to directly manage this type of clients by tisetwes. Moreover, these airports are less in-
volved in intercontinental flights and, therefotbese flights are less demanded for code-
sharing agreements.

Finally, the coefficients ofRoutes is negative and statistically significant. Theglar its
network at the endpoints, the lower the carriangriest to offer a code-sharing agreement. A
possible explanation is that the OC is less proneote-share since it wants to keep capacity
for offering connecting flights.

13As suggested by an anonymous referee, in ordeawe A more comprehensive description of the codérgh
choice, the model should take into account the tfzat parallel code-sharing is often based on recity. The

introduction of theSameAlliance variable partially account for this aspect.

14As noted by another referee, the us@ltiedCarriers as a predictor of the decision to code-share niigitease
the risk of reverse causality, since a carrier tlemtides to code share with an allied party mag ttt@ose to exit
the route. We find that this issue is not partidyleelevant in our data because exit in such sitnararely occurs
in our data (i.e. only on one route).
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Table 3: The determinants and price equation oédhre (CS).

(1) () 3) (4)

Depependent Variable cs Log(Fare) Log(Fare) Log(Fare)
Constant -2.061** (0.994) 3.514%** (0.109)  3.437*** (0.112) 3.583*** (0.107)
cS 0.099*** (0.022) 0.070*** (0.022) 0.072*** (0.023)
MC 0.097*** (0.010) 0.086*** (0.010)
Parallel -0.041*** (0.014)
Booking day 0.366*** (0.007) 0.367*** (0.007) 0.349*** (0.007)
BookingDay * CS -0.074%** (0.012) -0.108%*** (0.016) -0.155%** (0.014)
BookingDay * MC 0.090*** (0.018) 0.117*** (0.017)
BookingDay * Parallel 0.180*** (0.017)
Log(Distance) 0.491*** (0.078) 0.195*** (0.009) 0.199*** (0.010) 0.186*** (0.010)
Log(FuelPrice) -0.274 (0.249) 0.084** (0.040) 0.079* (0.040) 0.082** (0.038)
Hub -0.493*** (0.099) 0.107*** (0.012) 0.107*** (0.011) 0.101*** (0.011)
PopulationDensity -1.998*** (0.250) -0.380*** (0.017)  -0.380%*** (0.017) -0.380*** (0.017)
Lcc -0.551*** (0.079) -0.045*** (0.007) -0.046%** (0.007) -0.043%** (0.007)
AlliedAirlines 0.179** (0.084) -0.009 (0.008) -0.010 (0.008) 0.000 (0.008)
Log(Frequency)+ 0.048 (0.098) -0.128*** (0.010) -0.118%** (0.011) -0.139%** (0.010)
RouteCityShare+ 1.514*** (0.316) -0.049 (0.032) -0.065** (0.033) -0.022 (0.034)
HHI -1.424%** (0.260) 0.048* (0.028) 0.038 (0.029) 0.077*** (0.030)
Log(Routes) -0.772*** (0.050) 0.018*** (0.003) 0.019*** (0.003) 0.019*** (0.003)
SameAlliance 1.703%** (0.120)

LateMorning -0.006** (0.002) -0.006** (0.002) -0.006** (0.002)
Afternoon 0.003 (0.003) 0.004 (0.003) 0.003 (0.003)
Evening -0.004 (0.002) -0.005** (0.002) -0.005* (0.002)
Holiday 0.129*** (0.016) 0.129*** (0.016) 0.130*** (0.016)
Lamda 0.024* (0.012) 0.022* (0.013) 0.028** (0.013)
Day-of-week dummies No Yes Yes Yes
Month-year dummies Yes Yes Yes Yes
Pseudo-R2 / R2 0.329 0.372 0.384 0.388
Observations 596,471 2,956,562 2,956,562 2,956,562

(a) Model (1): Probit estimation. Models (2)-(4)L®estimation.

(b) Robust - Model (1) -, Bootstrap — Models (2){4tandard errors to heteroscedasticity andlssigelation in parenthesis, clustered by routekve
(c) *, ** and *** indicate significance at the 10%% and 1% level, respectively.

(d) Variables denoted by “+” are lagged one month tluce the risk of endogeneity.
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5.3. Pricing equation with code-share

In this subsection, we consider the following egoetric model:
chdt = :82X2cft + ﬁprc + )BZTTd + .82h6d + ﬁlAcrd + Ecrdts (2)

wherec is the carrierr the routed the departure date, amdhe booking day. The dependent
variable ¥.,.4:) is the logarithm of the fare posted on the inrdé¢om a given booking day,,4
is the correction term as described in the secteywl of the procedure in subsection 5.1. Be-
cause we include an estimated regreskgy, the standard errors for the coefficients are ob-
tained using a bootstrap method. Since the sefeetipation has been estimated with a lower
number of observations, estimated values from ¢ )af given flight-code pair and departure
date are extended to all the marketing and operatnriers offering the same physical flight
as operating carrier or as marketing carrier analltthe booking days of that flight. Moreover
pc IS the carrier fixed effect, is the month-year fixed effect aig is day of the weak fixed
effect. B, Ba, B2p: B2s andp,, are the parameters of the model apg, is the error term, as-
sumed random with zero mean. Furthermore, staretaods are clustered by route-week to al-
low for the possibility that the residuals of diéat flight codes operated on the same route
during the same week may be correlated. This wayustering aims to take into consideration
that all flights in a route within a week may bdmct to the same shock. Moreover, clustering
is also required because many regressors have comwvahaes across observations.

With the exception of the excluded variammeAlliance employed in the first stagthe
matrix X,.r; contains all the regressors presented bl€T2, as well as the interaction term of

the BookingDay variable withCS, MC andParallel.*®> Thus, equation (2) becomes:

log(Farecfdt) =T + Mo1CScfq + Mo2MCerq + mozParallel sq +
+m9BookingDay; + m11CScpq - BookingDay; + m1,MC,fq - BookingDay; 3)
+ my3Parallel s4 - BookingDay; + controls + &crqr

In its essence equation (3) specifies how the teattope fy;) and the interceptr(;) of
a pricing curve vary when we consider flights in @S- 1); operated by a MCi = 2); run-
ning under parallel CS operations< 3). Table 3 columns (2)-(4) reports the estimatethef
pricing equation (3) with different restrictions time CS coefficients. In column (2) we only
consider theCS dummy and its interaction with tiBookingDay variable; in column (3) we al-
so include theMlIC dummy and interaction, and, finally, in column (¢ consider the full

15 Note that because of the non-linearity of the finsimdel employed in the first step of the proceduhe model
is econometrically (but not economically) identifieven if we includé&ameAlliance in estimate of the pricing
equation. By doing this, we find that in the foases, the coefficient is not statistically diffearénom zero at the
conventional levels. This suggests that our esémgetly on a valid excluded instrument.
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model of equation (3), which also includes Parallel dummy variable and relative interac-
tion.

The coefficient orBookingDay, which identifies the slope of the pricing curisepositive
and statistically significant. This result is indi with the expectation of higher fares as the day
of departure approaches. The coefficient ranginm0.349 to 0.367 indicates that on average
fares increase by about 0.7% each ¥aghis is amply consistent with findings in the enwyal
literature on airline pricing (Piga and Bachis, 20Gaggero and Piga, 2010, 2011).

For convenience, Table 4 summarizes the intercegitstéope parameters and its estima-
tions under different regimés$.It appears that fares under CS are higher thémeirrase of no
CS, regardless of the type of carrier: 4.047 veB0848. The difference of 0.099 indicates that
the fare of an airline under CS is about 10.4% diighan in the absence of €SBuying a
ticket from a MC is, on average, more expensive thham an OC. The intercept of MC is
equal to 4.111, which is higher than the interadgdC, which is equal to 4.015. This finding
is in line with what is depicted in Figure 1.

Table 4: Interpretation of the intercept and slope.

Parameters** Estimation
Model* Carrier Intercept/Slope Intercept Slope
(2) Carriernotin CS Tjo 3.948 0.36¢
(2) Carrierin CS Tjo + Tjy 4.047 0.29:
(3) OCnotinCS Tjo 3.945 0.367
(3 OCinCs Tjo + Tjy 4.015 0.25¢
3) MC Tjo + Tjy + ), 4.111 0.457
(4) OCin unilateral CS Tjo + jy 4.019 0.19¢
(4) OCin parallel CS Tjo + Tj1 + Tj3 3.978 0.37¢
(4) MCinunilateral CS  mj +mj; + mj, 4.105 0.311
(4) MCinparallel CS  mj, + mjy + 1j, + 13 4.064 0.491

* The model number corresponds to the column of&8b
** |ntercept parameters emerge when 0 and slope parameters emerge whenl.

The positive coefficients or€S and the negative ones on the interacted tén
BookingDay indicate that if a flight is in CS, then its tenngloprofile is on average above and
less steep than in the case of flights without T&us, CS fares are larger especially for early

16 Given that our booking period spans from 7 to &§sg which correspond to 1 and 0 respectively, exday
variation is measured as 1/49. Therefore, the boofithe marginal effect are calculated as 0.34934%071 and
0.367/49=0.0074.

17 The pricing profile for the different regimes cha computed using two different ways. A first agmio is to
rely on the estimates of column (4) and weigh thgnthe proportion of observations in each regime.alterna-
tive way, which we followed in this work, is to ditly use only the estimates presented in coluryé).

18The percentage numbers stem from the formula inlividge (2012)exp () — 1, which computes the mar-
ginal effect in percentage terms of a dummy vadalthen the dependent variable is expressed initbgac
form; m is the estimated coefficient of the dummy variable

17



bookers travelers. Conversely, late bookers, uglalsiness travelers, appear to gain from CS
practices since they pay less and also benefit fisimg quality provided by a higher number
of frequencies. The shift in the temporal profdecompatible with the fact that since the num-
ber of potential travelers increases thanks toatl@itional marketing activity of the MC, as
well as to the potential increase in quality, eagiwill offer higher fares.

Figure 2 provides a graphical representation oettenometric results: tHeog(Fare) var-
iable is on the vertical axis and tBeokingDay variable lies on the horizontal axis. The north-
west diagram represents the estimates of columaf(Bable 3. The north-east diagram depicts
the situation reported in column (3) of Table 3eTwvo remaining bottom diagrams stem from
column (4) of Table 3, they depict, in the caseimfateral and parallel CS, the pricing profile
of respectively the OC (south-west diagram) andMiie(south-east diagram).

Consider the case of an OC in the top right pah#he Figure 2, where the slope of the
line is flatter than in the case of the OC not B; ¢hus, for the OC the fare difference between
code-shared and not-code-shared flights tends riwecge to zero, as the departure date ap-
proaches. A MC has a similar slope of an OC nd $hbut with a higher intercept. These re-
sults suggest that because some passengers ageldyaly code-sharing agreements may be a
way to implement a price discrimination strategiene a brand premium is charged to those
booking via the MC. In addition, this pricing segy has a positive return for both carriers,
when travelers are not perfectly informed in thasgethat they are not aware of the CS ar-
rangement. Indeed, even price sensitive consumaysh@ induced to accept the (lower) fare
charged by the OC, after they compare it and figd@with that offered by the MC.

Returning to the summary of estimates in Tableoth lin the case of the OC and in the
case of the MC, CS under parallel operations isatherized by a steeper slope relative to the
case of CS under unilateral operations: 0.374 ge@si94 for OC and 0.491 versus 0.311 for
MC. For a graphical representation see the bottiagrams of Figure 2. These results can be
somehow related to the work by Ito and Lee (20@hgre fares on unilateral CS are generally
higher than under parallel CS. However, the authogaot able to control for the evolution of
fares as the departure date approaches. As thabptrt of Figure 2 reveals, our results show
that the findings of Ito and Lee (2007), in our gdamhold only in the early part of the booking
period, whilst during the last month before thelti departure the fares under parallel CS
overcome the fares under unilateral CS for botlesygf partners. Thus, parallel pricing favors
early bookers (mostly, leisure travelers) and hilats bookers, which generally include a
greater proportion of business travelers.

As far as the other controls are concerreg(Distance) has its expected positive sign, as
longer length of the flight implies higher fuel t®svhich are transferred on the ticket fare. The
coefficient less than one indicates fares incrdasg than proportionally with distance. This
finding confirms the non-linear relationship betwdares and distance, already documented in
the literature (Gaggero and Piga, 2010). Indeedpleeification of distance in log captures the
economies of scale of operating longer routes, mgitleat landing and take-off are fuel-
intensive operations whose cost can be better daner longer routes.
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Figure 2: Graphical illustration of the estimatedable 5.

The price of the jet fuel is also correctly signeshce an increase of its price determines
higher operating costs and therefore higher f&8a&e the coefficient olog(FuelPrice) repre-
sents the elasticity of fares to the price of jedlf a one-percent increase of jet fuel translates
into about 0.8% higher fares. This effect is ldsmtproportional, showing that airlines try to
internalize part of the increment in the operatiogts.

The Hub dummy is also positive and statistically significaindicating that an airline
tends to charge higher fares on routes operated it® hubs (Brueckner and Whalen, 2000;
Lederman, 2008). This hub effect is estimated togase fares by about 11.29%. The extent of
market concentration in a route has the expectsdiyp® effect on prices (Borenstein, 1989).
One standard deviation increaseHHll implies higher fares by almost 1.46%. As robustnes
check, we have also performed the analysis by ctngpiiHI at city-pair level obtaining
similar results. As expected the presence of a k€itices fares by about 4-5%. This is con-
sistent to the results presented in literature éAghi et al., 2012). The maximum number of
routes at the endpointRdutes) is positive and significant meaning that the éarthe network,
the higher the implicit cost of capacity and, cangntly, the higher the charged prices.

The geometric mean of the population density atwlteendpoints has a negative effect on
price, as higher densely populated areas are nlyrs&lved by larger-sized aircraft, which im-
ply lower operating costs transferring in lowerefarFor a similar reason, we find that the co-
efficient of theFrequency variable is negative. As noted in Section 3, there price reducing
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effect due to the economies of density and a @idencing effect due to increasing willing-
ness to pay caused by higher quality. In our amglyise first effect dominates the second one.
The time of departure dummies indicates that labenmg, evening and afternoon flights are,
respectively, cheaper by about 0.6%, 0.5% and @b early morning flights.

Finally, the positive and statistically significasign onHoliday is in line with the pre-
sumption that flights scheduled to depart durirggpbaks of the season are more expensive (by
about 14%) than flights departing off-peaks.

6. Conclusion

In this paper we have studied the impact of codgeshgreements on the temporal profile of
fares. By analyzing the temporal profile of airlifezes, we identify three main results. First,
CS increases fares especially for early bookersor®@ much of the shift in code-shared
flights is due to higher prices offered by markgtoarriers. Finally, when flights are operated
under unilateral code-share, the pricing profilélaster than under parallel code-share, which
implies that early fares are cheaper in the latter.

These findings highlight some welfare implicatioiifie effects of CS do not uniformly
apply to all passenger categories. Leisure trasedee damaged especially by unilateral CS:
Buying in advance to try to get cheap fares isswbeneficial since carriers apply a flat tem-
poral profile. This empirical result is only appatlg in opposition with the theoretical works
on pricing under CS, where unilateral CS is usualgifare enhancing since it reduces the
double marginalization problem. This theoreticadgaription works for (high) business fares,
but does not apply to (low) leisure fares that,newethe absence of a code-sharing agreement,
are not sensitive to the double marginalizatiorbfmm. Furthermore, business travelers seem
to be less negatively affected by CS especialllgaly are not too brand sensitive. The OC, near
to the departure date, charges fares that are Wdade case without CS. For this type of pas-
sengers, as theoretical works predict, fares may décrease. These findings are also in line
with the empirical literature reviewed in the figsrt of the paper.

Because our data are representative of the Uknairiarket, many routes in the sample
(especially those ones not in code-share) are ddyy¢he former UK flag carrier, British Air-
ways. Therefore, the results of this analysis otfleto a large extent, the business strategy of
this company, which may differ from those of othétines.

Finally, it is worth mentioning that many issue® atill open to future research. First,
code-sharing agreements should be analyzed onex widnber of routes, in order to offer a
more comprehensive view of the real effects of eslugring practices around Europe. Second,
since code-sharing agreements also involve intéreamtal flights, it could be useful to study
the simultaneous impact of code-sharing agreementsnternational and intercontinental
routes. Third, the first-stage of the model (cobargg decision) could be enriched by provid-
ing a more comprehensive model, accounting for kitmaute agreement decisions, reciproci-
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ty and other strategic considerations (network dempntarities). Finally, it could be benefi-
cial to collect data both on prices and quantitig s order to have a better understanding of
the functioning of the market.
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Appendix

Table A.1: Routes considered in the empirical agialy

BHX-DUB
BRS-DUB
EDI-DUB
LCY-AMS
LCY-DUB
LCY-GVA
LCY-ZRH
LGW-AGP
LGW-ALC
LGW-AMS
LGW-BCN
LGW-BIO
LGW-BRU
LGW-CDG
LGW-DUS
LGW-FAO
LGW-FCO

LGW-GLA
LGW-GVA
LGW-MAD
LGW-MAN
LGW-MUC
LGW-TLS
LHR-AGP
LHR-AMS
LHR-ARN
LHR-ATH
LHR-BCN
LHR-CDG
LHR-DUB
LHR-DUS
LHR-EDI
LHR-FAO
LHR-FCO

LHR-FRA
LHR-GLA
LHR-GOT
LHR-GVA
LHR-HAM
LHR-LIN
LHR-MAD
LHR-MAN
LHR-MUC
LHR-MXP
LHR-ORK
LHR-OSL
LHR-PRG
LHR-ZRH
MAN-DUB

Table A.2: Number of routes offered by carrier itithout code-share.

Operating Operating Marketing
carrier not in CS carrier in CS carrier

British Airways 28 4 6
Alitalia 4 0 0
Swiss 4 0 0
Aer Lingus 2 4 1
KLM 2 0 0
Lufthansa 1 2 0
Scandinavian Airlines 1 2 0
Air Europa 1 0 0
Air France 1 0 0
Czech Airlines 1 0 0
Tap Portugal 1 0 0
Iberia 0 3 2
BMI British Midlands 0 0 4
Finnair 0 0 1

TOTAL 36 15 14
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