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Abstract

We first give a complete analysis of the dispersion relation for traveling waves

propagating in a pre-stressed hyperelastic membrane tube containing a uniform flow.

We present an exact formula for the so-called pulse wave velocity, and demonstrate that

as any pre-stress parameter is increased gradually, localized bulging would always occur

before a superimposed small-amplitude traveling wave starts to grow exponentially. We

then study the stability of weakly and fully nonlinear localized bulging solutions that

may exist in such a fluid-filled hyperelastic membrane tube. Previous studies have

shown that such localized standing waves are unstable under pressure control in the

absence of a mean-flow, whether the fluid inertia is taken into account or not. Stability

of such localized aneurysm-type solutions is desired when aneurysm formation in human

arteries is modelled as a bifurcation phenomenon. It is shown that in the near-critical

regime axisymmetric perturbations are governed by the Korteweg-de Vries equation,

and so the associated (weakly nonlinear) aneurysm solutions are (orbitally) stable

with respect to axisymmetric perturbations. Stability of the fully nonlinear aneurysm

solutions are studied numerically using the Evans function method. It is found that

for each wall-fluid density ratio there exists a critical mean-flow speed above which

no axisymmetric unstable modes can be found, which implies that a fully nonlinear

aneurysm solution may be completely stabilized by a mean flow.

Keywords: Aneurysm, bifurcation, stability, nonlinear elasticity, pulse wave velocity,

membrane tube, localization.

1 Introduction

This study is part of our effort to develop a mathematical theory for the initiation of fusiform

aneurysms in human arteries. An aneurysm is a pathological, localized dilation of a blood
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vessel caused by a disease or weakening of the vessel’s wall. Its research has attracted the

attention of researchers from a variety of background due to the high mortality rate associated

with aneurysm rupture, and the high impact on the quality of life even if a patient survives

an aneurysm rupture [1, 2]. However, there does not seem to exist a quantitative theory

concerning aneurysm initiation although such a theory would be hugely desirable in drug

development. Our theory is intended to fill this gap, and it is built on the postulate that

initiation of an aneurysm is a bifurcation phenomenon. This theory will ultimately contain

the following ingredients: (a) Assuming that the artery is perfect in the sense that it is

circular cylindrical, homogeneous, and is infinitely long, a localized bulge can form when the

internal pressure reaches a certain critical value; (b) When imperfections such as localized

wall-weakening are introduced, the bifurcation pressure will fall to within the physiologically

possible range, i.e. of the order of 120 mmHg; (c) The localized bulging configuration is a

stable state since otherwise it cannot be observed. Thus, we assume that aneurysm initiation

is entirely mechanical, but we further postulate that once a localized bulge has formed, blood

will become trapped, or even clotted, in the sacs of the aneurysm, and it is the latter that

will trigger biological responses, such as remodelling, giving rise to the subsequent evolution

of the aneurysm shape. The major difference between our theory and the prevalent point

of view [3, 4] is that in the latter there is no bifurcation preceding the remodelling process.

Parts (a) and (b) have been accomplished in our earlier papers [5, 6, 7], although whether

bifurcation can take place or not was found to be very sensitive to the arterial models used

and there is currently still much uncertainty about the realistic material models for live

arteries. In order to establish (c), we have recently examined the effect of fluid inertia on the

stability properties of localized bulging solutions [8], following on from an earlier work [9]

where fluid inertia was neglected. It was found that although fluid inertia would reduce the

growth rate of the single unstable mode significantly, it alone cannot stabilize the unstable

mode completely. Our next candidate for stabilizing the aneurysm solution is a mean flow,

which is the subject of the present paper.

Our research has initially been motivated by the geometrical similarity between a fusiform

aneurysm and a localized bulge that would form when a rubber membrane tube was inflated

by an internal pressure. The latter problem has been much studied experimentally [10, 11],

numerically [12], as well as theoretically [13, 14] by researchers in the finite elasticity and

engineering communities because it serves as a paradigm for a variety of problems involving

multi-phase deformations. For a long time, however, it was not appreciated that localized

bulging was in fact a bifurcation phenomenon. This is probably due to the fact that in the

two communities, researchers were preoccupied with bifurcations into periodic patterns, and

there was a lack of cross-fertilization between these communities and the centre-manifold

reduction community (see, e.g., [15]). It was only recently [5] that the bifurcation nature of

localized bulging was clarified. In particular, it was shown in [5] that contrary to popular

belief localized bulging does not always occur at the limiting pressure associated with uniform
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inflation.

Our present study is also closely related to studies on solitary waves in fluid-filled hyper-

elastic membrane tubes. On the one hand, a static localized bulge can be viewed as a

solitary wave that has zero propagation speed, the zero speed being induced by the prestress

in the membrane tube. On the other hand, solitary waves may play an important role

in interrogating the health state of arteries (e.g. presence of an aneurysm) through signal

processing [16, 17]. Solitary waves in a fluid-filled membrane tube were initially studied using

a multiple-scale approach [18, 19], but later Epstein and Johnston [20] demonstrated that

this approach is not necessary because the reduced governing equations admit two integrals;

the evolution equation can be derived by an elementary method. We refer to Fu and Il’ichev

[21] for a review of the relevant literature.

The rest of this paper is divided into six sections as follows. After presenting the governing

equations and some constitutive assumptions in the next section, we derive in Section 3 some

preparatory results concerning linear travelling waves. In particular, we show that as the

internal pressure or mean flow speed is increased, formation of a localized bulge always

precedes the so-called normal-mode instability that is signified by exponential growth of a

linear travelling wave mode. This is then followed in Section 4 by a characterization of both

weakly and fully nonlinear static aneurysm solutions in the presence of a mean flow. In

Sections 5 and 6 we discuss stability of the weakly and fully nonlinear aneurysm solutions,

respectively. The paper is concluded in Section 7 with further discussions.

2 Problem formulation and constitutive assumptions

We consider axi-symmetric motions of an incompressible, isotropic, hyperelastic, cylindrical

membrane tube that has a constant undeformed radius R and a constant undeformed thick-

ness H . The tube is assumed to be infinitely long, and so end conditions are imposed at

infinity. In terms of cylindrical polar coordinates r, θ, z the current configuration is described

by

r = r(Z, t), θ = Θ, z = z(Z, t), (2.1)

where t denotes time, and Θ, Z are cylindrical coordinates in the undeformed configuration.

The principal directions of the deformation correspond to the lines of latitude, the merid-

ian and the normal to the deformed surface, and the principal stretches are given by

λ1 =
r

R
, λ2 = (r′2 + z′2)

1

2 , λ3 =
h

H
, (2.2)

where the indices 1, 2, 3 signify the circumferential, meridional and normal directions, re-

spectively, a prime represents partial differentiation with respect to Z, and h denotes the

deformed thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration are given by

σi = λiŴi − p, i = 1, 2, 3 (no summation), (2.3)
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where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p is the pressure

associated with the constraint of incompressibility. Utilizing the incompressibility constraint

λ1λ2λ3 = 1 and the membrane assumption of negligible stress through the thickness direction

(i.e. σ3 = 0), we find

σi = λiWi, i = 1, 2, (2.4)

where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc [22].

For illustrative calculations, we shall use the Gent material model given by

Ŵ = −1

2
µJmln (1−

λ21 + λ22 + λ23 − 3

Jm
), (2.5)

where µ is the ground state shear modulus and Jm > 0 is a material constant characterizing

the maximum stretch of the material. This model was originally proposed by Gent [23] to

model rubber and rubber-like materials, its relevance to arterial walls having been discussed

by Horgan and Saccomandi [24]. More sophisticated material models for arterial walls are

available; see, for instance, Ogden and Holzaphel [25], but we believe that our qualitative

stability results should be independent of the material model used.

The equations of motion of the wall are given by [20]

[

Rσ2
z′

λ22

]

′

− Prr′ = ρRz̈,

[

Rσ2
r′

λ22

]

′

− σ1
λ1

+ Prz′ = ρRr̈, (2.6)

where a superimposed dot denotes differentiation with respect to t, ρ is the density of the

material, and P denotes the pressure exerted by the fluid on the wall divided by H.

To describe the axisymmetric fluid motion inside the tube we use Eulerian cylindrical

polar coordinates y, θ and z, where y denotes the radial coordinate. Let {uy, 0, uz}T denote

the fluid velocity. We also introduce

D = {(y, z)|0 < y < r(z, t);−∞ < z <∞}

as the domain inside the deformed tube, and

∂D = {(y, z)|y = r(z, t);−∞ < z <∞}

as the boundary of this domain, or the tube wall. We consider the fluid to be inviscid and

incompressible. Then the equations of motion of the fluid consist of the continuity equation

∂uyy

∂y
+ y

∂uz
∂z

= 0, (y, z) ∈ D, (2.7)

and Euler’s equations

∂uy
∂t

+ uy
∂uy
∂y

+ uz
∂uy
∂z

= − 1

ρf

∂(HP̂ )

∂y
,

∂uz
∂t

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= − 1

ρf

∂(HP̂ )

∂z
, (y, z) ∈ D (2.8)
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where ρf is the fluid density and HP̂ is the fluid pressure.

We also need the kinematic condition that each particle of fluid does not pass through

the boundary ∂D:

∂r

∂t
+ uz

∂r

∂z
= uy, (y, z) ∈ ∂D. (2.9)

To simplify the boundary-value problem (2.6)–(2.9) we adopt the long wave approxima-

tion for the equations (2.7)-(2.9), and assume that

uz(y, z, t) = vf(z, t) + ζ v1(y, z, t), P̂ (y, z, t) = P (z, t) + ζP1(y, z, t), (2.10)

where ζ = R/L ≪ 1, L being a characteristic wavelength, and the O(ζ) terms are assumed

to vanish when integrated over the cross-section. The P here can be identified with the P

in (2.6).

Integrating (2.7) from 0 to r and substituting (2.10) we obtain to zeroth order in ζ

uy
(

r(z, t), z, t
)

+
r

2

∂vf
∂z

= 0, (2.11)

which, after the substitution of (2.9) and (2.10)1, can also be written as

∂r

∂t
+ vf

∂r

∂z
+
r

2

∂vf
∂z

= 0. (2.12)

The second equation in (2.8) to zeroth order in ζ gives

∂vf
∂t

+ vf
∂vf
∂z

= − 1

ρf

∂HP

∂z
. (2.13)

The equations (2.12) and (2.13) were introduced in [26] as a simple model whereby the

conservation of mass and momentum is enforced under the assumptions that the fluid is

inviscid and incompressible, uy ≡ 0 and uz is constant throughout the tube cross section.

The connection between the Eulerian longitudinal coordinate z and the Lagrangian co-

ordinate Z is given by (2.1). For any dependant variable Ψ

Ψ′ =
∂Ψ

∂z
z′, Ψ̇ =

∂Ψ

∂z
ż +

∂Ψ

∂t
.

Therefore, in terms of the Lagrangian coordinate Z equations (2.12) and (2.13) assume the

form

ṙz′ − r′ż + vfr
′ +

1

2
rv′f = 0, ρf

[

v̇fz
′ − v′fż + vfv

′

f

]

+HP ′ = 0. (2.14)

The equations (2.6) and (2.14) constitute the governing equations that determine the dy-

namics of the fluid and the tube wall.

Before proceeding further, we shall non-dimensionalize the above governing equations

using the following scales: R for Z, z and r, µ for the strain-energy function W and Cauchy
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stresses, µ/R for P ,
√

µ/ρ for vf and R
√

ρ/µ for the time. Using the same notation for the

scaled variables, we have

[

σ2
z′

λ22

]

′

− Prr′ = z̈,

[

σ2
r′

λ22

]

′

− σ1
λ1

+ Prz′ = r̈, (2.15)

ṙz′ − r′ż + vfr
′ +

1

2
rv′f = 0, bf

[

v̇fz
′ − v′fż + vfv

′

f

]

+ P ′ = 0, (2.16)

where bf, defined by

bf =
ρfR

ρH
, (2.17)

is a non-dimensional constant characterizing the fluid inertia. We note that λ1 is now

identical to r.

The governing equations (2.15) and (2.16) admit the uniform solution

r = r∞, z′ = λ2 = λ2∞, vf = vf∞, P = P∞ ≡ W1(r∞, λ2∞)

r∞λ2∞
, (2.18)

where r∞, λ2∞ and vf∞ are constants. Corresponding to this uniform solution, the axial force

F is given by
F

πµRH
= 2W2(r∞, λ2∞)− r∞W1(r∞, λ2∞)

λ2∞
. (2.19)

For the case of closed ends and fixed F (assuming in this case that there is no mean flow),

(2.19) defines λ2∞ as a function of r∞. It can easily be shown that

dP

dv
=

2 (3β0 + β1 + 4γ1 − 4α1) [γ1(β1 − β0)− (α1 − β0)
2]

λ22∞ (−2α1 + β0 + β1) 2
, (2.20)

where v = r2
∞
λ2∞ denotes the fractional volume change, and the various constants on the

right hand side are defined by

α0 = λ2∞W
(∞)
2 , β0 = r∞W

(∞)
1 , α1 = r∞λ2∞W

(∞)
12 , β1 = r2

∞
W

(∞)
11 , γ1 = λ22∞W

(∞)
22 ,

where a superscript (∞) denotes evaluation at the uniform state (2.18).

On the other hand, if we fix the pressure P , (2.18)4 then defines r∞ as a function of λ2∞,

and it can then be shown that

∂

∂λ2∞

(

F

πµRH

)

=
2

λ22∞(β1 − β0)

[

γ1(β1 − β0)− (α1 − β0)
2
]

. (2.21)

We observe that the same factor γ1(β1 − β0)− (α1 − β0)
2 appears in both (2.20) and (2.21),

and that this factor also appears in the conditions

α0 > 0, γ1 > 0, β1γ1 − α2
1 > 0, (β1 − β0)γ1 − (α1 − β0)

2 > 0, (2.22)

which are necessary and sufficient for stability of the uniformly inflated state (2.18) under

pressure control with free ends and vf∞ = 0 [27]. It is also known that this expression equal
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to zero is the condition for a localized bulge to bifurcate from the uniform state (2.18) in the

absence of a mean flow [5, 8]. Throughout this paper we assume that (2.22) are satisfied.

We also observe that (2.22)4 together with (2.22)2 implies that (β1 − β0) > 0.

Equation (2.20) shows that for the case of closed ends and fixed F , the first pressure turn-

ing point corresponds to the onset of localized bulging, as has been observed experimentally

[10, 11]. However, human arteries have the important property that pressure fluctuations

can be accommodated by very little extra axial stretch. Thus, it is appropriate to assume in

the associated analysis that the axial stretch λ2∞ is fixed. In this case a variable axial force

F needs to be applied as P varies, and onset of localized bulging does not correspond to the

first turning point in the pressure versus volume curve [5] (although the bifurcation condition

takes the same mathematical form in both cases). In fact, localized bulging always takes

place before the turning point is reached if the latter turning point exists, and can take place

even if the latter turning point does not exist at all. In other words, contrary to popular

belief, the existence of the so-called limit point instability is not a necessary condition for

localized bulging to occur. Instead, from (2.21) we see that the necessary physical condition

is that the axial force versus axial stretch at a fixed pressure has a turning point. This fact

does not seem to have previously been noted in the literature. With application to aneurysm

formation in mind, we shall from now on assume that λ2∞ is prescribed, and view r∞ and

vf∞ as the control parameters that can be varied. We note that under the assumptions

(2.22), pressure P is a monotonically increasing function of r∞, and so equally we could use

pressure as one of the control parameters.

3 Dispersion relation for linear travelling waves

Later in our analysis we shall need to refer to the dispersion relation for small-amplitude trav-

eling waves superimposed on the uniform state (2.18). Assuming that the small-amplitude

perturbations are proportional to

exp

(

i
λ2∞
r∞

k(Z − c t

λ2∞
)

)

,

then the scaled wavenumber k and wave speed c satisfy the dispersion relation [21]

(

k2m+ 2
)

c4 − 4vf∞c
3 −

(

mα0k
2 +mγ1k

2 − 2v2f∞ −mβ0 +mβ1 + 2γ1
)

c2

+4vf∞γ1c− 2v2f∞γ1 +mγ1(k
2α0 + β1 − β0)−m(α1 − β0)

2 = 0, (3.1)

where m = 1/(bf r
2
∞
λ2∞). We note that the notations here are the same as those in [21]

except that the c and vf∞ here correspond to
√
mc and

√
mvf∞ there. In the limit k → ∞,

the four branches of the dispersion relation tend to c = ±√
α0 and c = ±√

γ1, respectively,

which are independent of vf∞ and m. Furthermore, when c = ±√
γ1, the left hand side of

(3.1) reduces to −m(α1−β0)2, which is in general non-zero (in particular it is non-zero in the
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Figure 1: The four branches of (3.1) when λ2∞ = 1.2, r∞ = 1.634, bf = 3.47 and vf∞ = 0.1.

Left: the two inner branches; right: the two outer branches. The speed corresponding each

of the dotted curves is minus the actual speed, and so when vf∞ = 0 the two curves in each

figure would coincide with each other.

stress-free configuration where β0 ≡ 0). Thus, we deduce that the four branches will never

cross the asymptotic lines c = ±√
γ1. Figure 1 shows the four branches of the dispersion

relation for a typical case in which the four wave speeds are real for all k but with one speed

vanishing at k = 0. Note that to show enough details we have multiplied the negative wave

speeds by −1 (shown as dotted lines).

Before analysing (3.1) in the general case further, we first consider the double limit ρf → 0

and vf∞ → 0 under which the dispersion relation can be solved exactly to give

c2 =
1

2
(B ±

√
B2 − 4k−2C) =

1

2

(

B ±
√

[k−2(β0 − β1)− α0 + γ1]2 + 4k−2(α1 − β0)2
)

,

where

B = k−2(β1 − β0) + α0 + γ1, C = γ1(β1 − β0)− (α1 − β0)
2 + α0γ1k

2.

Thus, the stability conditions (2.22) guarantee that the four wave speeds are real for all k,

and in the long wavelength limit k → 0, the four roots have the asymptotic behaviour

c2 =
β1 − β0
k2

+O(1), or
1

2(β1 − β0)
[(β1 − β0)γ1 − (α1 − β0)

2] +O(k2). (3.2)

It is seen that the bifurcation condition for localized bulging corresponds to two of the four

wave speeds vanishing at the same time in the long wave length limit. This is also true

even if ρf 6= 0, and is the reason why the evolution of near-critical modes is governed by the

Boussinesq equation [8, 9].

Suppose now that ρf and vf∞ are both non-zero. We first examine the behaviour of the

dispersion relation (3.1) at k = 0 where it reduces to

2c4 − 4vf∞c
3 −

(

−2v2f∞ −mβ0 +mβ1 + 2γ1
)

c2

+4vf∞γ1c− 2v2f∞γ1 +mγ1(β1 − β0)−m(α1 − β0)
2 = 0. (3.3)
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Figure 2: Variation of the four roots of (3.3) with respect to vf∞ when λ2∞ = 1.2, r∞ = 1.634,

bf = 3.47. Left: the two inner branches; right: the two outer branches (here the speed

corresponding to the dotted line is minus the actual speed). The two inner branches exist

only for vf∞ < 0.6066.

2 4 6 8 k
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Figure 3: A typical dispersion curve when a pair of complex roots exist for small enough k,

when λ2∞ = 1.2, r∞ = 1.634, bf = 3.47 and vf∞ = 0.9.

When vf∞ = 0, the above equation becomes a bi-quadratic and the roots can be written as

4c2 = 2γ1 +m(β1 − β0)±
√

[2γ1 −m(β1 − β0)]2 + 8m(α1 − β0)2, (3.4)

so that the four roots are all real. It can easily be shown that these two expressions satisfy

c2 < γ1 and c2 > γ1, respectively. The expression satisfying c2 < γ1 would recover the

Moens-Korteweg formula c0 =
√

3µH/(2ρfR) for the pulse wave velocity in arteries if we

took the further limit r∞ → 1, λ2∞ → 1, ρ→ 0. This velocity value and its various improved

forms [28] are often used in the medical community as a measure of the arterial stiffness and

a risk factor for cardiovascular morbidity and mortality [29].

Figure 2 shows the fate of the four roots given by (3.4) as vf∞ is increased from 0. It is

seen that for the case considered, the two inner branches coalesce at vf∞ = 0.6066, beyond

which they do not exist any more (and the corresponding speeds then become complex),

while the other two branches exist for all values of vf∞. Since the two coalescing branches
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are on opposite sides of the vf∞-axis when vf∞ = 0, one of these two branches must cross

the vf∞-axis first before it coalesces with the other branch. The crossing takes places when

zero becomes a root of (3.3), that is when

γ1(β1 − β0)− (α1 − β0)
2 − 2v2f∞γ1/m = 0. (3.5)

It will be shown later that this equation is in fact the bifurcation condition for the initiation

of a localized bulge in the presence of a mean flow. Thus, root coalescing at k = 0, and

hence any wave speed becoming complex, always takes place after the bifurcation condition

(3.5) has been satisfied. Note also that root coalescing can only take place between the two

inner branches because otherwise the asymptotic lines c = ±√
γ1 will need to be crossed.

The critical value of vf∞ at which two roots coalesce is determined by

p3 + q2 = 0, (3.6)

where

p = −m2β2
1 + 2mβ0

(

mβ1 − 2v2f∞ + 14γ1
)

+ 4mv2f∞β1 − 48mα1β0

+24mα2
1 − 28mβ1γ1 − (m− 24)mβ2

0 − 4v4f∞ + 8v2f∞γ1 − 4γ21 ,

q = −9
(

mβ0 −mβ1 − v2f∞ − 2γ1
) (

m2β2
1 − 2mβ0

(

mβ1 + 2v2f∞ − 2γ1
)

+ 4mv2f∞β1

−16mα1β0 + 8mα2
1 − 4mβ1γ1 +m(m+ 8)β2

0 + 8v2f∞γ1 + 4γ21
)

−8
(

−mβ0 +mβ1 + v2f∞ + 2γ1
)

3 − 27v2f∞ (mβ0 −mβ1 + 2γ1)
2.

Equation (3.6) is obtained from an elementary analysis of the roots of the quartic (3.3) [30,

p.121]. The left hand side of (3.6) is a positive multiple of the discriminant of a certain

resolvent cubic and it must necessarily be negative when vf∞ = 0 (which follows from the

fact that (3.3) has four real roots), and the critical value of vf∞ is the first zero of p3 + q2 as

vf∞ is increased from zero.

We next consider the behaviour of the dispersion curve when k 6= 0. We recall that

in the limit k → ∞ the four wave speeds tend to ±√
α0, ±

√
γ1, which are all real under

the assumptions (2.22), and are independent of the flow properties vf∞ and m. As vf∞ is

increased from zero, the behaviour of the four branches in the large k regime is little changed,

but in the small k regime the two middle branches may coalesce; see Figure 3. If coalescing

takes place at k = kt, say, then two of the wave speeds are complex for k < kt. The coalescing

point k = kt has the property that dc/dk → ∞, or equivalently by differentiating (3.1) with

respect to k implicitly and then setting the coefficient of dc/dk to zero,

4c3
(

k2m+ 2
)

− 12c2vf∞ + 2c
(

−mk2α0 − k2mγ1

+mβ0 −mβ1 + 2v2f∞ − 2γ1
)

+ 4vf∞γ1 = 0. (3.7)

The resultant of (3.1) and (3.7) equal to zero then defines kt as a function of vf∞. The

minimum of vf∞ is clearly attained when kt = 0, in which case the above-defined resultant
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equal to zero is expected to be equivalent to (3.6). We have verified that this is indeed the

case. In view of these results and the earlier results for k = 0, we may conclude that if we

denote by rcr the first zero of (3.5) for each fixed vf∞, then for r∞ < rcr, root coalescing

cannot occur and the four roots of (3.1) are all real for all values of k.

If on the other hand we fix r∞ and increase vf∞ beyond the first root of (3.6), small-

amplitude travelling waves will grow exponentially (assuming that localized bulging is sup-

pressed), which corresponds to a more serious instability than the localized bulging under

consideration. However, our analysis above shows that this more serious instability is always

preceded by localized bulging.

4 Weakly and fully nonlinear bulging solutions

With the dispersion relation well understood, we are now in a position to characterize weakly

and fully nonlinear localized standing wave solutions. We start by looking for a general

localized travelling wave solution for which the dependence on Z and t is through Z−ct/λ2∞,

where c now denotes the wave speed of the fully nonlinear wave. Localization means that as

Z − ct/λ2∞ → ±∞, the fluid-filled tube is in a uniform state given by (2.18). From now on,

we use Z to mean Z − ct/λ2∞. Standing wave solutions will be recovered by setting c = 0.

It can easily be shown [20] that the fluid equations (2.16) in this case can be integrated

to yield

P = P∞ + vf0

(

1− r4
∞

r4

)

, vf =
vf∞r

2
∞

r2
, (4.1)

where the constant vf0 is defined by

vf0 =
1

2
bf(vf∞ − c)2.

It is also known that the two equations in (2.15) together with (4.1) have two integrals,

that can be obtained by integrating (2.15)1, and z
′ times (2.15)1 added to r′ times (2.15)2,

respectively. They are given by

W − λ2W2 + c2λ22/(2λ
2
2∞) = C1, (4.2)

W2z
′

λ2
− 1

2
P ∗r2 − c2z′/λ22∞ = C2, (4.3)

where a prime again denotes differentiation with respect to Z (which is now actually Z−ct),

P ∗ = P∞ + vf0

(

1 +
r4
∞

r4

)

,

and the constants C1 and C2 can be determined by evaluating the corresponding left hands

at the uniform state (2.18).
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The two equations (4.2) and (4.3) can be written as a system of first-order ordinary

differential equations [5, 6]:

λ′1 = λ2 sin φ,

λ′2 =
W1 − λ2W12

W22
sin φ, (4.4)

φ′ =
W1

W2
cosφ− Pλ1λ2

HW2
,

where φ is the angle between the meridian and the z-axis (so that sinφ = r′/λ2, cos φ =

z′/λ2). Without loss of generality, we may assume that the center of the symmetric localized

travelling wave is located at Z = 0 so that φ(0) = 0. Then if λ1(0) and λ2(0) are also known,

the solitary wave solution can be determined by integrating the above system as an initial

value problem. Shortly we shall demonstrate how these two values can be determined by

solving two algebraic or transcendental equations.

We first note that the two integrals (4.2) and (4.3) are of the forms f(λ1, λ2) = 0 and

z′ = g(λ1, λ2), respectively. These two equations always admit the trivial solution (2.18).

To characterize non-trivial solutions, we write λ1 = r = r∞ + w(Z) and proceed to derive

a governing equation for w(Z). To this end, we note that in principle we may solve the

first integral to express λ2 in terms of w. Although in general this expression cannot be

obtained explicitly, a Taylor expansion of this expression valid for small w can be obtained

in a straightforward manner with the aid of a symbolic manipulation package such as Math-

ematica [31]. The second integral can then be used to find the Taylor expansion of z′ in

terms of w as well. On substituting these expressions into (2.2), we then obtain

(w′)
2
= ω(c, r∞, vf∞)w2 + γ(c, r∞, vf∞)w3 +O(w4), (4.5)

where

ω(c, r∞, vf∞) =
λ22∞
r2
∞

· [4vf0r
2
∞
λ2∞ + β0 − β1] (c

2 − γ1)− (α1 − β0)
2

(c2 − α0) (c2 − γ1)
, (4.6)

and the expression for γ(c, r∞, vf∞) is given by [21, eqn (3.7)] (but observe the notational

difference noted below (3.1)).

On differentiating (4.5), we obtain

w′′ = ω(c, r∞, vf∞)w +
3

2
γ(c, r∞, vf∞)w2 +O(w3). (4.7)

It can then be seen that a bifurcation takes place when the coefficient ω(c, r∞, vf∞) vanishes.

For bifurcation into a standing wave solution (i.e. a static localized bulge), we take c = 0,

specify vf∞ and λ22∞, and use r∞ as the control parameter. The critical value of r∞, rcr say,

is then determined by the bifurcation condition ω(0, rcr, vf∞) = 0, which reduces to (3.5).

On expanding the coefficients in (4.7) with c = 0 around r∞ = rcr and neglecting higher

order terms, we obtain

V
′′

(ξ) = V − V 2 + e(ε, V ), (4.8)

12



1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
1.0

1.2

1.4

1.6

1.8

2.0
30

20

15

12

r∞

λ
2
∞

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0
0.01

0.02

0.03

r∞

λ
2
∞

Figure 4: Dependence of the solutions of (3.5) on Jm (left) and vf0 (right).

where

w =
2ε ω′

cr

3γcr
V (ξ), ξ =

√

−εω′

crZ, ε ≡ rcr − r∞,

ω′

cr =
∂ω

∂r∞

∣

∣

∣

∣

r∞=rcr

, γcr = γ(0, rcr, vf∞), (4.9)

and e(ε, V ) = O(ε). In defining the small positive parameter ε above we have implicitly

assumed that ω′

cr < 0 so that the bifurcation is subcritical. This has been found to be the

case for all the cases that we have considered so far.

We observe that our system of equations (4.4) belong to a class of reversible differential

equations which have been well studied via centre manifold reduction [32, 33, 34]. Briefly,

near the critical state r∞ = rcr, (4.4) may be written in the form

w′ = Aw + F(ε,w), (4.10)

where w = (λ1, λ2, φ)
T , A is a 3 × 3 constant matrix, F(0, 0) = ∂wF(0, 0) = 0. The

invariance of (4.4) with respect to the transformations

Z → −Z, λ1 → λ1, λ2 → λ2, φ → −φ,

implies the reversibility of (4.10), that is the existence of a diagonal matrixR = diag{1, 1,−1}
such that R2 = 1 and RA = −AR. It can be shown that the unique eigenvalue of A is

the triple zero eigenvalue, and A has associated with it two eigenvectors ψ1, ψ2, and one

generalized eigenvector ψ3. Moreover, Rψ1 = ψ1 and Rψ2 = ψ2. Thus, with the use of the

centre manifold theorem [34], the system (4.10) for ε small can be reduced to our amplitude

equation (4.8). Moreover, we may deduce that for a small enough ε0 and ε ∈ (0, ε0], equation

(4.8), or equivalently the system (4.4), has a family of localized standing wave solutions V

parametrized by ε. Moreover, these solutions have the property that

|V − V0| ≤ Cε exp(−|ξ|),
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where C is a positive constant and V0, defined by

V0 =
3

2
sech2 ξ

2
, (4.11)

is a solution of (4.8) when the higher order term e(ε, V ) is neglected. Of course, this persis-

tence result can easily be verified numerically, as was done in [21] for the case when r∞ is

held fixed and c is viewed as a bifurcation parameter.

In Figure 4, we have shown how the solutions of the bifurcation condition (3.5) depend on

Jm and the quantity vf0 = bfv
2
f∞/2. The figure on the left corresponds to Jm = 30, 20, 15, 12

with vf0 = 0, while the figure on the right corresponds to vf0 = 0, 0.01, 0.02, 0.03 with

Jm = 30. We see that with vf0 fixed, increasing Jm decreases rcr, whereas with Jm fixed,

increasing fluid inertia or the mean flow speed also reduces rcr. More importantly, we see

from the form of the bifurcation condition (3.5) that even if localized bulging is not possible

at all in the absence of a mean flow, it becomes possible when a large enough mean flow is

present. However, for typical blood flows, vf0 is around 0.001 and so its effect on the onset

of bifurcation is negligible.

To determine the localized bulging solutions when r∞ is not necessarily close to rcr, we

evaluate the two integrals (4.2) and (4.3) at Z = 0 to obtain

W (0) − z0W
(0)
2 = W (∞) − λ2∞W

(∞)
2 , (4.12)

W
(0)
2 − 1

2
r20

{

P∞ +
1

2
bfv

2
f∞(1 +

λ41∞
r40

)

}

= W
(∞)
2 − 1

2
λ21∞

{

P∞ + bfv
2
f∞

}

, (4.13)

where r0 = r(0), z0 = z′(0) = λ2(0). These two equations for the two unknowns r0 and z0 can

be solved for each specified r∞ and vf∞. The trivial solution r0 = r∞ and z0 = λ2∞ is always

a solution, but there also exist non-trivial solutions. A typical non-trivial solution is sketched

in Figure 5 as the curve marked with points B and C, which has the following interpretation.

Uniform inflation follows the vertical axis until the bifurcation point B is reached when a

localized bulge will initiate. The post-critical localized bulging states correspond to the thin

solid line, and we see that growth of the localized bulge is accompanied by a reduction in

r∞, the radius of the tube at infinity. The amplitude r0 − r∞ of the bulge grows as inflation

continues until the turning point C is reached, after which the bulge no longer grows and

instead it begins to propagate in the axial direction. The turning point C is determined

by the property that ∂r0/∂r∞ → ∞. With the use of (4.12) and (4.13), we find that this

condition gives

W
(0)
1 − r0z0P0 = 0, (4.14)

where P0 is given by (4.1)1 with r replaced by r0. This property together with (2.15)2 implies

that r′′(0) = 0. Thus, the solution corresponding to the turning point C is also a fixed point

of the dynamical system (4.4). In the terminology of dynamical systems theory, when point

C is approached from point B, a homoclinic orbit in the phase plane becomes a pair of

heteroclinic orbits.
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Figure 5: A typical bifurcation diagram

At each point along the thin solid line between B and C, the associated localized solution

can be obtained by integrating (4.4) subject to the initial conditions λ1(0) = r0, λ2(0) =

z0, φ(0) = 0. As C is approached, the solitary wave type solution becomes two kink wave

type solutions stitched together at Z = 0.

In Figure 5, we have also shown a typical curve (the thicker lower curve) showing the

effects of imperfections such as localized wall thinning. In the presence of imperfections, the

variation of r∞ again r(0) − r∞ would follow this curve which has a turning point. It was

shown in [6] that the reduction rcr−r∗cr is proportional to the square root of the imperfection

amplitude, and so the kind of subcritical bifurcation considered in the present paper is much

more sensitive to imperfections than subcritical bifurcations into sinusoidal patterns which

have been much studied in the context of shell structures.

5 Stability of the weakly nonlinear bulging solutions

An inspection of the dispersion relation (3.1) shows that in a small neighbourhood of r∞ =

rcr, the order of the wave speed of the slowest wave mode is determined by c2 ∼ ω ∼ (r∞−rcr)
if vf∞ = 0, and by c ∼ ω ∼ (r∞−rcr) if vf∞ 6= 0. The former case has recently been examined

by Il’ichev and Fu [8]. For the latter case, the appropriate spatial and time variables are ξ

and τ , where ξ is defined by (4.9)2 and τ is defined by τ = ε3/2t. We look for a perturbation

solution of the form

r = r∞ + ε{w1(ξ, τ) + ε w2(ξ, τ) + · · · }, r∞ = rcr − ε, (5.1)

z = λ2∞Z +
√
ε{u1(ξ, τ) + ε u2(ξ, τ) + · · · }, (5.2)

vf = vf∞ + εvf1 + · · · , (5.3)

P = P∞ + εp1(ξ, τ) + ε2p2(ξ, τ) + · · · , (5.4)
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where the relative orders of the perturbations have been deduced by considering dominant

balance in the governing equations (2.15) and (2.16), and the order of perturbation of r

is deduced from (4.9)1. For P∞ given by (2.18)4 with r∞ = rcr − ε, we have the Taylor

expansion

P∞ =
W1(rcr, λ2∞)

rcrλ2∞
+ εP1 + · · · . (5.5)

On substituting (5.1)–(5.5) into (2.15) and (2.16), and equating the coefficients of like powers

of ε, we obtain a hierarchy of equations. To leading and second orders, we obtain Ly(1) = 0

and Ly(2) = b, respectively, where y(k) = (u′′k, w
′

k, p
′

k, v
′

fk)
T , L is a 4 × 4 matrix that only

depends on the uniform state (2.18), and the vector b involves the leading order solution

y(1). It is then straightforward to show that detL = 0 recovers the bifurcation condition

ω(0, rcr, vf∞) = 0, and that solvability of the second order problem yields an evolution

equation of the form
∂w1

∂τ
− c0

∂w1

∂ξ
+ c1w1

∂w1

∂ξ
+ c2

∂3w1

∂ξ3
= 0, (5.6)

where c0, c1 and c2 are constants. Since (5.6) reduces to (4.8) when time independence is

assumed, it must take the form

∂Ṽ

∂τ
− c0

∂Ṽ

∂ξ
+ 2c0Ṽ

∂Ṽ

∂ξ
+ c0

∂3Ṽ

∂ξ3
= 0, (5.7)

where

Ṽ =
3γcr
2ω′

cr

w1,

and the remaining constant c0 can be found by looking for a travelling wave solution of

the linearized form of (5.7) and then comparing the resulting dispersion relation with (3.1).

However, for our purpose this explicit expression is not needed. It suffices to observe that

for r∞ < rcr, the constant c0 must necessarily be positive.

Equation (5.7) is recognized as a Korteweg-de Vries equation whose solution properties

are well-understood. Under the variable transformation t∗ = c0τ, x = ξ + c0τ, u = 2Ṽ , this

equation reduces to the standard form

∂u

∂t∗
+ u

∂u

∂x
+
∂3u

∂x3
= 0. (5.8)

The static solution (4.11) of (5.7) corresponds to the following traveling wave solution of

(5.8):

u = 3 sech2(
1

2
(x− t∗)).

It is known [35, 36] that this travelling wave solution is orbitally stable. It then follows

that the static solution (4.11) of (5.7) is orbitally stable. This contrasts with the situation

associated with vf∞ = 0, where the near-critical perturbations are governed by the Boussinesq

equation and an unstable mode of perturbation always exists [8, 9].
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6 Stability of the fully nonlinear bulging solutions

As remarked earlier, the fully nonlinear bulging solutions can be obtained by integrating the

system of equations (4.4) whenever the amplitude diagram in Figure 5 becomes available.

We denote such fully nonlinear bulging solutions by

r = r̄(Z), z = z̄(Z), P = P̄ (Z), vf = v̄f(Z), (6.1)

where P̄ (Z) and v̄f(Z) are obtained from (4.1) with r replaced by r̄(Z). To study their

stability, we consider axisymmetric perturbations, and write

r(Z, t) = r̄(Z) + Ψ(Z)eηt, z(Z, t) = z̄(Z) + Φ(Z)eηt,

P (Z, t) = P̄ (Z) + Π(Z)eηt, vf(Z, t) = v̄f(Z) + V (Z)eηt,

where the mode functions Ψ(Z),Φ(Z),Π(Z), V (Z) and the growth rate η are to be deter-

mined. On substituting these expressions into (2.15) and (2.16) and linearizing, we obtain
[

1

λ̄2
W̄2Φ

′ +
z̄′

λ̄32

(

λ̄2W̄22 − W̄2

)(

r̄′Ψ′ + z̄′Φ′
)

+
z̄′

λ̄2
W̄12Ψ

]

′

−P̄ (r̄Ψ′ +Ψr̄′)− r̄r̄′Π = η2Φ, (6.2)

[

1

λ̄2
W̄2Ψ

′ +
r̄′

λ̄32

(

λ̄2W̄22 − W̄2

)(

r̄′Ψ′ + z̄′Φ′
)

+
r̄′

λ̄2
W̄12Ψ

]

′

− 1

λ̄2
W̄12(r̄

′Ψ′ + z̄′Φ′)−ΨW̄11 + P̄ (r̄Φ′ +Ψz̄′) + r̄z̄′Π = η2Ψ, (6.3)

η(z̄′Ψ− r̄′Φ) + v̄fΨ
′ + V r̄′ +

1

2
r̄V ′ +

1

2
Ψv̄′f = 0, (6.4)

bfη(z̄
′V − v̄′fΦ) + bf(v̄fV

′ + v̄′fV ) + Π′ = 0, (6.5)

where a bar over λ2 or W signifies evaluation at the solution (6.1). These equations can be

written in the form

y′ = My, (6.6)

where y = (Φ,Φ′,Ψ,Ψ′,Π, V )T and M is a 6×6 matrix whose components are (numerically)

known functions of Z and η. This system of equations are to be solved subject to the decay

conditions y → 0 as Z → ±∞.

Denoting by M∞ the limit of M as Z → ±∞, and substituting a trial solution of the

form y = ek̂Za into y′ = M∞y, we obtain the eigenvalue problem

(M∞ − k̂I)a = 0, (6.7)

where I is the 6×6 identity matrix. Non-trivial solutions correspond to det (M∞− k̂I) = 0,

which is simply the dispersion relation (3.1) under the substitutions

k̂ = ik
λ2∞
r∞

, η = −ik
c

r∞
. (6.8)
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Recalling the properties of the dispersion relation (3.1) established in Section 3, we may

immediately deduce that k̂ can be imaginary only if η is imaginary. This implies that if η is

confined to vary in the right half complex plane, k̂ can never be imaginary. Since k appears

in (3.1) through k2, for each fixed η, −k̂ is a root whenever k̂ is. Denote by k̂1, k̂2, k̂3 the

three eigenvalues of (6.7) with negative real parts, and by a1, a2, a3 the associated eigen-

vectors. Denote by a−

1 , a
−

2 , a
−

3 the eigenvectors associated with the other three eigenvalues

−k̂1, −k̂2, −k̂3. There then exist solutions yi(Z) and y−

i (Z) of (6.6) such that

lim
Z→∞

e−k̂iZyi(Z) = ai, lim
Z→−∞

ek̂iZy−

i (Z) = a−

i , i = 1, 2, 3.

Solutions of (6.6) that decay exponentially as Z → ∞ and Z → −∞, respectively, must be

of the form

c1y1(Z) + c2y2(Z) + c3y3(Z) and c4y
−

1 (Z) + c5y
−

2 (Z) + c6y
−

3 (Z),

respectively, for some constants c1, c2, ..., c6. The two solutions will match at any point,

Z = d say, to yield a localized eigen function, only if η is such that

det [y1(d),y2(d),y3(d),y
−

1 (d),y
−

2 (d),y
−

3 (d)] = 0. (6.9)

This is the most primitive way with which the eigenvalues of (6.6) can be determined, but

because of the exponential behaviour of the solutions loss of independence of solutions occurs,

which gives rise to numerical difficulties.

Alternatively, we may consider the exterior system [37, 38]

y∧
′

= M∧y∧, (6.10)

and its adjoint system

x∧
′

= −(M∧)Tx∧, (6.11)

where the components of the vector function y∧ come from all the 3× 3 minors of the 6× 3

matrix (y1,y2,y3), and the components of the 20 × 20 matrix M∧ in terms of those of M
have previously been derived by Il’ichev and Fu [8].

It is known that if k̂1, k̂2, ..., k̂6 are the eigenvalues of M∞ then the matrix M∧

∞
has

eigenvalues

k̂i(η) + k̂j(η) + k̂l(η), 1 ≤ i < j < l ≤ 6.

Thus, the asymptotic matrix M∧

∞
has simple left-most eigenvalue k∧(η) = k̂1(η) + k̂2(η) +

k̂3(η) for η in the right half-plane. We denote by r∧(η) the right eigenvector ofM∧

∞
associated

with the eigenvalue k∧(η), and by l∧(η) the corresponding left eigenvector. It is easily seen

that l∧(η) is then the right eigenvector of −(M∧)T in (6.11) associated with the eigenvalue

−k∧(η). Solving (6.10) and (6.11) subject to the initial conditions

y∧(Q) = r∧(η), x∧(−Q) = l∧(η),
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Figure 6: Left: Variation of the growth rate with respect to vf∞ for three representative

values of bf, 0.01, 0.03, and 0.06. Right: Variation of the growth rate with respect to bf for

four representative values of vf∞, 0.02, 1, 1.5, and 2. Each curve is joined by a lower branch

at the turning point, which is not shown because of unreliable numerical results.

respectively, where Q is a sufficiently large positive number, we obtain two solutions y∧(η, Z)

and x∧(η, Z). It follows from (6.10) and (6.11) that the dot product of these two solutions

is independent of Z.

The Evans function is defined by

D(η) = x∧(η, Z) · y∧(η, Z), (6.12)

and it can be shown that the matching condition (6.9) is equivalent to D(η) = 0. Thus,

eigenvalues associated with unstable localized eigen modes are determined by D(η) = 0.

By adapting the Mathematica code used in [8], we find that for each fixed value of bf there

exist two unstable eigenvalues for vf∞ less than a threshold value. At the latter threshold

value, the two unstable eigenvalues coalesce and no unstable eigenvalues exist for vf∞ greater

than this threshold value. Likewise, for each fixed value of vf∞ there exist two unstable

eigenvalues for bf less than a threshold value. At the latter threshold value, the two unstable

eigenvalues coalesce and no unstable eigenvalues exist for bf greater than this threshold value.

Figure 6 illustrates these facts for the case when r∞ = 1.41, z∞ = 1.2, and the material is

modeled by the Gent model with Jm = 30. For each value of bf or vf∞ considered, we have

not shown the lower branch of the growth rate curve because it is always zigzagged and so

we believe that our numerical results may not be reliable. One possible explanation for the

zigzag behaviour is that at each lower branch the growth rate is very small; it is typically

of order 0.001, and so the η2 in (6.2)–(6.5) is of order 10−6. Our numerical scheme becomes

invalid in the small growth rate limit because in the limit η → 0 two pairs of the eigenvalues

of M∞ determined by (6.7) are zero, and correspondingly, the left-most eigenvalue k∧(η)

of M∧

∞
becomes a repeated eigenvalue with multiplicity of 6. We will examine the lower

branch behaviour more thoroughly in a separate study. For our current purpose, it suffices to

confirm that no unstable modes can exist when the mean flow speed becomes large enough.

For a typical rubber tube containing water with a mean flow speed of 40cm/s (which is
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the typical blood flow speed in arteries), bf and vf∞ are approximately equal to 3.47 and

0.02, respectively. Figure 6 shows that when vf∞ = 0.02, the localized bulging solution is

completely stabilized when bf reaches the threshold value of 0.14, much less than 3.47.

7 Conclusion

Our present study is aimed at providing the last building block for the framework of a

mathematical theory concerning the initial formation of aneurysms in human arteries. Under

this theory, the initial formation of aneurysms is interpreted as a bifurcation phenomenon,

just as localized bulging in inflated tubular rubber balloons. Since we assume that it is the

formation and stable presence of a localized bulge that triggers the subsequent remodelling

process, the stability of such a localized bulge is essential if our theory is to have any

relevance. It is shown that although a mean flow (such as the natural blood flow) may

only have a negligible effect on the critical pressure, it does change the stability properties of

localized bulges qualitatively. In the absence of a mean flow, evolution of near-critical modes

obeys the Boussinesq equation which has a single unstable mode, but when a mean flow is

present, the evolution equation becomes the Korteweg-de Vries equation whose travelling

wave solutions are always stable. The Evans function method that we used to check stability

of the fully nonlinear bulging solutions is a very effective tool to establish spectral instability

(exponential linear growth), but it cannot establish stability conclusively in the present

case. In fact, even if the static bulging solution is orbitally stable, it can still travel under

perturbations although this becomes impossible as soon as the translational invariance is

broken (which occurs, for instance, when the tube is subject to localized wall thinning). We

are currently looking for alternative ways to prove stability in the presence of localized wall

weakening and, in the meantime, experimental verification is also being carried out by an

experimental mechanics group.

Before our theory can be used to guide any drug development (assuming that drugs

can modify the constitutive behaviour of arteries), the greatest challenge is to verify that

localized bulging can indeed take place as a bifurcation in some live arteries under realistic

physiological conditions. Ideally, we would like to see that when the artery has no localized

weakening, the bifurcation pressure is extremely high, but as soon as localized wall weakening

is introduced the actual bifurcation pressure (corresponding to point A in Figure 5) will come

down to around 120 mmHg. We expect this scenario because for human arteries pressure

is believed to be an exponential function of the principal stretches. We do not, however,

expect localized bulging to be theoretically possible for all human arteries because of their

huge varieties. The calculations conducted in [7] show that some arterial models predict

bifurcation almost too easily whereas some other models used predict no bifurcation. Since

the prediction of our theory is only as good as the arterial models employed, application of

our theory would require more accurate constitutive modelling of human arteries.
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We also observe that our one-dimensional averaged model for the fluid flow is expected to

fail when the size of the localized bulge becomes significant. We are currently planning a fully

numerical simulation of the fluid-solid interaction problem by considering the fluid flow to be

fully three dimensional but still assuming axi-symmetry. We are thus looking for a fluid-solid

coupled and fully nonlinear solution that bifurcates from the uniform state (2.18). The fully

nonlinear bifurcation solution determined in Section 4 is expected to provide an excellent

initial guess in any iteration scheme. Other effects that we wish to address in future include

bending stiffness of the arterial wall, and the viscous, viscoelastic, and pulsatile nature of

the blood flow.
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