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This Letter deals with an analysis of bending edge waves propagating along the free edge of a

Kirchhoff plate supported by a Winkler foundation. The presence of a foundation leads to a non-

zero cut-off frequency for this wave, along with a local minimum of the associated phase velocity.

This minimum phase velocity corresponds to a critical speed of an edge moving load and is analo-

gous to that in the classical 1D moving load problem for an elastically supported beam.
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I. INTRODUCTION

Edge bending waves in respect of a free elastic plate are

well-studied within the framework of low frequency classi-

cal theories of 2D thin plates, often referred to as Kirchhoff

plates, see Refs. 1–3, and references therein.

In this Letter we extend previous considerations to inves-

tigate a Kirchhoff plate resting on a Winkler foundation, i.e.,

when the reaction of the foundation is directly proportional to

the deflection of the plate, e.g., see Ref. 4. The model of a

plate supported by a Winkler foundation has a number of im-

portant applications, in particular, in structural mechanics.5

In spite of having a dispersion relation similar to that of a

free Kirchhoff plate, the presence of a foundation brings a

number of novel features, including a local minimum of the

edge wave phase velocity which in fact coincides with the

related group velocity. This minimum also coincides with the

critical wave speed of an edge moving load, as in the classical

steady-state problem for a beam on an elastic foundation.6

II. GOVERNING RELATIONS

Consider a Kirchhoff elastic plate of thickness 2h rest-

ing on a foundation of Winkler type4 (Fig. 1). The deflection

of the plate Wðx; y; tÞ is then governed by

DD2W þ 2qh
@2W

@t2
þ bW ¼ 0; (1)

where D ¼ @2=@x2 þ @2=@y2 is the 2D Laplace operator, q
is the volume density of mass, b is the Winkler constant, and

D is bending stiffness, given by

D ¼ 2Eh3

3 1� �2ð Þ ; (2)

with E and � denoting the Young modulus and the Poisson

ratio, respectively. We remark that the final term of Eq. (1)

is present because of the existence of the Winkler

foundation, b ¼ 0 corresponding to the classical Kirchhoff

plate problem, see, e.g., Ref. 7.

The boundary conditions at the free edge y ¼ 0 are

taken in the form1

@2W

@y2
þ � @

2W

@x2
¼ 0; (3)

@3W

@y3
þ 2� �ð Þ @

3W

@x2@y
¼ 0: (4)

III. DISPERSION ANALYSIS

Following a now standard procedure for derivation of

the dispersion relation, the deflection of the plate is sought

for in the form of a traveling harmonic wave, propagating in

the positive direction of x,

Wðx; y; tÞ ¼ Aeiðkx�xtÞ�kky; (5)

where k � 0 and x � 0 are the wave number and frequency,

respectively. Here k is the attenuation coefficient, with the

condition ReðkÞ > 0 ensuring that the wave decays away

from the edge y ¼ 0 of the plate ðy � 0Þ. Substitution of

Eq. (5) into the plate equation (1) leads to a bi-quadratic

equation in k, taking the form

k4 � 2k2 þ 1� 2qhx2 � b
k4D

¼ 0: (6)

It may be shown that two of the roots of Eq. (6) satisfy the

decay conditions ReðkÞ > 0, hence, the solution of Eq. (1)

may be expressed as

Wðx; y; tÞ ¼
X2

j¼1

Cje
iðkx�xtÞ�kkjy; (7)

with the associated attenuation orders k1 and k2 given by

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

0

k2

s
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k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

0

k2

r
; (9)

where

k0 ¼ k0 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qhx2 � b

D

4

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh

D
x2 � x2

0

� �4

r
; (10)

implying that x � x0, with

x0 ¼

ffiffiffiffiffiffiffiffi
b

2qh

s
(11)

denoting the cut-off frequency. The additional condition

k > k0 (12)

follows from the assumption of real positive k1, which will

be clarified further from discussion of the dispersion relation.

Substitution of Eq. (7) into the boundary conditions (3) and

(4) leads to

k2
1k

2
2 þ 2ð1� �Þk1k2 � �2 ¼ 0: (13)

Using the expressions (8) and (9), Eq. (13) may be trans-

formed to give the dispersion relation

Dk4c4
e ¼ 2qhx2 � b; (14)

where

ce ¼ ½ð1� �Þð3� � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 � 2� þ 1

p
Þ�1=4

(15)

is a well-known constant for the bending edge wave,1,3

depending on the Poisson’s ratio only, note that ce < 1 for

all 0 < � � 1. It may be now observed from the dispersion

relation (14) that

k ¼ 1

ce

k0 for x � x0; (16)

therefore the values of k1 and k2 may be written as

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

e

q
; (17)

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

e

q
; (18)

clearly implying that both k1 and k2 are real and positive,

thus ensuring decay away from the edge y ¼ 0.

In absence of a Winkler foundation ðb ¼ 0Þ the derived

dispersion relation transforms to the well-known dispersion

relation for edge waves on a free plate, see Refs. 1 and 3.

We also mention that the relation (14) has the same form as

the dispersion relation for the bending wave on an elastically

supported beam, e.g., see Ref. 7.

The dispersion relation (14) can be rewritten in dimen-

sionless form as

K4 ¼ X2 � 1; (19)

where

K ¼ kce

ffiffiffiffi
D

b
4

s
; (20)

X ¼ x

ffiffiffiffiffiffiffiffi
2qh

b

s
: (21)

In this case the dimensionless value of the cut-off frequency

is X ¼ X0 ¼ 1, see Fig. 2.

It is remarkable that due to the presence of the Winkler

foundation, the phase velocity normalized by
ffiffiffiffiffiffiffiffi
2qh
p

=ce

ffiffiffiffiffiffiffi
bD4
p

;

Vph ¼ X
K
¼ Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 � 1
4
p

;
(22)

has a local minimum Vph ¼
ffiffiffi
2
p

at X ¼
ffiffiffi
2
p

, corresponding

to K ¼ 1. Moreover, at this point Vph coincides with the

group velocity

Vg ¼ dX
dK
¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 � 1Þ34

q
X

; (23)

see Fig. 3.

It is also worth mentioning that the minimum value

Vph ¼ Vg ¼
ffiffiffi
2
p

, associated with the dispersion relation (19),

corresponds to the critical speed of a moving load in the 1D

classical problem for a beam resting on a Winkler founda-

tion.6 Therefore, we may expect the same resonant effect of

an edge moving load on an elastically supported plate.

FIG. 2. Dispersion curve for edge wave.

FIG. 1. Elastically supported plate.
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IV. MOVING LOAD PROBLEM

Let us replace Eq. (3) by the inhomogeneous boundary

condition

@2W

@y2
þ � @

2W

@x2
¼ M0d x� vtð Þ; (24)

corresponding to a concentrated point moment of amplitude

M0 moving along the edge of the plate at a constant speed v.

We now consider the steady-state solution of the prob-

lem described by Eqs. (1), (4), and (24) in the moving coor-

dinate system ðn ¼ x� vt; yÞ. On applying the Fourier

transform with respect to n, we obtain the following bound-

ary value problem for the transformed edge deflection:

d4WF

dy4
� 2a2 d2WF

dy2
þ a4 � 2qhv2

D
a2 þ b

D

� �
WF ¼ 0;

(25)

subject to

@2WF

@y2
� �a2WF ¼ M0;

@3WF

@y3
� 2� �ð Þ a2 @WF

@y
¼ 0; (26)

where a is the Fourier parameter. The solution of Eqs. (25)

and (26) for WF at the edge y ¼ 0 may be found in the form

WFjy¼0 ¼
M0 �a2 þ q
� �

q2 þ 2 1� �ð Þa2q� �2a4
; (27)

with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b� 2qhv2a2

D

r
: (28)

In terms of the dimensionless parameter A ¼ ace

ffiffiffiffiffiffiffiffiffi
D=b4

p
,

the transformed edge deflection (27) becomes

WFjy¼0 ¼
P

b A4 � V2A2 þ 1ð Þ ; (29)

with

P ¼ P A; Vð Þ ¼ M0

ffiffiffiffiffiffiffi
bD
p

�A2 þ Q
� �

vA2 þ Q
� �

c2
e Q� A2 2� 2� þ vð Þ
� � ; (30)

where

Q ¼ QðA; VÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A4 � c4

eðV2A2 � 1Þ
q

; (31)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 � 2� þ 1

p
þ � � 1: (32)

In the formulas above, V ¼ v
ffiffiffiffiffiffiffiffi
2qh
p

=ce

ffiffiffiffiffiffiffi
bD4
p

is the dimen-

sionless speed of the load.

It may be observed that when V ¼
ffiffiffi
2
p

, the denominator

in Eq. (29) has the double poles at A ¼ 61. Thus, the critical

speed of the load coincides with the minimal value of the

phase velocity determined in Sec. II. It is also clear that the

near-resonant response for jV �
ffiffiffi
2
p
j � 1 is dominated by

the contribution arising from the close poles of the afore-

mentioned denominator. In this case, we may approximate

the Fourier transform (29) by a simpler expression, substitut-

ing the function P by its value P� ¼ Pð1;
ffiffiffi
2
p
Þ. This trans-

form corresponds to a 1D moving load problem for a beam

resting on a Winkler foundation, see Fig. 4. It is given by the

equation, see, e.g., Ref. 4,

D�
@4W

@x4
þ 2qh

@2W

@t2
þ bW ¼ P�d x� vtð Þ; (33)

where

D� ¼ Dc4
e ; (34)

P� ¼ M0

ffiffiffiffiffiffiffi
bD
p

v vþ �ð Þ
c2

e vþ 1� �ð Þ (35)

denote the effective stiffness and amplitude of the point

load, respectively. It can be readily verified that the trans-

formed solution of Eq. (33) is given by Eq. (29) provided

that P ¼ P�.

V. CONCLUDING REMARKS

The presence of a Winkler foundation has a significant

influence on edge bending waves, including non-monotonic

behavior of the phase velocity which causes a resonant re-

gime for a load moving along the plate’s edge.

The similarity of the studied wave with a wave on an

elastically supported beam concurs with the parabolic-

FIG. 3. Phase and group velocities of edge wave.

FIG. 4. Moving load problem for a beam on elastic foundation.
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elliptic theory for edge bending waves recently reported in

Ref. 8. It is also in line with the earlier established analogy

between Rayleigh surface waves and waves on a string.9,10

The framework of the paper can be extended to aniso-

tropic plates11 and also adapted for plates with curved

edges.12 In addition, there is clear potential for refining the

Kirchhoff theory described in Refs. 2 and 13 using the so-

called theory with modified inertia (see Ref. 14, and referen-

ces therein).
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