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This paper is concerned with elucidation of the

general properties of the bending edge wave in a thin

linearly elastic plate which is supported by a Winkler

foundation. A homogeneous wave of arbitrary profile

is considered, and represented in terms of a single

harmonic function. This serves as the basis for

derivation of an explicit asymptotic model, containing

an elliptic equation governing the decay away from

the edge, together with a parabolic equation at the

edge, corresponding to beam-like behaviour. The

model extracts the contribution of the edge wave from

the overall dynamic response of the plate, providing

significant simplification for analysis of the localised

near-edge wave field.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

Page 1 of 16

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:j.kaplunov@keele.ac.uk


For Review
 O

nly

2

rs
p
a
.ro

ya
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................

1. Introduction

The bending Rayleigh-type edge wave has been studied for more than half a century, and has a

remarkable history. Konenkov [1] was the first to consider such a wave and derive the associated

dispersion relation. However, some initial ideas giving preliminary insight within the framework

of stability of elastic plates, had in fact appeared in the earlier work of Ishlinsky [2]. Unfortunately,

the contribution of Konenkov [1] was seemingly unnoticed; indeed after fourteen years the

bending edge wave was rediscovered independently in [3] and [4]. Some further historical details,

and periodic overviews of the state of art, may be found in [5] and in the review [6]. Among other

recent contributions on the subject we mention [7]-[10].

It is intuitively clear that edge waves are dispersive analogues of better known surface waves.

However, the number of contributions investigating the general properties of the bending edge

wave is considerably less. Construction of an appropriate mathematical theory for the Rayleigh

wave resulted in the general representation of the wave field in terms of harmonic functions,

originated by Friedlander [11] and followed by Chadwick [12]. Recent developments of this

approach, including generalisations to anisotropy, laterally dependent surface waves and three-

dimensional surface and interfacial waves of arbitrary profile and direction, may be found in [13]-

[18]. Alternative approaches to the general description of surface waves were presented in [19]

and [20].

A step forward in mathematical modelling of the Rayleigh wave was provided by Kaplunov

et al. [21]. In this study a slow time perturbation of the solution previously obtained by

Chadwick [12] allowed treatment of non-homogeneous transient boundary conditions. The

derived explicit model for the Rayleigh wave uncouples the contribution of the surface wave

from the overall dynamic response. In addition to simple approximate formulations for the wave

field, some fundamental features were noticed, for example the dual hyperbolic-elliptic nature of

the Rayleigh wave. Similar observations have been made in [16] for Schölte waves of arbitrary

profile and direction.

The approach of [21] has been extended to the bending edge wave on a free Kirchhoff plate,

with some results presented in [22], revealing a parabolic-elliptic formulation for the wave field.

Other recent developments in the area of edge waves in elastic plates are related to plates

supported by elastic foundations, see [9,10].

In the present paper we extend previous results to the bending edge wave on a plate supported

by a Winkler foundation. Our aim is two-fold, including establishment of the general time

dependent solution as well as development of a specialized formulation for non-homogeneous

edge boundary conditions.

The key to construction of the bending edge wave eigensolution of arbitrary profile is the

natural, though not readily straightforward, idea of an effective beam on an elastic foundation

acting as a "basic object" for the wave. Some physically intuitive reasoning for this kind of

assumption, presented in [22], is clarified in this paper. In particular, it is shown that the promoted

assumption of the beam-like behaviour allows construction of the wave field in terms of an

arbitrary single harmonic function, actually generalising the known bending edge wave of a

sinusoidal profile.

The derived eigensolution of arbitrary shape is then perturbed in slow time, providing a path

to an explicit model for the bending edge wave, approximating the wave field. The results contain

a parabolic beam-like equation on the edge and an elliptic equation over the interior, governing

decay away from the edge. Thus, the solution can be found in the form of a plane harmonic

function in spatial coordinates, satisfying the parabolic equation on the edge.

The model is first derived for a particular type of loading evolving in slow time and

corresponding to near-resonant behaviour. However, it is shown that the formulation always

enables evaluation of the contribution of the bending edge wave to the overall dynamic response.

This is demonstrated by calculation of the related residues, presented in the Appendix. Thus, we

may expect the model to provide leading order approximation in the far-field near-edge zone
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for an arbitrary load, similar to the Rayleigh wave. The proposed approach leads to insightful

general observations, for example it underlines the dual parabolic-elliptic nature of the dispersive

bending edge wave on an elastically supported plate contrasting with the hyperbolic-elliptic

nature of the Rayleigh wave.

The paper is organized as follows. A general review of the governing equations and statement

of the problem are presented in §2. Bending edge wave of general time dependence is analysed

in §3, with the representation of the wave field in terms of a single harmonic function obtained.

A multi-scale approach, using slow time perturbation of this solution, is performed in §4, and an

explicit model for the bending edge wave is formulated in §5. Both cases of boundary conditions,

namely, the prescribed bending moment and shear force, are investigated. In §6 we consider a

model example, illustrating the proposed approach and focussing attention on the near-resonant

excitation of the bending edge wave by a harmonic moment imposed at the edge.

2. Statement of the problem

Consider a semi-infinite isotropic elastic plate of thickness 2h, supported by a Winkler foundation,

see Figure 1. The plate occupies the region −∞<x1 <∞, 0 ≤ x2 < ∞, 0 ≤ x3 ≤ 2h. Within

x1

x3

x2

2h

Figure 1. An elastic plate on the Winkler foundation.

the framework of the classical Kirchhoff theory, the approximate 2D equation of bending of an

elastic plate, supported by a Winkler foundation, is given by (see e.g. [23])

D∆2W + 2ρh
∂2W

∂t2
+ βW = 0, (2.1)

where W (x1, x2, t) denotes the deflection of the plate, ∆ is a 2D Laplace operator in variables

x1 and x2, β is the Winkler foundation modulus, ρ denotes the volume mass density, D is the

bending stiffness given by

D=
2Eh3

3(1− ν2)
,

and E and ν are the Young’s modulus and Poisson’s ratio, respectively.

The boundary conditions at the edge x2 = 0 are adopted in the form

∂2W

∂x22
+ ν

∂2W

∂x21
=−

M0

D
,

∂3W

∂x32
+ (2− ν)

∂3W

∂x21∂x2
=−

N0

D
,

(2.2)
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where M0 =M0(x1, t) and N0 =N0(x1, t) are the prescribed bending moment and shear force,

respectively. We also impose the two initial conditions

W (x1, x2, 0) =A(x1, x2),
∂W (x1, x2, 0)

∂t
=B(x1, x2), (2.3)

where A and B are given initial data.

3. Homogeneous wave of arbitrary profile

The dispersion relation for the free bending edge wave associated with a Kirchhoff plate resting

on the Winkler foundation has the form

Dk4γ4e + β = 2ρhω2, (3.1)

see [9], where k and ω denote wave number and frequency, respectively, and the coefficient

γe =
[

(1− ν)
(

3ν − 1 + 2
√

2ν2 − 2ν + 1
)]1/4

, (3.2)

depending on the Poisson’s ratio only, is the material constant introduced in the paper of

Konenkov [1]. This parameter lies within the region 0< γe < 1, see Figure 2.

0.99

0.992

0.994

0.996

0.998

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

γe

ν

Figure 2. The coefficient γe vs. the Poisson’s ratio ν.

It has been shown in the aforementioned contribution of Kaplunov et al. [9] that the presence of

the Winkler foundation brings in a few novel features, in particular leading to a cut-off-frequency,

along with a local minimum of the phase velocity. This minimal phase speed coincides with the

group velocity and corresponds to the critical speed of an edge moving load.

Still the eigensolution of a sinusoidal profile analysed in [9] is not general enough. Following

Chadwick [12], we now derive the sought for ansatz of a homogeneous edge wave of arbitrary

shape, presenting the associated wave field in terms of a single plane harmonic function.

We begin by rewriting the plate equation (2.1) in terms of the dimensionless variables

ξ =
x1
h
, η=

x2
h
, τ =

t

αh
, (3.3)

with

α=
[

3ρ(1− ν2)/E
]1/2

, (3.4)

giving

∆2W +
∂2W

∂τ2
+ β0W = 0, (3.5)
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where ∆ now denotes the 2D Laplace operator in the dimensionless variables ξ and η, and β0 =

βh4/D. Next we proceed with a serendipitous assumption

γ4e
∂4W

∂ξ4
+

∂2W

∂τ2
+ β0W = 0, (3.6)

where γe is defined after (3.2). This is actually the key to generalising the conventional sinusoidal

profile

W = V (η) exp [ih (kξ − αωτ )] , (3.7)

see [9].

First of all, it is clear that this sinusoidal solution satisfies (3.6), actually giving the dispersion

relation (3.1). On the other hand, intuition suggests an elastically supported beam as a basic object

for our plate bending edge wave, in line with a similar analogy between the Rayleigh wave and

a string, which was pointed out in [24]. Unfortunately, in contrast to the Rayleigh wave [12],

in respect of the edge bending edge wave there is seemingly no explicit functionally invariant

solution.

In view of (3.6), equation (3.5) takes the form

(

1− γ4e

) ∂4W

∂ξ4
+ 2

∂4W

∂ξ2∂η2
+

∂4W

∂η4
= 0, (3.8)

which may be rewritten in the operator form

∆1∆2W = 0, (3.9)

where

∆j =
∂2

∂η2
+ λ2j

∂2

∂ξ2
, j = 1, 2 (3.10)

and

λ2j =1 + (−1)jγ2e . (3.11)

It should be noted that since 0<γe < 1, λ2j are both positive, and thus equation (3.9) is elliptic.

The solution is therefore given by the sum of two arbitrary functions, harmonic in the first two

variables, accordingly

W =

2
∑

j=1

Wj

(

ξ, λjη, τ
)

. (3.12)

Substituting (3.12) into the homogeneous edge boundary conditions (2.2) (with M0 =N0 = 0),

rewritten in terms of the dimensionless variables and employing the Cauchy-Riemann identities

(see e.g. [25]), we obtain

(

ν − λ21

) ∂2W1

∂ξ2
+
(

ν − λ22

) ∂2W2

∂ξ2
=0,

λ1

(

λ21 − 2 + ν
) ∂3W ∗

1

∂ξ3
+ λ2

(

λ22 − 2 + ν
) ∂3W ∗

2

∂ξ3
= 0,

(3.13)

with the asterisk denoting a harmonic conjugate. These boundary conditions imply

λ2(ν − λ21)
2 − λ1(ν − λ22)

2 = 0. (3.14)

Due to (3.11), the last equation may be re-cast in the form

λ21λ
2
2 + 2(1− ν)λ1λ2 − ν2 = 0, (3.15)

which coincides with the dispersion relation (3.1), see also [9].
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The representation for the bending edge wave field in terms of a single harmonic function may

now be established by making use of the boundary conditions (3.13), giving

W (x, y, t) =Wj

(

x, λjy, t
)

−
ν − λ2j

ν − λ2m
Wj (x, λmy, t) , 1≤ j 6=m≤ 2. (3.16)

The deflection W may thus be expressed through (3.16) as a solution of the following initial

value problem for any of the harmonic functions Wj (j = 1, 2)

∂2Wj

∂η2
+ λ2j

∂2Wj

∂ξ2
= 0, (3.17)

demonstrating beam-like behaviour, see (3.6),

γ4e
∂4Wj

∂ξ4
+

∂2Wj

∂τ2
+ β0Wj =0, (3.18)

and satisfying initial conditions

Wj

∣

∣

τ=0
=Aj(ξ, λjη),

∂Wj

∂τ

∣

∣

∣

∣

τ=0

=Bj(ξ, λjη). (3.19)

It is clear from (2.3) and (3.16) that

A (x, y) =Aj

(

ξ, λjη
)

−
ν − λ2j

ν − λ2m
Aj

(

ξ, λjη
)

,

B (x, y) =Bj

(

ξ, λjη
)

−
ν − λ2j

ν − λ2m
Bj

(

ξ, λjη
)

,

(3.20)

with 1≤ j 6=m≤ 2. Note that (3.17) necessitates that Aj and Bj are harmonic functions.

Applying the integral Fourier transform with respect to the variable ξ to the elliptic equations

(3.17), and imposing the decay conditions Wj → 0 as η→∞, it is possible to obtain for the Fourier

transforms

WF
j = fj(s, τ )e

−λj|s|η, (3.21)

with the initial conditions for the functions fj given by

fj
∣

∣

τ=0
= aj(s),

∂fj
∂τ

∣

∣

∣

∣

τ=0

= bj(s). (3.22)

In view of (3.18), the solution for the functions Wj may be expressed as

Wj =
1

2π

∞∫

−∞

[

bj(s)

αs
sin (αsτ ) + aj(s) cos (αsτ )

]

e−λj |s|η+iξsds, (3.23)

where αs =
√

γ4es4 + β0, with the resulting bending edge wave field given by (3.16).

4. Perturbation scheme

Once representation in terms of a single plane harmonic function is established, we proceed

with the development of an explicit model for the bending edge wave. Our intention is to

extract the edge wave contribution from the overall dynamic response in a similar manner

to [21] for the surface waves. In parallel with the cited paper, our starting point is a multiple

scale procedure, perturbing equation (2.1) around the eigensolution constructed in the previous

section. Accordingly, fast (τf = τ ) and slow (τs = ετ ) time variables are introduced, where ε≪ 1

is a small parameter, indicating the underlying assumption that the deviation of the phase

speed from that of the homogeneous edge wave is small. An example of a near-resonant motion

evolving in slow time (τs = ετ ) is considered later in §6.
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We begin the perturbation procedure by representing equation (3.5) in terms of the introduced

scaling as

∆2W +

(

∂2W

∂τ2f
+ 2ε

∂2W

∂τf∂τs
+ ε2

∂2W

∂τ2s

)

+ β0W =0. (4.1)

The deflection W is then expanded as

W =
h2P

εD

(

W (0) + εW (1) + ...
)

, (4.2)

where

P =max
x,t

[M0(x, t), hN0(x, t)] . (4.3)

We now substitute expansion (4.2) into the governing equation (4.1), which at leading order

reveals

∆2W (0) +
∂2W (0)

∂τ2f
+ β0W

(0) =0, (4.4)

which may be transformed to the elliptic equation

(

1− γ4e

) ∂4W (0)

∂ξ4
+ 2

∂4W (0)

∂ξ2∂η2
+

∂4W (0)

∂η4
=0, (4.5)

through use of assumption (3.6). The solution of (4.5) is then given by a combination of harmonic

functions, yielding

W (0) =

2
∑

j=1

W
(0)
j

(

ξ, λjη, τf , τs
)

, (4.6)

where the scaling factors λj (j = 1, 2) are defined by (3.11) assuming decay as η→∞.

At the next order, we obtain from (4.1) that

∆2W (1) +
∂2W (1)

∂τ2f
+ β0W

(1) + 2
∂2W (0)

∂τf∂τs
= 0. (4.7)

Using assumption (3.6), along with the superposition principle, equation (4.7) may be re-written

as

∆1∆2W
(1)
j =−2

∂2W
(0)
j

∂τf∂τs
(j = 1, 2), (4.8)

with W (1) =W
(1)
1 +W

(1)
2 . Let us first consider j =1. Employing the properties of harmonic

functions, one may deduce that

∆2W
(0)
1 = (λ22 − λ21)

∂2W
(0)
1

∂ξ2
= 2γ2e

∂2W
(0)
1

∂ξ2
. (4.9)

Differentiating (4.8) twice with respect to ξ, and using (4.9), we infer that

∆1∆2
∂2W

(1)
1

∂ξ2
=−

1

γ2e
∆2

∂2W
(0)
1

∂τf∂τs
, (4.10)

from which it is readily deduced that

∆1
∂3W

(1)
1

∂ξ2∂η
=−

1

γ2e

∂3W
(0)
1

∂τf∂τs∂η
. (4.11)

The solution of (4.10) is found in the form

∂3W
(1)
1

∂ξ2∂η
=

∂3Φ
(1,0)
1

∂ξ2∂η
−

η

2γ2e

∂2W
(0)
1

∂τf∂τs
, (4.12)

where Φ1 =Φ1
(

ξ, λ1η, τf , τs
)

is an arbitrary harmonic function of the first two arguments.
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Similar consideration for j = 2 yields

∆1W
(0)
2 =−2γ2e

∂2W
(0)
2

∂ξ2
, (4.13)

leading to

∆2
∂3W

(1)
2

∂ξ2∂η
=

1

γ2e

∂3W
(0)
2

∂τf∂τs∂η
, (4.14)

hence

∂3W
(1)
2

∂ξ2∂η
=

∂3Φ
(1,0)
2

∂ξ2∂η
+

η

2γ2e

∂2W
(0)
2

∂τf∂τs
, (4.15)

where Φ2 =Φ2

(

ξ, λ2η, τf , τs
)

is also an arbitrary harmonic function.

We may thus obtain the following two-term asymptotic expansion for the third derivative

∂3W

∂ξ2∂η
=

h2P

D

[

ε−1

(

∂3W
(0)
1

∂ξ2∂η
+

∂3W
(0)
2

∂ξ2∂η

)

+
∂3Φ

(1,0)
1

∂ξ2∂η

+
∂3Φ

(1,0)
2

∂ξ2∂η
−

η

2γ2e

(

∂2W
(0)
1

∂τs∂τf
−

∂2W
(0)
2

∂τs∂τf

)

+ ...

]

.

(4.16)

5. Parabolic equation on the edge

We proceed further with the analysis of the non-homogeneous edge boundary conditions (2.2).

Due to the linearity of the problem, it may be decomposed into two separate problems, imposing

a prescribed edge bending moment or shear force respectively.

(a) Bending moment

Consider the case of an edge bending moment, that is when N0 =0,M0 6= 0. The boundary

conditions (2.2) are rewritten in terms of dimensionless variables at η= 0 as

∂2W

∂η2
+ ν

∂2W

∂ξ2
=−

h2

D
M0,

∂3W

∂η3
+ (2− ν)

∂3W

∂ξ2∂η
= 0.

(5.1)

Let the bending moment in the right hand side of (5.1) evolve in slow time as

M0(ξ, τf , τs) =
∂2m0

∂τs∂τf
, (5.2)

with m0 =m0(ξ, τf , τs) satisfying the beam-like assumption, i. e.

γ4
∂4m0

∂ξ4
+

∂2m0

∂τ2f
+ β0m0 =0. (5.3)

The simplest example of such behavior is provided by

m0 =B exp
[

ih
(

kξ + α
(

ω0τf + ω1τs
))]

, (5.4)

where B is a constant related to the amplitude, α is defined by (3.4), ω0 is an eigenfrequency

satisfying the dispersion relation (3.1), and ω1 is a perturbation term, as we shall see later in §6.
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Substituting the asymptotic expansion (4.16) into the (5.1), we obtain at leading order

(

ν − λ21

) ∂2W
(0)
1

∂ξ2
+
(

ν − λ22

) ∂2W
(0)
2

∂ξ2
= 0,

λ1

(

λ21 − 2 + ν
) ∂3W

(0)
1

∂ξ3
+ λ2

(

λ22 − 2 + ν
) ∂3W

(0)
2

∂ξ3
= 0,

(5.5)

which is very similar to (3.13) and, hence, leads to the dispersion relation (3.15).

At the next order, the boundary conditions (5.1) yield

∂2W (1)

∂η2
+ ν

∂2W (1)

∂ξ2
=−

M0

P
,

∂3W (1)

∂η3
+ (2− ν)

∂3W (1)

∂ξ2∂η
=0.

(5.6)

Differentiating these equations twice with respect to ξ, we deduce, with use of (4.10) and (4.14),

that

∂4W
(1)
1

∂ξ4
=−

1

λ21

(

1

γ2e

∂2W
(0)
1

∂τs∂τf
+

∂4W
(1)
1

∂η2∂ξ2

)

, (5.7)

and

∂4W
(1)
2

∂ξ4
=

1

λ22

(

1

γ2e

∂2W
(0)
2

∂τs∂τf
−

∂4W
(1)
2

∂η2∂ξ2

)

. (5.8)

Therefore, the boundary conditions (5.6) may be transformed to

(

1−
ν

λ21

)

∂4W
(1)
1

∂η2∂ξ2
+

(

1−
ν

λ22

)

∂4W
(1)
2

∂η2∂ξ2
−

ν

γ2eλ
2
1

∂2W
(0)
1

∂τs∂τf

+
ν

γ2eλ22

∂2W
(0)
2

∂τs∂τf
=−

1

P

∂2M0

∂ξ2
,

∂5W
(1)
1

∂η3∂ξ2
+

∂5W
(1)
2

∂η3∂ξ2
+ (2− ν)

∂5W
(1)
1

∂ξ4∂η
+ (2− ν)

∂5W
(1)
1

∂ξ4∂η
= 0.

(5.9)

Substituting solution (4.16) into (5.9), we obtain

(

1−
ν

λ21

)

∂4Φ
(1,0)
1

∂η2∂ξ2
+

(

1−
ν

λ22

)

∂4Φ
(1,0)
2

∂η2∂ξ2
−

1

2γ2e

(

1 +
ν

λ21

)

∂2W
(0)
1

∂τs∂τf

+
1

2γ2e

(

1 +
ν

λ22

)

∂2W
(0)
2

∂τs∂τf
=−

1

P

∂2M0

∂ξ2
,

[

∂5

∂η3∂ξ2
+(2−ν)

∂5

∂η∂ξ4

]

(

Φ
(1,0)
1 +Φ

(1,0)
2

)

−
1

γ2e

∂3

∂η∂τs∂τf

(

W
(0)
1 −W

(0)
2

)

= 0.

(5.10)

Using the Cauchy-Riemann identities, taking harmonic conjugation of the second equation and

integrating with respect to ξ, we may establish that

(

ν − λ21

) ∂4Φ
(1,0)
1

∂ξ4
+
(

ν − λ22

) ∂4Φ
(1,0)
2

∂ξ4
=

1

2γ2e

(

1 +
ν

λ21

)

∂2W
(0)
1

∂τs∂τf

−
1

2γ2e

(

1 +
ν

λ22

)

∂2W
(0)
2

∂τs∂τf
−

1

P

∂2M0

∂ξ2
,

λ1

(

ν − λ22

)∂4Φ
(1,0)
1

∂ξ4
+ λ2

(

ν − λ21

)∂4Φ
(1,0)
2

∂ξ4
=

λ2
γ2e

∂2W
(0)
2

∂τs∂τf
−

λ1
γ2e

∂2W
(0)
1

∂τs∂τf
.

(5.11)
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In contrast with (5.5), the system (5.11) is non-homogeneous, with the determinant of the latter

vanishing in view of (3.14). Then the compatibility condition gives

[

λ1(ν − λ22)−
λ2(ν

2 − λ41)

2λ21

]

∂2W
(0)
1

∂τs∂τf

+

[

λ2(ν − λ22) +
(ν − λ21)(ν + λ22)

2λ2

]

∂2W
(0)
2

∂τs∂τf
=−

γ2eλ2(ν − λ21)

P

∂2M0

∂ξ2
.

(5.12)

Using the general representation (3.16), it is possible to express W
(0)
1 and W

(0)
2 through W (0) on

the edge η=0, yielding

∂2W (0)

∂τf∂τs
=

Q

2P

∂2M0

∂ξ2
, (5.13)

where

Q=−
4γ4eλ2(ν − λ21)

a1(ν − λ21) + a2(ν − λ22)
, (5.14)

with

a1 =
(ν + λ22)(ν − λ21)

2λ2
+ λ2(ν − λ22), a2 =

λ2(ν
2 − λ41)

2λ21
+ λ1(ν − λ22).

After some rather tedious but straightforward algebra, it is possible to simplify the expression for

Q to the form

Q=
χ (ν + χ)

1− ν + χ
, (5.15)

where

χ= λ1λ2 =

√

1− γ4e .

It is noted that the coefficient Q depends on the Poisson’s ratio only. The graphical illustration is

presented in Figure 3, revealing a monotonic increase of Q with the Poisson’s ratio ν. Employing

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Q

ν

Figure 3. Coefficient Q vs. the Poisson’s ratio ν
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the leading order approximation

W =
h2P

εD
W (0), (5.16)

it is possible to rearrange (5.13) as

2ε
∂2W

∂τf∂τs
=

3Q(1− ν2)

2Eh

∂2M0

∂ξ2
, (5.17)

Then, using the beam-like assumption (3.6), equation (5.17) implies

γ4e
∂4W

∂ξ4
+

∂2W

∂τ2f
+ 2ε

∂2W

∂τf∂τs
+ β0W =

3Q(1− ν2)

2Eh

∂2M0

∂ξ2
. (5.18)

Neglecting O(ε2) terms and returning to the original variables results in the parabolic equation

on the edge, given by

Dγ4e
∂4W

∂x4
+ 2ρh

∂2W

∂t2
+ βW =Q

∂2M0

∂x2
. (5.19)

Within the obtained approximate formulation the decay away from the edge is described by

the elliptic equation

∆1∆2W = 0, (5.20)

where

∆j = ∂2y + λ2j∂
2
x, (j = 1, 2) (5.21)

which should be solved in conjunction with the parabolic equation (5.19). In fact, the

representation in terms of a single harmonic function (3.16) simplifies the formulation even

further, since

W (x, 0, t) =
λ2i − λ2j

ν − λ2j
Wi (x, 0, t) . (5.22)

It is also worth noting that for the prescribed edge moment (5.2) evolving in slow time, the

solution of (5.13) becomes

W (0) =
Q

2P

∂ 2m0

∂ξ2
. (5.23)

At the same time, it is clear that for an arbitrary edge moment M0 the solution of (5.13), and

therefore the parabolic-elliptic model (5.19) and (5.20) provides a correct evaluation of the edge

wave contribution to the overall dynamic response. This is not surprising since the procedure

does in fact involve approximation in the vicinity of edge wave poles. More details may be found

in the Appendix, see (A 9) and (A 10).

We remark that the analysed wave usually dominates in the far-field near-edge zone for a

general load, and also in case of near-resonant regimes of moving loads. These have been studied

in the context of an explicit hyperbolic-elliptic model for the Rayleigh wave, see [24]. We also

note a model example for a moving load on the edge of a Kirchhoff plate resting on the Winkler

foundation considered in Kaplunov et al. [9], providing a hint of a beam-like behaviour at the

edge.

The explicit model for the bending edge wave for moment edge loading is formulated as a

Dirichlet problem for any of the following two pseudo-static elliptic equations

∂2Wj

∂y2
+ λ2j

∂2Wj

∂x2
= 0, (j = 1, 2) (5.24)

with the deflection at the edge y =0 sought from the parabolic equation (5.19), taking into account

(3.16) and (5.22). In other words, the solution of the dynamic parabolic equation (5.19) is used

together with relation (5.22) as a boundary condition for the pseudo-static elliptic equation (5.24).

The resulting plane harmonic function is then substituted into the relation (3.16) in order to restore

the deflection of the plate. Thus, the dual parabolic-elliptic nature of the bending edge wave is

established.
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(b) Shear force

A similar formulation may be derived for the second type of boundary conditions (2.2), with now

M0 = 0, N0 6= 0. This corresponds to shear force excitation, taking the form

∂2W

∂η2
+ ν

∂2W

∂ξ2
= 0,

∂3W

∂η3
+ (2− ν)

∂3W

∂ξ2∂η
=−

h3N0

D
.

(5.25)

The analysis is rather similar to that presented in the previous subsection. The dispersion relation

follows from the leading order boundary conditions, with the following system obtained at the

next order
(

1−
ν

λ21

)

∂4W
(1)
1

∂η2∂ξ2
+

(

1−
ν

λ22

)

∂4W
(1)
2

∂η2∂ξ2
−

ν

γ2eλ
2
1

∂2W
(0)
1

∂τs∂τf
+

ν

γ2eλ
2
2

∂2W
(0)
2

∂τs∂τf
=0,

∂5W
(1)
1

∂η3∂ξ2
+

∂5W
(1)
2

∂η3∂ξ2
+ (2− ν)

∂5W
(1)
1

∂ξ4∂η
+ (2− ν)

∂5W
(1)
1

∂ξ4∂η
=−

h

P

∂2N0

∂ξ2
.

(5.26)

Remarkably, this system does not lead to a parabolic beam equation for the deflection W . Instead

it provides an equation for the rotation angle θ=
∂W

∂y
, evaluated at the edge y= 0, namely,

Dγ4e
∂4θ

∂x4
+ 2ρh

∂2θ

∂t2
+ βθ=−Q

∂2N0

∂x2
, (5.27)

with the constant Q defined in (5.15).

The resulting explicit model for the shear edge force is similar to that obtained in respect of a

bending moment. It contains the elliptic equation,

∂2θj
∂y2

+ λ2j
∂2θj
∂x2

=0, (5.28)

which is solved in conjunction with the parabolic equation on the edge (5.27) and relations (3.16).

6. Near-resonant harmonic excitation

Let us consider an example illustrating the implementation of the model for a near-resonant edge

loading. Consider inhomogeneous boundary conditions, when the bending edge moment is given

by

M0 =Aei(kx−ωt), (6.1)

and no shear edge force is assumed. This loading allows a particular form of solution of the

boundary value problem (2.1), (2.2) which is written as

W (x, y, t) = V (y)ei(kx−ωt). (6.2)

The original plate bending equation (2.1) is then transformed into a secular equation for the

function V (y), namely,

d 4V

dy4
− 2k2

d 2V

dy2
+

(

k4 +
β − 2ρhω2

D

)

V = 0. (6.3)

The decaying solution of (6.3) is written as

W (x, y, t) =

2
∑

i=1

Cie
i(kx−ωt)−kκiy. (6.4)

with

κ21 + κ21 = 2, κ21κ
2
1 = 1 +

β − 2ρhω2

Dk4
. (6.5)
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It is easily verified that the attenuation orders κi will coincide with λi provided the frequency ω

and the wave number k satisfy the dispersion relation (3.1). The constants Ci may be determined

from the boundary conditions. The exact solution at the edge is then given by

W (x, 0, t) =−
A

Dk2
κ1κ2 + ν

κ21κ
2
2 + 2(1− ν)κ1κ2 − ν2

ei(kx−ωt). (6.6)

Let us now compare the last formula with that obtained within the approximate formulation

derived in §5. In the case of the specified boundary conditions, the related particular solution of

equation (5.19) is given by

W (x,0, t) =−
AQk2

Dk4γ4e + β − 2ρhω2
ei(kx−ωt), (6.7)

with Q defined in (5.15). It may be observed that both exact and approximate formulae, (6.6) and

(6.7), respectively, display resonant behaviour whenever the frequency ω and the wave number k

satisfy the dispersion relation (3.1).

We will now compare solutions (6.6) and (6.7) when the wave speed of the excitation is close

to that of the bending edge wave. Consider a frequency perturbation of the form

ω =ω0 + εω1, |ε|≪ 1, (6.8)

where ω0 =

√

Dγ2ek
4 + β

2ρh
, see (3.1). This is exactly the case of the bending edge motion evolving

in slow time ts = εt as the asymptotic theory in §4 and §5 requires. Indeed, it may be shown that

in view of (6.8) and (5.2) the form of the near-resonant excitation (6.1) will coincide with (5.4)

provided that A=−Bh2α2ω0ω1. First we obtain

κ1κ2 =

√

1 +
β − 2ρhω2

Dk4
≈ λ1λ2 −

2ρh

Dk4
εω0ω1

λ1λ2
. (6.9)

Substituting this into the particular solution (6.6) and making use of the dispersion relation (3.15),

we obtain

W (x,0,t)≈−
A

Dk2
(λ1λ2 + ν) ei(kx−ωt)

[

λ21λ
2
2 + 2(1− ν)λ1λ2−ν2

]

−
4ρhεω0ω1

Dk4

(

1 +
1− ν

λ1λ2

)

=
Ak2λ1λ2 (ν + λ1λ2) e

i(kx−ωt)

4ρhεω0ω1 (1− ν + λ1λ2)
=

AQk2ei(kx−ωt)

4ρhεω0ω1
.

(6.10)

It is readily verified that the last expression coincides with the leading order behaviour of the

approximate solution (6.7) obtained within the framework of the the parabolic-elliptic model.

Indeed, inserting (6.8), we have

W (x,0, t)≈−
AQk2 ei(kx−ωt)

[

Dk4γ4e + β − 2ρhω2
0

]

− 4ρhεω0ω1
=

AQk2ei(kx−ωt)

4ρhεω0ω1
, (6.11)

matching with (6.10).

7. Concluding remarks

Two main goals have been achieved in this paper. First, using the beam-like assumption, a general

representation for the bending edge wave field has been obtained in terms of a single harmonic

function in §3. Then, perturbing this solution in slow time, an explicit model for the bending edge

wave has been constructed in §5. This model consists of a pseudo-static elliptic equation over the

interior, governing the decay away from the edge, together with a parabolic equation on the edge

describing wave propagation. The model reveals the dual parabolic-elliptic nature of the bending

edge wave on a plate supported by a Winker foundation. Considerable simplifications in the
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analysis of dynamic phenomena associated with edge wave propagation are shown to arise. The

model enables the contribution of the bending edge wave field to be separated from the overall

dynamic response of the plate. It is therefore envisaged that application of the model would be

efficient for analysis of dynamic resonant-type problems when the wave field associated with the

bending edge wave is dominant, as is the case of an example considered in §6. The model also

provides a leading order approximation in the near-edge far-field region, where the bending edge

wave is usually dominant.

The formulation presented in this paper may be developed for bending edge waves in the

case of refined plate theories, see e.g. [26], with the approach relying on the plate theories with

modified inertia, see [27] and references therein. Another direction of extension is related to edge

waves in anisotropic plates [28,29], laminated structures [30] and pre-stressed plates [31]. More

elaborate algebra is required to consider curved plates [32,33], shells [34,35], and interfacial edge

waves [36]. Finally, we mention considerations of more advanced models of elastic foundation

[10]. These problems provide further possible applications of the developed theory.

Appendix. Integral transform solution

The resulting parabolic-elliptic formulation may also be derived through integral transforms.

Indeed, applying the Laplace transform to (3.5) with respect to scaled time τ , and the Fourier

transform along the scaled longitudinal coordinate ξ (see (3.3)), we have

d4WFL

dη4
− 2p2

d2WFL

dη2
+
(

p4 + s2 + β0

)

WFL = 0, (A 1)

where p and s denote the parameters of Fourier and Laplace transforms, respectively, and WFL

is the transformed deflection W . The decaying solution of (A 1) is given by

WFL =C1e
−µ1η +C2e

−µ2η, (A 2)

where C1 and C2 are arbitrary constants, and

µ1,2 = p2 ± i
√

s2 + β0. (A 3)

Consider, for example, the case of arbitrary moment excitation at the edge η= 0, then the

boundary conditions (5.1) are transformed to

∂2WFL

∂η2
− νp2WFL =−

h2

D
MFL

0 ,

∂3WFL

∂η3
− (2− ν) p2

∂WFL

∂η
= 0,

(A 4)

where MFL
0 is the transformed moment M0. Substituting the solution (A 2) into the boundary

conditions (A 4), it is possible to determine the constants C1 and C2. The result for the deflection

transform WFL may be expressed as

WFL =
K1

K
e−µ1η +

K2

K
e−µ2η, (A 5)

where after some algebraic manipulations involving (A 3) we establish

Kj = (−1)jµj

[

µ2
j − (2− ν)p2

] h2MFL
0

D
, (j =1, 2)

K = (µ1 − µ2)
[

µ2
1µ

2
2 + 2µ1µ2(1− ν)p2 − ν2p4

]

.

(A 6)

It should be noted that the term in square brackets in the expression K may be written explicitly

as

p4 + s2 + β0 + 2(1− ν)p2
√

p4 + s2 + β0 − ν2p4, (A 7)
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possessing a zero associated with dispersion relation for bending edge wave (3.15), namely

s2 + β0 =−γ4ep
4. (A 8)

It may be observed that in view of (A 8) the transformed equation of motion (A 1) corresponds to

the elliptic equation (5.20). Let us also illustrate that the solution (A 5) corresponds to the parabolic

equation (5.19) at the edge η= 0. Indeed, using (A 6), it follows from (A 5) that

WFL∣
∣

η=0
=−

h2MFL
0

(

√

p4 + s2 + β0 + νp2
)

D
(

p4 + s2 + β0 + 2(1− ν)p2
√

p4 + s2 + β0 − ν2p4
) . (A 9)

Approximating the last result around the pole (A 8), we infer

WFL∣
∣

η=0
≈−

h2MFL
0 p2χ (χ+ ν)

D (χ+ 1− ν)
(

γ4ep4 + s2 + β0
) , (A 10)

which is a transformed solution of the parabolic equation (5.19) rewritten in terms of ξ and τ .

It is now evident that the presented parabolic-elliptic formulation (5.19) and (5.20) corresponds

to the contribution of the bending edge wave field to overall dynamics response. Analogous

consideration for a free Kirchhoff plate may be found in [37].

Data Accessibility. The paper does not report primary data.

Authors’ Contributions. All three authors have contributed substantially to the paper.

Competing Interests. We have no competing interests.

Acknowledgements. Fruitful discussions with Prof Y. Fu are gratefully acknowledged.

References

1. Konenkov, Yu. K. 1960 A Rayleigh-type bending wave. Sov. Phys. Acoust. 6, 122–123.
2. Ishlinsky, A. Yu. 1954 A particular limit transition in the theory of the stability of rectangular

elastic plates. Dokl. AN USSR 95(3), 474–479.
3. Sinha, B. K. 1974 Some remarks on propagation characteristics of ridge guide for acoustic

waves at low frequencies. J. Acoust. Soc. Am. 56, 16–18.
4. Thurston, R. N., McKenna, J. 1974 Bending acoustic waves along the edge of a plate. IEEE

Trans. Son. Ultrason. 21, 296–297.
5. Norris, A. N., Krylov, V. V., Abrahams, I. D. 2000 Bending edge waves and comments on "A

new bending wave solution for the classical plate equation". J. Acoust. Soc. Am. 107, 1781–1784.
6. Lawrie, J. B., Kaplunov, J. 2012 Edge waves and resonance on elastic structures: an overview.

Math. Mech. Solids. 17(1), 4–16 (doi: 10.1177/1081286511412281).
7. Liu, P., Zhang, Y. W., Gao, H. J. 2013 Interior and edge elastic waves in graphene. J. Appl. Mech.

80(4), 040901 (doi: 10.1115/1.4024166).
8. Singh, A.K., Lakshman, A., Chattopadhyay A. 2014 The plane waves at the edge of a

uniformly pre-stressed fiber-reinforced plate. J. Vib. Contr. (doi: 10.1177/1077546314548087).
9. Kaplunov, J.D., Prikazchikov, D.A., Rogerson G.A., Lashab M. 2014 The edge bending

wave on elastically supported Kirchhoff plate. J. Acoust. Soc. Am. 136(4), 1487–1490
(http://dx.doi.org/10.1121/1.4894795).

10. Kaplunov, J., Nobili A. 2015 The edge waves on a Kirchhoff plate bilaterally supported by a
two-parameter elastic foundation. J. Vib. Contr. (doi: 10.1177/1077546315606838).

11. Friedlander, F. G. 1948 On the total reflection of plane waves. Q. J. Mech. Appl. Math. 1, 376–384
(doi: 10.1093/qjmam/1.1.376).

12. Chadwick, P. 1976 Surface and interfacial waves of arbitrary form in isotropic elastic media. J.
Elast. 6, 73–80 (doi: 10.1007/BF00135177).

13. Parker, D. F., Kiselev, A. P. 2009 Rayleigh waves having generalised lateral dependence. Quart.
J. Mech. Appl. Math. 62, 19–30. (doi:10.1093/qjmam/hbn022)

14. Kiselev, A. P., Rogerson, G. A. 2009 Laterally dependent surface waves in an
elastic medium with a general depth dependence. Wave Motion 46(8), 539–547. (doi:
10.1016/j.wavemoti.2009.06.016)

Page 15 of 16

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

16

rs
p
a
.ro

ya
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................

15. Kiselev, A. P., Parker, D. F. 2010 Omni-directional Rayleigh, Stoneley and Schölte waves with
general time dependence. Proc. Roy. Soc. A. 466, 2241–2258 (doi: 10.1098/rspa.2009.0595).

16. Parker, D. F. 2012 Evanescent Schölte waves of arbitrary profile and direction. Europ. J. Appl.
Math. 23, 267–287 (doi: 10.1017/S0956792511000362).

17. Prikazchikov, D. A. 2013 Rayleigh waves of arbitrary profile in anisotropic media. Mech. Res.
Comm. 50, 83–86 (doi: 10.1002/zamm.201400211).

18. Parker, D. F. 2013 The Stroh formalism for elastic surface waves of general profile. Proc. Roy.
Soc. A. 469, 20130301. (doi: 10.1098/rspa.2013.0301).

19. Achenbach, J.D. 1998 Explicit solutions for carrier waves supporting surface waves and plate
waves. Wave Motion 28, 89–97 (doi: 10.1016/S0165-2125(97)00056-5).

20. Rousseau, M., Maugin, G. A. 2011 Rayleigh surface waves and their canonically associated
quasi-particles. Proc. Roy. Soc. A. 467, 495–507 (doi: 10.1098/rspa.2010.0229).

21. Kaplunov, J., Zakharov A., Prikazchikov D. A. 2006 Explicit models for elastic and piezoelastic
surface waves. IMA J. Appl. Math. 71, 768–782 (doi: 10.1093/imamat/hxl012).

22. Kaplunov, J.D., Prikazchikov, D.A. 2013 Explicit models for surface, interfacial and edge
waves in elastic solids. In "Dynamic localization phenomena in elasticity, acoustics and
electromagnetism" (Eds R. Craster & J. Kaplunov), CISM Lecture Notes, 547, Springer-Verlag,
73–114.

23. Fryba, L. 1972 Vibration of solids and structures under moving loads. Noordhoff International,
Groningen, The Netherlands.

24. Kaplunov, J., Nolde E.V., Prikazchikov D. A. 2010 A revisit to the moving load problem
using an asymptotic model for the Rayleigh wave. Wave Motion 71, 440–451 (doi:
10.1016/j.wavemoti.2010.01.005).

25. Titchmarch E.C. 1939 The theory of functions. 2nd Ed., Oxford University Press, Oxford, UK.
26. Zakharov, D. D. 2004 Analysis of the acoustical edge bending mode in a plate using refined

asymptotics. J. Acoust. Soc. Am. 116(2), 872–878 (doi: 10.1121/1.1763957).
27. Kaplunov, J.D., Nolde, E.V., Shorr, B.F. 2005 A perturbation approach for evaluating

natural frequencies of moderately thick elliptic plates. J. Sound Vib. 281, 905–919 (doi:
10.1016/j.jsv.2004.02.046).

28. Norris, A. N. 1994 Bending edge waves, J. Sound Vib. 174, 571–573 .
29. Piliposyan, G. T., Belubekyan M.V., Ghazaryan, K. B. 2010 Localized bending edge waves in a

transversely isotropic plate. J. Sound Vib. 329(17), 3596–3605 (doi: 10.1016/j.jsv.2010.03.019).
30. Fu, Y.B., Brookes, D.W. 2006 Edge waves in asymmetrically laminated plates. J. Mech. Phys.

Solids 54, 1–21 (doi: 10.1016/j.jmps.2005.08.007).
31. Pichugin, A. V. & Rogerson, G. A. 2012 Extensional edge waves in pre-stressed incompressible

plates. Math. Mech. Solids. 17(1), 27–42 (doi: 10.1177/1081286511412440).
32. Cherednichenko, K. 2007 An asymptotic expansion of the boundary-layer type for bending

waves along the curved edge of a Kirchhoff-Love elastic plate. Jl Math Sci. 142(6), 2682–2688
(doi: 10.1007/s10958-007-0155-9).

33. Destrade, M., Fu, Y.B. 2008 A wave near the edge of a circular disk. Open Acoust. J. 1, 15–18
(doi: 10.2174/1874837600801010015).

34. Kaplunov, J.D., Wilde M. V. 2000 Edge and interfacial vibrations in elastic shells of revolution.
Z. Angew. Math. Phys. 51(4), 530–549 (doi: 10.1007/s000330050015).

35. Fu, Y.B., Kaplunov, J. 2012 Analysis of localized edge vibrations of cylindrical shells using the
Stroh formalism. Math. Mech. Solids 17(1), 59–66 (doi: 10.1177/10811286511412442).

36. Zilbergleit, A. S., Suslova, I. B. 1983 Contact bending waves in thin plates. Sov. Phys. Acoust.
29, 108–111.

37. Kossovich, E. Yu. 2011 PhD thesis, Brunel University, UK

Page 16 of 16

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


