
The Journal of Systems and Software 74 (2005) 325–335

www.elsevier.com/locate/jss
An investigation of software engineering curricula

Barbara Kitchenham *, David Budgen, Pearl Brereton, Philip Woodall

Department of Computer Science, Keele University, Staffordshire ST5 5BG, UK

Received 5 November 2003; received in revised form 7 March 2004; accepted 15 March 2004

Available online 12 May 2004

Abstract

We adapted a survey instrument developed by Timothy Lethbridge to assess the extent to which the education delivered by four

UK universities matches the requirements of the software industry. We propose a survey methodology that we believe addresses the

research question more appropriately than the one used by Lethbridge. In particular, we suggest that restricting the scope of the

survey to address the question of whether the curricula for a specific university addressed the needs of its own students, allowed us to

identify an appropriate target population. However, our own survey suffered from several problems. In particular the questions used

in the survey are not ideal, and the response rate was poor.

Although the poor response rate reduces the value of our results, our survey appears to confirm several of Lethbridge’s

observations with respect to the over-emphasis of mathematical topics and the under-emphasis on business topics. We also

have a close agreement with respect to the relative importance of different software engineering topics. However the set of topics,

that we found were taught far less than their importance would suggest, were quite different from the topics identified by

Lethbridge.

� 2004 Elsevier Inc.

Keywords: Software engineering curricula; Survey methods

Open access under CC BY-NC-ND license.
1. Introduction

Lethbridge (1998, 2000) conducted two surveys to
identify topics where software practitioners felt they

needed more or better education. His initial goals

(Lethbridge, 1998) were to provide

• information to educational institutions and compa-

nies as they plan curricula and training programs,

• data that will assist educators and practitioners in

evaluating existing and proposed curricula.

To determine the effects of formal education, Leth-

bridge (1998) presented the respondents with a list of

57 topics related to software (31 topics), mathematics

(9 topics), engineering (4 topics) and other concerns

(13 topics). For each topic, the respondent was asked:
*Corresponding author. Tel.: +44-178-258-3075; fax: +44-178-271-

3082.

E-mail addresses: barbara@cs.keele.ac.uk, ap_kitchenham@

onetel.net.uk (B. Kitchenham).

0164-1212 � 2004 Elsevier Inc.

doi:10.1016/j.jss.2004.03.016

Open access under CC BY-NC-ND license.
1. How much did you learn about this at University or

College?

2. What is your current knowledge about this, consider-
ing what you have learned on the job as well as for-

gotten?

3. How useful has this specific material been to you in

your career?

4. How useful would it be (or have been) to learn more

about this (e.g. additional courses)?

The subjects were asked to reply to each question on a
fully specified six-point ordinal scale. The topics were

selected by examining university curricula and the initial

IEEE/ACM software engineering body of knowledge.

As a result of his survey Lethbridge concluded that

software engineering curricula were not delivering

appropriate education to practitioners and that changes

to curricula were necessary. The survey was repeated

later (with slightly amended questions and more topics)
and similar results were obtained (Lethbridge, 2000).

We have a number of concerns about the validity of

Lethbridge’s surveys (see Section 2), but we believe the

mail to: barbara@cs.keele.ac.uk,
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


326 B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335
topic he raised is very important. We have therefore

attempted to replicate Lethbridge’s surveys using an

improved survey technique.

In Section 2, we discuss the problems with Leth-

bridge’s survey method and the procedure we adopted

to address those problems. In Section 3, we present the
results of our survey. In Section 4, we contrast our re-

sults with Lethbridge’s results. In Section 5, we discuss

the problems and limitations of our own survey. We

present our conclusions in Section 6.
1 We have not named the other participating universities because

they wished to remain anonymous.
2. The survey method

2.1. Population and sampling

There are a number of problems with Lethbridge’s

survey method but most arise because Lethbridge did

not define the population to which his results would

apply. He recruited participants for the surveys in two

ways by approaching companies directly and asking

them to participate, and by advertising for participants
on the Web. Thus, Lethbridge’s survey had no defined

target population, nor was there any concept of sam-

pling from a target population. He obtained a set of

responses from the group of people motivated to re-

spond. So, although he described the demographic

properties of his respondents (age, highest education

qualification, nationality etc.), he had no way of

assessing response rate and, more importantly formally,
no generalisation of his results is possible (Fink, 1995).

Inspection of the demographic properties of Leth-

bridge’s respondents raises the issue of whether they

were able to throw any light on the main concerns of the

survey. In both surveys, some of the respondents grad-

uated a very long time ago, and some graduated in non-

computer science-related disciplines, migrating post

graduation to software engineering. Thus, it seems un-
likely that such respondents could offer useful infor-

mation about current computer science-related curricula

or training programs.

One reason it was difficult to define an appropriate

subject population was because the persons expected to

benefit from the survey were very general. In his first

paper, Lethbridge (1998) referred to educational insti-

tutions and companies planning curricula and training
programs. His later paper, Lethbridge (2000) referred to

software engineering licensing bodies, companies

focussing on better training for their staff, and the IEEE

in its SWEBOK project (Bourque and Dupuis, 2001).

We believe that it is easier to define an appropriate

subject population, if the group intended to benefit from

the survey is well-defined. From our point of view as

lecturers in a specific university, we want to know that
our curriculum is appropriate to the needs of our

undergraduate students. To address this question, we
need to assess whether our curriculum was appropriate

to the needs of our recent graduates. Thus, restricting

the scope of the survey goal helped us to define the

appropriate population to survey.

We used the following method to define and sample

our population. We selected as our target population
people who had graduated in computer science or soft-

ware engineering from four English universities includ-

ing, Keele University, in 1998 and 1995. 1 This

population was chosen because

• it included graduates who had been in industry long

enough to have experienced a reasonably wide range

of software engineering jobs and tasks;
• it excluded graduates who had not studied computer

science or software engineering;

• it excluded graduates who had left university so long

ago that the curriculum they experienced would have

changed anyway.

We were also able to make our population more

homogeneous with respect to the addressing the goal of
the survey, using the following exclusion criteria:

• Female students were, unfortunately, a very small

proportion of graduates for three of the universities

participating in the survey, so they were excluded

from the population list for those three universities.

This was necessary because the survey included a

self-assessment section. There is evidence that males
over-estimate their ability and females underestimate

their ability (see for example, Beyer, 1990; Beyer and

Bowden, 1997). With a small sample of female stu-

dents, it would not be possible to adjust for any sys-

tematic bias introduced by gender, so we excluded

them from the population list for three of the univer-

sities.

• At Keele University, most students take dual hon-
ours degrees (i.e. the equivalent of a double-major

in a US university), so we excluded single honours

graduates. At the other universities, most graduates

took single honours (i.e. the equivalent of a single

major in a US university), so we excluded joint hon-

ours graduates. Thus, we ensured that the population

list for each university reflected the main student

group for which the university’s curriculum was de-
signed.

From the resulting population list for each university,

we selected a random sample of 60 graduates within the

following blocks:



B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335 327
1. Year of graduation i.e. 1995, or 1998. The survey was

undertaken in summer 2002, so our subjects gradu-

ated either seven or four years prior to the survey.

2. Version of the questionnaire. Following Lethbridge’s

approach we used two versions of the questionnaire

with the questions in different orders. This was done
to reduce question order bias.

We gave each graduate a uniquely coded questionnaire

so that (theoretically) we could follow-up subjects who

did not respond. Because responses were not com-

pletely anonymous, we provided a secure filing cabinet

to hold the information that linked the questionnaire

identifier to a particular graduate. Each of the selected
graduates received a personalised letter explaining the

goals of the survey and how they had been selected to

take part. They were also offered the opportunity to

complete a Web-based version of the questionnaire as

an alternative to completing the questionnaire by

hand.

2.2. Other survey method issues

2.2.1. Question format

Each of Lethbridge’s two surveys was on the same

topic, but Lethbridge made minor changes to the first

three questions and made a major change to his last

question about each topic. In the first survey (Leth-

bridge, 1998), question 4 was

‘‘How useful would it be (or have been) to learn

more about this (e.g. additional courses)?’’

In his second survey (Lethbridge, 2000), question 4

was

‘‘How much influence has learning the material had

on your thinking (i.e. your approach to problems
and your general maturity), whether or not you

have directly used the details of the material? Please

consider influence on both your career and other

aspects of your life.’’

In our opinion, the first version of the question was

better than the second version, because the second ver-

sion is more complex and thus more difficult to interpret
and understand. In particular, the second version ap-

pears to be two-edged (referring both to approach to

problems and to general maturity) and rather impre-

cise (since it may not be clear what ‘‘general maturity’’

really means). Thus we used the first version of the

question.

Unfortunately, further reflection indicates that even

the first version of the question is ambiguous. Is the
respondent supposed to answer in terms of whether he

would have benefited from more courses at university,
or in terms of whether he would benefit from industrial

courses at the present time? Even more unfortunately,

we did not recognize this problem until we had reviewed

some of the responses to our questionnaire.

In his first survey (Lethbridge, 1998), Lethbridge

identified 57 topics in four groups. In his second survey,
he included 75 topics (Lethbridge, 2000). We amended

the 75 topics to 78 classified in terms of software (39

topics), hardware (10 topics), maths (14 topics) and non-

computing (15 topics). In particular, we included Web-

based programming, and multi-media, which Lethbridge

did not include, and we split software design and patterns

into two separate topics: software design practices and

software design patterns.

2.2.2. Research ethics

When undertaking research involving human subjects

it is necessary to consider whether participating in the

research could adversely affect the subject (Singer and

Vinson, 2001). In this case there are two possible adverse

effects:

1. Wasting the subject’s time. If our survey were so badly

planned that we were unable to draw any valid con-

clusions, we should have known this in advance,

and abandoned any attempt at a survey. Or, if we

failed to analyse, report and act upon the results,

we could certainly be accused of wasting the respon-

dent’s time.

2. Breaching anonymity. We did not want respondents
who commented unfavourably on the courses they

were taught at university to be identified. It is possible

that such subjects might receive a biased report if they

later requested a reference from their university. We

did not want this to happen or for subjects to fear

that it might happen.

In the first case, we tried to identify as many of the
problems with Lethbridge’s survey as we could and to

put in place procedures to address those problems. In

the second case we prepared an ethical statement and

published it on the web. The ethical statement is shown

in Appendix A to this paper. Subjects were informed of

the ethical statement’s web address in the covering letter

accompanying the survey questionnaire, so they could

check that we had employed appropriate methods for
preserving their anonymity. (Note this is an additional

reason for excluding female graduates from a target

population. If they represent only a very small propor-

tion of a target population, it is possible that an analysis

of responses from females might allow individuals to be

identified.)

2.2.3. Analysis method

Each of Lethbridge’s four main questions has its own

associated ordinal scale with responses defined in the



Table 1

Survey response rate

University Responses Sample Response rate (%)

A 8 60 13.33

328 B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335
context of the question. For instance, question 1 ‘‘How

much did you learn about this at your university or

college’’ had the following fully-defined ordinal scale:

Instead of using Lethbridge’s six-point scale from 0 to

5, we used a scale from 1 to 6. Since the numerical values
represent an ordinal scale, both scales are equivalent.

We prefer to use 1–6 to emphasise that the underlying

ordinal scale has six-scale points.

Lethbridge (2000) constructed two compound

measures from the responses for each topic area:

Overall importance2 ¼ ðQ3i þ Q4iÞ=2; ð1Þ

learned ðforgottenÞ since education ¼ Q2i � Q1i; ð2Þ
where Qji is the numerical value of subject i’s ordinal

scale response to question j. In his earlier paper, Leth-

bridge (1998), used the second measure (i.e. Q2� Q1)
but did not take the average of questions 3 and 4. He
noted that question 3 was considered a better indicator

of usefulness than question 4.

Lethbridge (2000) also defined the current knowledge

gap as the difference between the importance of the topic

and the amount currently known:

Knowledge gap ¼ Q2i �Overall importance: ð3Þ
There are two concerns with this method of analysis:

1. The construction of the overall importance, learned
since education and knowledge gap variables violates

the mathematical restrictions implied by an ordinal

scale (Fenton and Pfleeger, 1996). Although research-

ers frequently treat ordinal scale measures as if they

are interval or ratio scale measures, it is preferable

to avoid violating scale type restrictions if possible.

2. The results are based on the extent to which education

suited the individual rather than whether the educa-
tion received was reasonable for the cohort as a whole.

Now, it is not possible for education to prepare each

individual perfectly for his future employment be-

Score Definition

0 Learned nothing at all

1 Became vaguely familiar

2 Learned the basics

3 Became functional (moderate

working knowledge)

4 Learned a lot

5 Learned in depth, became expert
(learned almost everything)
2 There is a discrepancy between the description of the importance

measure, as the average of Q3 and Q4 and the headings given in Tables

2–4 which suggest than the sum not the average was used (Lethbridge

2000). Inspection of the values for importance shown in Fig. 2 of

Lethbridge (2000), confirms that the average not the sum was used.
cause each person’s job will be different. Thus, it we

believe that it is preferable to assess whether the edu-

cation was suitable for the group as a whole rather

than the individual. Thus, we analysed our data from

the viewpoint of the cohort’s response to each topic

rather than the viewpoint of the individual.

As an alternative method of assessing importance, we

based our assessment on the proportion of subjects

scoring three (indicating moderate usefulness) or more

for question 3 (recall that our scale went from 1 to 6):

Importance ¼ proportion of subjects scoring three

or more on Q3=number of subjects:

ð4Þ
Using the same approach for Q1, we measured the

proportion of the cohort given a moderate or better

education in each of the topic areas:

Educational provision ¼ proportion of subjects

scoring three or more on Q1=number of subjects:

ð5Þ
Comparison of the proportions for each question let us

see the extent to which the different topics were learned

at university corresponds with their relative importance.
We defined the knowledge gap to be the difference

between importance and educational provision:

Knowledge gap ¼ importance

� educational provision: ð6Þ
Thus, our view of a knowledge gap refers to a gap be-

tween formal education and topic importance, whereas

Lethbridge’s view of a knowledge gap refers to a gap

between current knowledge and importance.
3. Results

3.1. Response rates

As shown in Table 1 the response rates were generally

poor. Although follow-up actions were planned, they

did not take place because the research interns assigned

to the task were only available for a limited time during

the summer vacation.
Keele 12 60 20

C 6 60 10.00

D 4 60 6.67

Total 30 240 12.50

University D included female students in its target population list, and

three of the four replies were from females.



Table 2

Correlation between the rank order of responses for Keele university

compared with the other universities

Q1 correlation Q2 correlation Q3 correlation Q4 correlation

0.83 0.78 0.86 0.81

B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335 329
It is important to stress, that we had originally

planned to analyse the replies for each university sepa-

rately. In Great Britain, each university department

controls its own curricula, so it is likely that curricula

from different universities will differ. However, with the

extremely limited response, we decided to test whether
the results could be analysed together.

We did this by comparing Keele University results

with the combined results from the other universities.

We did this because a priori there would seem to be a

case for assuming that Keele, which concentrates on

dual honours, would be somewhat different from the

other universities.

As described in Section 2.2.3, we calculated the pro-
portion of favourable responses for each question (i.e.

proportion of subjects scoring three or better compared

with the total number of responses). We then compared

the rank order for each question (for the software

engineering topics only) obtained from the Keele re-

sponses with the rank order for the other universities

(see Table 2). Since all the rank order correlations were

high (>0.7), we concluded that it was reasonable to
analyse all the data together. 3

3.2. Implication for curriculum design

Given the low response rate the following analysis

must be treated with caution. However, it does illustrate

how to analyse survey data from a cohort viewpoint

with minimal violation of measurement scales.
The percentage of replies of three or more for each

topic are shown in Table 3 for software engineering

topics, Table 5 for hardware engineering topics, Table 6

for mathematical topics and Table 7 for other topics.

The topics are ordered on Q3: ‘‘How useful has this

specific material been to you in your career?’’.

We assume that the response to Q1: ‘‘How much did

you learn about this topic in your formal education?’’ is
related to the extent to which the topic is represented in

the curriculum. Making this assumption, we can see

from Table 3 that some topics seem to be under-repre-

sented on the curriculum relative to their importance,

some are over-represented and some are represented in

line with their importance.

This is easier to appreciate if we subtract the Q3
proportion from the Q1 proportion to construct a
measure of the knowledge gap and order by the differ-

ence. This analysis is shown in Table 4, which also

indicates the rank order of importance. This shows that

the topics that are most seriously under-represented are

Web-based programming, project management, and
3 This is a purely heuristic procedure. A poor correlation would

certainly confirm that the data should not be pooled but there is no

minimum correlation coefficient level that confirms that data can be

pooled.
configuration and release management. Of these three

topics, we might consider project management the most

important topic for curriculum changes because it is also

a topic that subjects judged to be of major importance in

their jobs. Web-based programming and configuration

management were judged to be of average importance,

suggesting they are relevant to specific jobs rather than

more generally. These topics might be candidates for
industry-based courses. Topics that are substantially

over-taught are parsing and compiler design, artificial

intelligence, and formal specification methods. All these

topics are also considered relatively unimportant in

industry, so are candidates for curriculum changes.

Table 5 shows the results for hardware engineering

topics. It suggests that networks, architecture, and

telecommunications are quite important topics for
software engineers. Furthermore, telecommunications is

rather under-represented in the curriculum. Digital

electronics and digital logic, however, is over-repre-

sented in the curriculum.

Table 6 shows the results for mathematical topics. It

suggests that mathematical topics are not of much

importance in the software industry and are, therefore,

considerably over-represented in the curriculum.
Table 7 shows the results for non-computing topics.

It indicates that general business skills such as giving

presentations, management, leadership, ethics, and

negotiation are important in industry and are all under-

represented in the curriculum. Other academic topics are

generally not considered very important, nor is much

time allocated to them.
4. Comparison of results

In spite of the methodological difference, the results

of our survey show some similarity to the results of

Lethbridge’s surveys. Like Lethbridge we found that

• mathematical topics were not very important to soft-
ware engineers and appear to be taught more exten-

sively than is required;

• general business topics are quite important, but are

not taught in proportion to their importance, in par-

ticular, management, giving presentations, leader-

ship, and negotiating.

We do not mean to suggest that mathematical topics
are irrelevant to software engineers. Recently, in Sep-

tember 2003, Communications of the ACM published



Table 3

Percentage of responses of three or more for each software engineering topic ordered by importance (Q3)

Topic Q3 (importance), % Q1 (educational

provision), %

Q2 (current

knowledge), %

Q4 (usefulness of

extra training), %

Human computer interaction/user

interfaces

93.33 70.00 96.67 76.67

Project management 83.33 40.00 73.33 86.67

Databases 76.67 76.67 76.67 80.00

Operating systems 75.86 56.67 83.33 75.86

Requirements gathering and analysis 73.33 63.33 80.00 76.67

Specific programming languages 73.33 73.33 83.33 60.00

Data structures 73.33 70.00 80.00 50.00

Software architecture 70.00 70.00 80.00 66.67

Data transmission and networks 70.00 53.33 66.67 63.33

Analysis and design methods 66.67 76.67 73.33 66.67

Testing, verification and quality assurance 66.67 60.00 86.67 66.67

Software design practices 65.52 65.52 72.41 72.41

Web-based programming 60.71 10.00 43.33 83.33

Object oriented concepts and terminology 60.00 80.00 66.67 73.33

Systems programming 58.62 36.67 56.67 48.28

Information retrieval 57.14 44.83 58.62 57.14

Software design patterns 51.72 48.28 51.72 70.00

Configuration and release management 48.28 6.67 56.67 66.67

File management 46.67 36.67 80.00 36.67

Security and cryptography 46.43 20.00 36.67 56.67

Design of algorithms 44.83 56.67 50.00 37.93

Performance measurement and analysis 43.33 23.33 36.67 37.93

Computer graphics 39.29 13.33 33.33 34.48

Programming language theory 37.93 56.67 46.67 31.03

Multi-media 34.48 6.67 36.67 48.28

Maintenance, reengineering and reverse

engineering

33.33 20.00 53.33 56.67

Formal specification methods 33.33 73.33 43.33 36.67

Software cost estimation 28.57 10.00 30.00 56.67

Software reliability and fault tolerance 27.59 10.00 33.33 41.38

Parallel and distributed processing 27.59 26.67 26.67 30.00

Real-time system design 23.33 16.67 30.00 26.67

Computational complexity and algorithm

analysis

20.69 33.33 23.33 24.14

Parsing and compiler design 20.69 56.67 23.33 20.69

Process standards (CMM/ISO 9000 etc.) 17.24 10.00 20.00 35.71

Simulation 11.11 6.67 10.00 14.29

Computational methods for numerical

problems

10.71 23.33 23.33 14.29

Artificial intelligence 10.00 46.67 16.67 16.67

Software metrics 6.90 10.00 13.33 13.33

Pattern recognition and image processing 6.90 13.33 6.67 10.00

330 B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335
several papers with a covering editorial (Devlin, 2000)

by computer science academics arguing for the inclusion
of mathematics in computer science curricula. Com-

menting on Lethbridge’s results (Lethbridge, 1998),

Hendersen (2000) noted that ‘‘surveys of current prac-

tice reflect reality; many software engineers have not

been taught to use discrete mathematics and logic as

effective tools.’’ He suggested education was the means

of ensuring ‘‘future software engineers are able to use

mathematics and logic as powerful tools for reasoning
and thinking.’’ If he is correct, we can only conclude

that education has failed in the past to make the link

between mathematics and software engineering practice

clear to students. This implies that educationalists need
to rethink the ways in which mathematics is taught to

software engineering undergraduates.
Table 8 compares the top 10 software engineering

topics we found, with the top 10 Lethbridge found (2000).

Seven topics appear in both top 10 lists although in all but

one case the relative importance has changed. Three

topics appeared in our top 10 but not in Lethbridge’s:

databases, operating systems and data transmissions and

networks. Three topics appeared in Lethbridge’s top 10

but not ours: OO concepts (which our survey suggested
was being taught slightly more than required), testing,

verification and QA, and software design and patterns

(which, in our survey, both appeared to be taught at a

level commensurate with their importance).



Table 4

Appropriateness of curriculum to industry

Topic Importance rank order Knowledge gap (Q1� Q3)

Web-based programming 13 )50.71
Project management 2 )43.33
Configuration and release management 18 )41.61
Multi-media 25 )27.82
Security and cryptography 20 )26.43
Computer graphics 23 )25.95
Human computer interaction/user interfaces 1 )23.33
Systems programming 15 )21.95
Performance measurement and analysis 22 )20.00
Operating systems 4 )19.20
Software cost estimation 28 )18.57
Software reliability and fault tolerance 29 )17.59
Data transmission and networks 8 )16.67
Maintenance, reengineering and reverse engineering 26 )13.33
Information retrieval 16 )12.32
Requirements gathering and analysis 5 )10.00
File management 19 )10.00
Process standards (CMM/ISO 9000 etc.) 34 )7.24
Real-time system design 31 )6.67
Testing, verification and quality assurance 10 )6.67
Simulation 35 )4.44
Software design patterns 17 )3.45
Data structures 6 )3.33
Parallel and distributed processing 30 )0.92
Databases 3 0.00

Specific programming languages 7 0.00

Software architecture 9 0.00

Software design practices 12 0.00

Software metrics 38 3.10

Pattern recognition and image processing 39 6.44

Analysis and design methods 11 10.00

Design of algorithms 21 11.84

Computational methods for numerical problems 36 12.62

Computational complexity and algorithm analysis 32 12.64

Programming language theory 24 18.74

Object oriented concepts and terminology 14 20.00

Parsing and compiler design 33 35.98

Artificial intelligence 37 36.67

Formal specification methods 27 40.00

Table 5

Percentage of responses of three or more for each hardware engineering topic ordered by importance

Topic Q3 (%) Q1 (%) Q2 (%) Q4 (%)

Network architecture and data transmission 55.56 46.67 63.33 60.00

Computer system architecture 40.74 43.33 66.67 41.38

Telephony and telecommunications 40.00 20.00 40.00 37.93

Microprocessor architecture 12.50 40.00 30.00 25.00

Data acquisition 11.54 3.33 10.00 24.14

Digital signal processing 8.70 10.00 3.33 17.86

Digital electronics and digital logic 8.00 40.00 33.33 17.86

Analogue electronics 8.00 16.67 6.67 10.71

Robotics 4.55 3.33 6.67 10.34

VLSI 0.00 3.33 3.33 4.00

B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335 331
It is not possible to determine the 10 least useful

software engineering topics from Lethbridge’s reports

but the low rating his respondents gave to AI and pat-

tern recognition/image processing is consistent with our

results.
The major difference between our survey and Leth-

bridge’s survey is the set of software engineering topics

for which a knowledge gap appears to exist. This is

shown in Table 9. There is no commonality at all be-

tween the two lists, although it should be noted that



Table 7

Percentage of responses of three or more for each non-computing topics ordered by importance

Topic Q3 (%) Q1 (%) Q2 (%) Q4 (%)

Giving presentations to an audience 80.00 53.33 93.33 73.33

Management 62.96 27.59 60.00 75.86

Leadership 62.96 16.67 66.67 72.41

Ethics and professionalism 55.56 25.00 63.33 55.56

Negotiation 51.85 17.86 50.00 74.07

Technical writing 43.33 27.59 56.67 62.07

Accounting 33.33 24.14 33.33 28.57

Marketing 29.63 13.79 33.33 42.86

Entrepreneurship 16.00 0.00 16.67 25.93

Second language 16.00 11.54 28.57 37.04

Physics 11.54 7.14 33.33 10.71

Chemistry 11.54 3.57 20.00 10.71

Economics 11.54 20.69 30.00 17.86

Psychology 7.69 17.24 16.67 14.29

Philosophy 7.69 7.14 16.67 11.11

Table 6

Percentage of responses of three or more for each mathematics topic ordered by importance

Topic Q3 (%) Q1 (%) Q2 (%) Q4 (%)

Predicate logic 28.57 66.67 43.33 10.71

Set theory 28.57 60.00 40.00 32.14

Probability and statistics 20.69 66.67 56.67 21.43

Linear algebra and matrices 17.86 40.00 40.00 17.86

Graph theory 14.29 30.00 26.67 14.29

Information theory 11.11 20.00 13.33 14.81

Differential equations 10.71 30.00 30.00 14.29

Automata theory 7.14 16.67 10.00 14.29

Formal languages 7.14 53.33 26.67 14.29

Laplace and Fourier transforms 7.14 16.67 10.00 10.71

Queuing theory 3.70 23.33 13.33 14.81

Combinatorics 3.70 10.00 0.00 10.71

Control theory 3.70 3.33 0.00 14.81

Differential and integral calculus 3.57 26.67 30.00 10.71

Table 8

Top 10 software engineering and computer science topics

Lethbridge survey Our survey

Specific programming languages HCI/user interfaces

Data structures Project management

Software design and patterns Databases

Software architecture Operating systems

Requirements gathering/analysis Requirements gathering/analysis

OO concepts Specific programming languages

HCI/user interface Data structures

Analysis and design methods Software architecture

Project management Data transmission and networks

Testing, verification and QA Analysis and design methods

Table 9

Software engineering topics with the greatest knowledge gap

Lethbridge’s survey Our survey

HCI/user interfaces Web-based programming

Real-time system design Project management

Software cost estimation Configuration and release man-

agement

Software metrics Multi-media

Software reliability and fault

tolerance

Security and cryptography

Requirements gathering and

analysis

Computer graphics

332 B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335
Web-based programming and multi-media were topics

we included in our list of topics that were not in Leth-

bridge’s list. This difference may be due to differences

between our view of a knowledge gap and Lethbridge’s

view. However, it is more likely that the respondents in

Lethbridge’s survey, who had been in industry longer

than the graduates in our survey, had experienced more
dated curricula than had our respondents. Whatever the

reason, the difference suggests that the balance of topics

need to be evaluated frequently to keep in line with

industry needs.

Although the main focus of this paper is to compare

our survey methodology and results with those of

Lethbridge, it is nonetheless interesting to compare our

results with the structure being proposed for an under-



Table 10

Comparison of top survey topics and SEEK ratings

Topic SEEK category SEEK level (essential, desirable,

optional)

Analysis and design methods c (a) Essential

Databases c Essential

Data structures a Essential

Data transmission and networks c Essential

HCI/user interface a Essential

OO concepts a Essential

Operating systems c Essential

Project management c (a) Essential

Requirements gathering/analysis c Essential

Software architecture k Essential

Software design and patterns a Essential

Specific programming languages c Essential

Testing, verification and QA a Essential

B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335 333
graduate Software Engineering curriculum, by the ACM

and IEEE. A key element of this curriculum is the

description that it provides of the goals for a programme

in terms of the software engineering education knowl-

edge (SEEK). The SEEK identifies relevant curriculum

topics, how essential they are to a programme, and the

level of knowledge that a graduate should have about

each topic (Diaz-Herrara and Hilburn, 2003).
Table 10 shows the ratings of the joint set of topics

from Table 8, using Bloom’s taxonomy to rank the level

of capability expected of a graduate (Bloom, 1956):

Where we have put an (a) in parenthesis, this is to

indicate that the item appears in different elements of the
SEEK, with the more specialized elements being at the

applicable level. Overall, the survey results and the SEEK

classifications show good agreement, with all the topics

rated as important in industry being rated as essential by

SEEK, and all but one rated as requiring a capability in

excess of simple knowledge of the topic. Only Software

Architecture is rated as (k) in the SEEK classification,

and this is primarily because of the nature of the topic.

k knowledge at the level of remembering past

material;

c comprehension involving understanding infor-

mation and grasp meaning of material pre-

sented;

a application as the ability to use the learned

material in new and concrete situations.
5. Survey weaknesses and limitations

The major weakness in this survey is the poor re-

sponse rate. This means that there is a serious risk that

the people who responded are not representative of the

target population. In particular, we may have found
similarities between our survey and Lethbridge’s survey
because volunteers have similarities, not because

the phenomena investigated in the survey are stable

(Rosnow and Rosenthal, 1997).

If the survey were to be repeated it is important that

the response rate be improved. For example planned

follow-up procedures must take place. In addition, the

survey as a whole needs to be reviewed to assess whether

there are any amendments that can be made to improve
the response rate such as reducing its length.

We noted earlier that question 4 is ambiguous. If

universities are surveying their graduates then the

question should be phrased as

‘‘How useful would it have been to learn more

about this at university/college (e.g. additional

courses)?’’

Alternatively, if a company is surveying employees to

determine their training needs the question should be

phrased as

‘‘How useful would it be to learn more about this

(e.g. additional training courses)?’’

Lethbridge intended his survey to address the needs

of industry training courses and university curriculum

development. However, we believe that the joint goal

has made the survey unnecessarily complicated. For a

university survey, question 2 ‘‘what is your current

knowledge about this considering what you have

learned on the job as well as forgotten?’’ does not seem

to offer any useful information. Question 2 would be of
more importance in a company survey, where in con-

trast question 1 ‘‘how much did you learn about this at

University or College?’’ is much less important.

In addition, question 1 is not easy to interpret.

Respondents are asked to judge ‘‘how much did you

learn about this topic in your University or College?’’

For curriculum development we need to know how



334 B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335
much exposure a topic received in the curriculum, which

is not the same thing as how much a student learned.

The amount a student learns is a complicated mix of

• the extent to which the topic is taught,

• the ability of the lecturer(s),
• the ability and motivation of the individual student.

This implies question 1 needs to be reworded to focus

on the extent to which the topic is taught. However,

logically, a university ought to be able to assess the ex-

tent of exposure from its own timetable, so question 1

may be completely unnecessary for a survey undertaken

by a single university.
We have suggested a survey procedure intended to

allow individual universities to evaluate their own cur-

ricula. This is a very limited goal compared with Leth-

bridge’s goal, but it does allow us to identify a

population of subjects who are in a position to provide

information related to this goal. We do not suggest that

our procedure scales up to answer more general ques-

tions. If researchers need to assess the specific set of
knowledge-levels proposed by the working group that

developed the SEEK (Diaz-Herrara and Hilburn, 2003),

then we believe that a different target population is re-

quired. In this case, a more appropriate target popula-

tion would be members of the IEEE Computer Society

and the ACM. 4 Furthermore, we would suggest placing

a time frame on requested answers, i.e. asking people

what topic were important in the previous 4/5 years, not
over their entire career.
6. Conclusions

In this paper we have adapted a survey instrument

developed by Timothy Lethbridge to assess the extent to

which the education delivered by four UK universities
matches the requirements of the software industry, as

experienced by graduates of the respective universities.

This paper proposes a survey methodology that we be-

lieve addresses the research question more appropriately

than the one used by Lethbridge. However, we note that

our own survey is not without flaws. In particular the

questions used in the survey are not ideal, and the re-

sponse rate was extremely poor, probably in part be-
cause planned follow-up activities did not take place.

An important distinction between our survey and

Lethbridge’s survey is that we were interested in

assessing the appropriateness of our own curricula for

the needs of our own students. Using our survey method

(with better follow-up procedures and simpler ques-
4 Joint IEEE Computer Society and ACM Steering Committee for

the establishment of software engineering as a profession.
tions), any university can assess its own curricula but the

results cannot be easily generalised to generic curricula.

Our survey analysis is mainly intended to demon-

strate how to analyse the survey data for cohorts while

minimising any violation of mathematical scales. How-

ever, assuming we are not affected too much by the
problem that it is dominated by volunteers, our results

appear to confirm several of Lethbridge’s observations

with respect to the over-emphasis of mathematical top-

ics and the under-emphasis on business topics. We also

have a close agreement with respect to the relative

importance of different software engineering topics. We

diverge from Lethbridge with respect to topics that have

a large knowledge gap. The divergence supports our
view that for curricula to remain in step with the

changing needs of industry, surveys of this kind need to

take place on a regular basis to reflect the rapid changes

we find in software technology.

With respect to curriculum changes, our results sug-

gest either that the balance between practical software

engineering topics and mathematically-based computer

science topics needs to be revised, or that teaching
methods need to be rethought. With respect to business

topics however, we do not believe that it is the role of

computer science departments to provide training in

general business skills. Such skills are required by stu-

dents in all disciplines, not just computer science stu-

dents. A better option is to provide general training in

communication skills to all students. This approach is

one that is currently being adopted at Keele University.
Acknowledgements

We would like to thank Ben Burch and Ray Seys for

organising the questionnaires and creating the Web-

based questionnaire.
Appendix A. Statement about ethical issues concerning

the project

In this project we are planning to collect responses to

a survey asking questions about how useful the topics

taught in their degrees had been in their job, from

graduates of four computer science departments in

England. This document summarises the ethical issues

that we believe are relevant to the project and states the

rules that will govern our handling of the data.

A.1. Rationale

While the provision of any responses will of course be

purely voluntary, we believe that as researchers, it is our

duty to ensure that there are no adverse consequences

for those taking part. This means that we need to ensure

that situations cannot occur which could potentially



B. Kitchenham et al. / The Journal of Systems and Software 74 (2005) 325–335 335
lead to any form of victimisation of subjects. Such sit-

uations might involve

• a person who has made adverse comments about

their course subsequently asking their former depart-

ment for a reference;
• a person who has made adverse comments about

their employer being identifiable in any way.
A.2. The data to be gathered

The data to be gathered in the survey will be con-

cerned solely with the applicability of their degree pro-
gramme material to their work. In selecting sample

candidates from each site, we will seek to obtain a mix of

gender, ethnic origin and degree classification, based

upon departmental records.
A.3. Subject confidentiality

Data will be collected on the basis of anonymous
submission. Forms will be numbered (all data collection

will be paper-based) and the key identifying subject and

response will at all times be kept confidential by the

members of the project team and used only for con-

firming the pattern of responses. We will also include a

statement to that effect within the questionnaire itself.

All data will be kept in a secure file at Keele University.
A.4. Publication restrictions

No results will be published in any form that would

enable respondents to be identified. In some cases, that
may mean that small groups may need to be omitted

from the results if the size of the group makes it likely

that individuals could be identified. Any information

obtained will only be published with the agreement of

the participating institutions.
A.5. Further access

Since the responses themselves will form a valuable

source of data for further study should the opportunity

to extend the sample arise, these will be retained at the

end of the project, but will not be publicly available.

Any information about the keys that would enable re-

sponses to be linked to individuals will be destroyed.
References

Beyer, S., 1990. Gender differences in the accuracy of self-evaluations

of performance. J. Pers. Soc. Psychol. 59, 960–970.

Beyer, S., Bowden, E.M., 1997. Gender differences in self perceptions:

convergent evidence from three measures of accuracy and boas.

Pers. Soc. Psychol. B 23, 157–172.

Bloom, B.S. (Ed.), 1956. Taxonomy of Educational Objectives: the

Classification of Educational Goals. Handbook 1, Cognitive

Domain. Longmans, New York (See also www.officeport.com/

edu/blooms.htm, viewed 18/02/03).

Bourque, P., Dupuis, R. (Eds.), 2001. Guide to the Software

Engineering Body of Knowledge, SWEBOK. IEEE Computer

Society Press, Silver Spring, MD.

Devlin, K., 2000. Why CS students need math. CACM 46 (9), 37–39.

Diaz-Herrara, J., Hilburn, T. (Eds.), 2003. Computing curriculum-

software engineering (CCSE). Public Draft 3.1, February 6, 2004.

Available from <http://sites.computer.org/ccse>.

Fenton, N.E., Pfleeger, S.L., 1996. Software Metrics. A Rigorous &

Practical Approach, second ed. International Thomson Computer

Press.

Fink, A., 1995. The Survey Handbook. Sage Publications, Beverley

Hills, CA.

Hendersen, P.B., 2000. Mathematical reasoning in software engineer-

ing education. CACM 46 (9), 45–50.

Lethbridge, T., 1998. A survey of the relevance of computer science

and software engineering education. In: Proc. 11th International

Conference on Software Engineering. IEEE Computer Society

Press, Silver Spring, MD, pp. 56–66.

Lethbridge, T., 2000. What knowledge is important to a software

professional. IEEE Comput. (May), 44–50.

Rosnow, R.R., Rosenthal, R., 1997. People Studying People. Artefacts

and Ethics in Behavioural Research. W.H. Freeman and Company,

New York.

Singer, J., Vinson, N., 2001. Why and how research ethics matter to

you. Yes You! Empirical Software Eng. 6 (4), 287–290.

http://www.officeport.com/edu/blooms.htm
http://www.officeport.com/edu/blooms.htm
http://sites.computer.org/ccse

	An investigation of software engineering curricula
	Introduction
	The survey method
	Population and sampling
	Other survey method issues
	Question format
	Research ethics
	Analysis method


	Results
	Response rates
	Implication for curriculum design

	Comparison of results
	Survey weaknesses and limitations
	Conclusions
	Acknowledgements
	Statement about ethical issues concerning the project
	Rationale
	The data to be gathered
	Subject confidentiality
	Publication restrictions
	Further access

	References


