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Abstract

Elastic wave propagation in a three-layered plate with high-contrast mechanical

and geometric properties of the layers is analysed. Four specific types of contrast

arising in engineering practice, including the design of stiff and lightweight struc-

tures, laminated glass, photovoltaic panels, and electrostatic precipitators in gas

filters, are considered. For all of them the cut-off frequency of the first harmonic is

close to zero. Two-mode asymptotic polynomial expansions of the Rayleigh-Lamb

dispersion relation approximating both the fundamental bending wave and the first

harmonic, are derived. It is established that these can be either uniform or com-

posite ones, valid only over non-overlapping vicinities of zero and the lowest cut-off

frequencies. The partial differential equations of motion associated with two-mode

shortened dispersion relations are also presented.

Keywords: Vibration, sandwich plate, asymptotic, contrast.

1. Introduction

Multi-layered engineering structures, in particular three-layered symmetric plates

and shells, also known as sandwich structures, have been manufactured since long

ago. Sandwich structures, due to their light weight combined with relatively large

flexural stiffness, are in a great demand for modern aerospace, automotive, and civil5

engineering, e.g. see Vinson (1999) and references therein.

Recent technological developments intensively exploit structures with high con-

trast in material and geometrical properties of the layers, including, for example,

laminated glass beams and plates widely used in glazing and photovoltaic applica-

tions. Laminated glass is usually designed as a three-layered plate, with two stiff10
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facings and a soft polymeric interlayer, see Schulze et al. (2012) and Aşık & Tezcan

(2005). For photovoltaic panels, the ratio of the shear moduli of a glass skin and

polymeric layer encapsulating solar cells, is within the range 10−5 ∼ 10−2, depend-

ing on temperature and polymer type, see Schulze et al. (2012), Altenbach et al.

(2015), Aßmus et al. (2016), Aßmus et al. (2017), and Naumenko & Eremeyev (2014).15

In automotive and civil engineering, laminated glass has a rather thin polymeric core

layer with relatively thick glass facings, resulting in a substantial contrast of core

and skin layer thicknesses. Another advanced application of multi-layered struc-

tures with high-contrast material properties is connected with the rapidly growing

area of meta-materials, e.g. see Martin et al. (2012).20

All of the aforementioned structures are characterised by stiff facings. However,

there are also important examples of structures with soft facings and a stiff core

layer. In particular, this is a feature of dust-covered precipitator plates, which are

important parts of gas filters reducing air pollution Lee & Chang (1979).

Mechanics of layered media, including sandwich structures, without a special25

emphasis on high contrast problems, has been thoroughly investigated, e.g. see

the textbooks Qatu (2004), Wang et al. (2000), Reddy (2004), and Milton (2002)

to name a few. Numerous publications deal with sandwich plates and beams, e.g.

see review articles Hohe & Librescu (2004), Kreja (2011), and Carrera & Brischetto

(2009).30

At the same time only a few considerations are oriented towards strongly inho-

mogeneous multi-layered structures. Among them, we mention asymptotic develop-

ments on the subject reported in Berdichevsky (2010), Kudaibergenov et al. (2016),

Tovstik & Tovstik (2016), and Kaplunov et al. (2016), along with Altenbach et al.

(2015) and Naumenko & Eremeyev (2014) using ad hoc layerwise theories, and35

Chapman (2013) developing finite-product approximations to the exact Rayleigh-

Lamb dispersion relation for a three-layered plate. In addition, we cite Cherdantsev & Cherednichenko

(2012), Smyshlyaev (2009), Figotin & Kuchment (1998), and Kaplunov & Nobili

(2016) devoted to homogenization of high-contrast periodic composites. Similarity

of the asymptotic procedures underlying multi-layered plate theories and homoge-40

nization for periodic media has been recently reported in Craster et al. (2014).

In this paper we present results of the asymptotic analysis of the exact dispersion

relation corresponding to plane anti-symmetric waves propagating in a three-layered

elastic plate. The main focus is on the set of problem parameters, for which the

lowest thickness shear resonance frequency tends to zero at a high-contrast limit,45

see Kaplunov et al. (2016) dealing with the identical 1D problem for an elastic
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rod, and also Lee & Chang (1979) and Ryazantseva & Antonov (2012) studying a

sandwich plate. This cut-off frequency seemingly determines the upper bound of

the frequency domain, in which the asymptotic formulation in Berdichevsky (2010)

initially oriented to statics, is applicable.50

Four specific setups are studied, including stiff skin layers and light core layer,

stiff thin skin layers and light core layer, stiff skin layers and thin light core layer,

soft thin skin layers and light core layer. Shortened polynomial dispersion relations,

governing long-wave low-frequency behaviour, e.g. see Kaplunov et al. (1998), are

derived. All of them approximate both the fundamental and the lowest shear vibra-55

tion modes. It is remarkable that the obtained asymptotic expansions are uniformly

valid only for plates with stiff skin layers and light core layer, and stiff skin layers

and thin light core layer. Other setups allow only the so-called ’composite’ ex-

pansions, e.g. see Van Dyke (1975) and Andrianov et al. (2013), valid only over

non-overlapping vicinities of zero and the lowest thickness resonance frequencies.60

The accuracy of the established two-mode approximations is tested by numeri-

cal comparisons with the solutions of the Rayleigh-Lamb dispersion relation. The

ranges of applicability of the local one-mode approximations valid near zero and

the lowest shear thickness resonance frequencies, are also evaluated. In addition,

we present numerical data for cross-thickness variations of plate displacements.65

Finally, we restore partial differential equations of motion starting from the

established two-mode dispersion relations. This finding is preceded by preliminary

remarks emphasising an important correspondence between shortened polynomial

dispersion relations and long-wave plate theories.

2. Preliminary remarks70

Consider first an isotropic layer of thickness 2h and infinite lateral extent. With-

out loss of generality restrict ourselves to plane antisymmetric motion. In this case

the Rayleigh-Lamb dispersion relation for a layer with traction-free faces takes the

form, e.g. see Graff (2012),

γ4 sinhα

α
coshβ − β2K2 coshα

sinhβ

β
= 0, (1)

with

α2 = K2 − κ
2Ω2, β2 = K2 − Ω2, γ2 = K2 − 1

2
Ω2. (2)

In the above

K = kh, Ω =
ωh

c2
, κ =

c2
c1

. (3)
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Here ω is the angular frequency, k is the wave number, c1 and c2 are the longitudinal

and shear wave speeds, respectively, given by

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
, (4)

where λ and µ are the Lamé constants, and ρ is volume mass density.

The transcendental dispersion relation (1) allows polynomial asymptotic expan-

sions at the long wave limitK ≪ 1; here and below in this section see Kaplunov et al.

(1998) for further detail. Over the low frequency domain Ω ≪ 1, we have for the

fundamental vibration mode at leading order

K4 ≈ D−1
0 Ω2, (5)

with

D0 =
2

3(1− ν)

indicating that Ω ∼ K2. This shortened dispersion relation also follows from the

classical Kirchhoff theory of plate bending, governed by the 1D equation

D0

d4w

dξ4
− Ω2w = 0, (6)

where w is the vertical displacement and ξ is the longitudinal coordinate normalised

by the plate half-thickness h.

Over the high-frequency domain Ω ∼ 1, long-wave asymptotic expansions can

only be derived near the thickness resonances that determine the cut-off frequencies

for harmonics. The lowest cut-off frequency correponds to the first shear thickness

resonance and is given by Ω = π/2. Over the vicinity of Ω−π/2 we get for the first

harmonic at leading order

K2 ≈ P−1

(

Ω2 − π2

4

)

, (7)

where

P = 1 +
16

π
κ cot

(
κπ

2

)

.

This corresponds to the following 1D equation

P
d2w

dξ2
+

(

Ω2 − π2

4

)

w = 0. (8)

It is obvious that the ranges of validity of the low- and high-frequency asymptotic

expansions (5) and (7), as well as those of the associated differential equations (6)75

and (8), do not overlap. In fact, (5) and (6) are valid only at Ω ≪ 1, whereas (7) and

(8) are applicable at Ω− π/2 ≪ 1, i.e. at Ω ∼ 1. This is why a two-mode uniform
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long wave asymptotic expansion and consequently uniformly valid plate theory,

approximating the fundamental mode and the first harmonic simultaneously, can

not be constructed.80

However, there is still a possibility of composite formulations, see e.g. Van Dyke

(1975) and Andrianov et al. (2013), asymptotically justified only at the local high-

frequency and low-frequency long-wave limits, but not over the whole frequency

range. For example, composite structural models, see Berdichevsky (2009) and

Le (1999), may bring a sort of mathematical validation for ad hoc Timoshenko-85

Reissner-Mindlin type theories, see e.g. Elishakoff et al. (2015) and references

therein, popular among the engineering community. The limits of applicability

of Timoshenko-Reissner model for multi-layered plates and beams in case of con-

trasting Young moduli of the layers are addressed in Tovstik & Tovstik (2016).

A composite equation originating from (6) and (8) may be written as

low-frequency
︷ ︸︸ ︷

D0

d4w

dξ4
− Ω2w +

4

π2
Ω2

(

P
d2w

dξ2
+Ω2w

)

︸ ︷︷ ︸

high-frequency

= 0.

The related dispersion relation is

D0K
4 − Ω2 +

4

π2
Ω2

(
Ω2 −K2P

)
= 0. (9)

It can be easily verified that at the long-wave limits (K ≪ 1 and Ω ≪ 1 or90

Ω − π/2 ≪ 1) this relation reduces to (5) and (7), respectively. At the same time

it can not be asymptotically justified for the intermediate frequencies Ω ∼ 1. The

associated gap within the range of validity of the composite dispersion relation (9) is

clearly seen in Figure 1. In this figure the dispersion curves (1) and their composite

approximation (9) are plotted for κ = 0.53, corresponding to the Poisson ratio95

ν = 0.3.
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Figure 1: Dispersion curves for the composite approximation (9) (dashed line) and the Rayleigh-

Lamb dispersion relation (1) (solid line) at ν = 0.3

In what follows, we show that, in contrast to the consideration above, the

Rayleigh-Lamb dispersion relation for a three-layered strongly inhomogeneous plate

allows two-mode uniform asymptotic expansions for several sets of problem param-

eters.100

3. Statement of the problem

Consider 2D harmonic vibrations of a mid-plane symmetric three-layered elastic

plate with core and skin layers of thickness hc and hs, respectively, see Figure 2.

x2

x1

hc

hs

0

Figure 2: A three-layered plate

The equations of motion for core and skin layers are taken in the form

σq
ij,j = ρqü

q
i , i = 1, 2, q = c, s (10)
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with the index q taking the values q = c and q = s for the core and skin layers,

respectively; summation over the repeated suffixes is assumed. Here σq
ij are stresses,105

ui are displacements, ρq are volume mass densities.

The constitutive relations for a linearly isotropic material are given by

σq
ij = λqε

q
kkδij + 2µqε

q
ij , (11)

with

εqij =
1

2
(uq

i,j + uq
j,i), q = c, s, (12)

where εqij are strains, and λq and µq are the Lamé parameters.

The traction free boundary conditions

σs
12 = σs

22 = 0 (13)

along the faces x2 = ±(hc+hs) are imposed, together with the continuity conditions

σc
12 = σs

12, σc
22 = σs

22, uc
1 = us

1, uc
2 = us

2 (14)

along the interfaces x2 = ±hc.

Let us define the dimensionless frequency Ω and wave number K as

Ω =
ωhc

c2c
, K = khc, (15)

and introduce the dimensionless parameters

h =
hs

hc
, ε =

µc

µs
, r =

ρc
ρs

, (16)

expressing the contrast in thickness, stiffness and density of the core and skin layers.

The dispersion relation for the antisymmetric modes of the plate governed by

the equations above, can be written as, e.g. see Lee & Chang (1979),

4K2h3αsβsF4 [F1F2CβcSαc − 2αcβc(ε− 1)F3CαcSβc ]+

hαsβsCαsCβs

[
4αcβcK

2
(
h4F 2

3 + F4
2(ε− 1)2

)
CαcSβc−

(
4K4h4F 2

2 + F4
2F 2

1

)
SαcCβc

]
+

CβsSαsεβs(β
2
s −K2h2)(β2

c −K2)
[
4α2

sβcK
2h2SαcSβc − F4

2αcCαcCβc

]
+

CαsSβsεαs(β
2
s −K2h2)(β2

c −K2)
[
4αcβ

2
sK

2h2CαcCβc − F4
2βcSαcSβc

]
+

h3SαsSβs

[(
4α2

sβ
2
sK

2F 2
1 +K2F4

2F 2
2

)
CβcSαc−

αcβc

(
16α2

sβ
2
s (ε− 1)2K4 + F4

2F 2
3

)
CαcSβc

]
= 0,

(17)
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where

F1 = 2(ε− 1)K2 − εΩ2,

F2 = 2(ε− 1)K2 +
ε(1− r)

r
Ω2,

F3 = 2(ε− 1)K2 +
ε

r
Ω2,

F4 = β2
s +K2h2,

(18)

and

α2
c = K2 − κ

2
cΩ

2, α2
s = h2

(

K2 − εκ2
s

r
Ω2

)

,

β2
c = K2 − Ω2, βs = h2

(

K2 − ε

r
Ω2

)

.

(19)

In the above Cαq = cosh(αq), Cβq = cosh(βq), Sαq = sinh(αq), Sβq = sinh(βq), and

κq = c2q/c1q with

c21q =
λq + 2µq

ρq
, c22q =

µq

ρq
, q = c, s. (20)

On introducing the dimensionless variable χ = x2/hc the displacements of the

core (|χ| ≤ 1) and skins (1 ≤ |χ| ≤ 1 + h) are given by

u1c = iKAc sinh(αcχ)− βcBc sinh(βcχ),

u2c = αcAc cosh(αcχ) + iKBc cosh(βcχ),
(21)

and

u1s = iK[As sinh(θsχ) +Bs cosh(θsχ)]− κs[D cosh(κsχ) + sinh(κsχ)],

u2s = θs[As cosh(θsχ) +Bs sinh(θsχ)] + iK[D sinh(κsχ) + cosh(κsχ)],
(22)

with θs = αs/h, κs = βs/h and the constants Ac, As, Bc, Bs, and D presented in110

Appendix A.

The dispersion curves for two sets of problem parameters are demonstrated in

Figure 3 (ε = 0.232, h = 1.0, r = 3.0, κc ≈ 0.58, and κs ≈ 0.30) and in Figure 4

(ε = 0.014, h = 1.0, r = 0.03, κc ≈ 0.53, and κs ≈ 0.46). Numerical data in Figure

3 is similar to that for a homogeneous plate, see Figure 1, whereas the lowest shear115

thickness resonance Ω = 0.17 being the cut-off of the first harmonic in Figure 4 is

close to zero. This is due to a high contrast in density and stiffness of the core and

skin layers, resulting in the small parameters r and ε defined by (16).

The consideration below is centered around a high-contrast plate, for which

the value of the lowest thickness shear resonance is asymptotically small. In this120

case we may expect that not only the fundamental vibration mode, but also the

first harmonic appear in the low frequency domain. This is not a feature of a

homogeneous plate, for which the first harmonic arises only at Ω ∼ 1, see (7).
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Figure 3: Dispersion curves for a three-layered plate with no contrast at ε = 0.232, h = 1.0,

r = 3.0, κc ≈ 0.58, and κs ≈ 0.30.

0

0.5

0.17 2.96 3.13 4.60 6.29

K

Ω

Figure 4: Dispersion curves for a strongly inhomogeneous three-layered plate with high contrast

properties at ε = 0.014, h = 1.0, r = 0.03, κc ≈ 0.53, and κs ≈ 0.46.

4. Asymptotic approach

First, derive the conditions on material and geometrical parameters ensuring

the lowest shear resonant frequency to be small. To this end, study a 1D eigenvalue

problem along the plate cross section, see Kaplunov et al. (1998) for more detail.

On setting in the equations in the previous sections ∂uq
1/∂x1 = uq

2 = 0, q = c, s, we

have
∂2uq

1

∂x2
2

+
ω2

cq2
uq
1 = 0, q = c, s, (23)

together with the boundary and continuity conditions

∂us
1

∂x2

= 0 at x2 = ±(hc + hs),

µc
∂uc

1

∂x2

= µs
∂us

1

∂x2

, uc
1 = us

2 at x2 = ±hc.

Similarly to Kaplunov et al. (2016), see also Ryazantseva & Antonov (2012), we

arrive at the frequency equation

tan(Ω) tan

((ε

r

)1/2

hΩ

)

= (εr)
1/2

, (24)
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inferring that for the contrast parameters satisfying

r ≪ h ≪ ε−1, (25)

the lowest eigenvalue is small, given at leading order by

Ωsh ≈
( r

h

)1/2

≪ 1. (26)

At leading order the associated eigensolution has the following piecewise linear

variation across the thickness, see Figure 5,

ush
1 =







χ, for |χ| ≤ 1

1, for 1 ≤ |χ| ≤ 1 + h,

(27)

with χ = x2/hc, which is typical for the so-called global low-frequency behaviour125

defined in Kaplunov et al. (2016). It is worth noting that under the conditions (25)

the eigenmode (27) is the only one demonstrating piecewise linear variation across

the plate thickness.

|χ|

ush
1

1.0

0 1.0 2.0

Figure 5: The lowest shear eigenmode (27)

Let us derive the long-wave low-frequency asymptotic expansions of the tran-

scendental Rayleigh-Lamb equation (17) over the parameter range (25) assuming

that

K(1 + h) ≪ 1, Ω

(

1 + h
(ε

r

)1/2
)

≪ 1. (28)

In this case the hyperbolic functions in (17) may be expanded into asymptotic series,

finally resulting in the polynomial dispersion relation

γ1Ω
2 + γ2K

4 + γ3K
2Ω2 + γ4K

6 + γ5Ω
4 + γ6K

4Ω2 + γ7K
8+

γ8K
2Ω4 + γ9K

6Ω2 + γ10K
10 + ... = 0,

(29)
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where the coefficients γi are given explicitly in Appendix B.

Next, we express the contrast parameters r and h in (16) through ε as

h ∼ εa, r ∼ εb, (30)

not making any preliminary assumptions regarding the asymptotic order of ε and130

the sign of the constants a and b. Consequently, we estimate the coefficients γi in

(29) as γi → Giε
c, where Gi ∼ 1 and c is a constant.

Below we study two-mode shortened forms of the dispersion relation for the

four different types of contrast satisfying the strong inequalities (25), see Figure 6.

Analysis of the three-layered structures in this figure is inspired by various engineer-135

ing applications, including photovoltaic panels (Figure 6a), sandwich constructions

(Figure 6b), laminated glass(Figure 6c), plate precipitators in gas filters (Figure

6d), e.g. see Vinson (1999), Schulze et al. (2012), Naumenko & Eremeyev (2014),

and Lee & Chang (1979).

(a) ε ≪ 1, h ∼ 1, r ∼ ε (b) ε ≪ 1, h ∼ ε, r ∼ ε2

(c) ε ≪ 1, h ∼ ε−1/2, r ∼ ε1/2 (d) ε ≫ 1, h ∼ ε−2, r ∼ ε−3

Figure 6: Types of contrast: a) stiff skin layers and light core layer, b) stiff thin skin layers and

light core layer, c) stiff skin layers and thin light core layer, d) soft thin skin layers and light core

layer.

5. Stiff skin layers and light core layer (ε ≪ 1, h ∼ 1, and r ∼ ε)140

The asymptotic results are summarised in Table 1. In particular, the limiting

behaviour of the coefficients γi in the polynomial equation (29) as ε ≪ 1 are listed

in the first column of Table 1.
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Order of γi Terms

Fundamental mode Harmonic

K ∼ Ω1/2 K ∼
(
Ω2 − Ω2

sh

)1/2

Ω ≪ 1 Ωsh ≤ Ω ≪ 1

γ1 ∼ ε γ1Ω
2 εK4 ε(ε+K2)

γ2 ∼ ε γ2K
4 εK4 εK4

γ3 ∼ 1 γ3K
2Ω2 K6 K2(ε+K2)

γ4 ∼ 1 γ4K
6 K6 K6

γ5 ∼ 1 γ5Ω
4 K8 (ε+K2)2

γ6 ∼ 1 γ6K
4Ω2 K8 K4(ε+K2)

γ7 ∼ 1 γ7K
8 K8 K8

γ8 ∼ 1 γ8Ω
4K2 K10 K2(ε+K2)2

γ9 ∼ 1 γ9K
6Ω2 K10 K6(ε+K2)

γ10 ∼ 1 γ10K
10 K10 K10

Table 1: Asymptotic behaviour at ε ≪ 1, h ∼ 1, and r ∼ ε

The expressions through the wave number are displayed in the third column for

the fundamental mode and in the fourth column for the first harmonic, for which145

the cut-off frequency is Ωsh ∼ ε1/2 according to (26), see (28).

Let us neglect all of the asymptotically secondary terms at K ≪ 1 in the second

column of Table 1, using the data from the first, third, and fourth columns. Then,

we get

εG1Ω
2 + εG2K

4 +G3K
2Ω2 +G4K

6 +G5Ω
4 = 0, (31)

where at leading order

G1 = −h6

r30
, G2 = −4

3

h6(κ2
s − 1)(h2 + 3h+ 3)

r20
, G3 =

4h7(κ2
s − 1)

r30
,

G4 =
4

3

h9(κ2
s − 1)2

r20
, G5 =

h7

r40
,

(32)

with r0 = r/ε.

This is a uniform two-mode expansion of the Rayleigh-Lamb dispersion equation,

valid over the entire low-frequency range Ω ≪ 1 in (28) for both the fundamental

mode and the first harmonic, see the numerical illustration in Figure 7 for ε = 0.014,150

h = 1.0, r = 0.03, κc ≈ 0.53, and κs ≈ 0.46.
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0 0.17

Figure 7: Dispersion curves for two-mode approximation (31) (dashed line) and the Rayleigh-Lamb

dispersion relation (17) (solid line) at ε = 0.014, h = 1.0, r = 0.03, κc ≈ 0.53, and κs ≈ 0.46.

The related uniform approximation for the fundamental mode takes the form,

see Table 1,

εG1Ω
2 + εG2K

4 +G3K
2Ω2 +G4K

6 = 0. (33)

The local approximations of the latter are given by

G1Ω
2 +G2K

4 = 0, Ω ≪ ε, (34)

and

G3Ω
2 +G4K

4 = 0, ε ≪ Ω ≪ 1. (35)

It is worth mentioning that in the transition region Ω = δε (δ ∼ 1) the uniform

expansion (33) becomes

ε3δ2G1 + εG2K
4 + ε2δ2G3K

2 +G4K
6 = 0 (36)

implying that K ∼ ε1/2 for both local approximations for the fundamental mode as

in the classical theory for plate bending Kaplunov et al. (1998).

Numerical data validating the shortened dispersion relations (33), (34), and (35)

are given in Figures 8 and 9 for the same set of problem parameters as in Figure 7.155

As before, the Rayleigh-Lamb dispersion relation is chosen as a benchmark.
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1.0

0 0.5

Figure 8: Dispersion curves for the uniform asymptotic expansion (33) (dashed line) and the

Rayleigh-Lamb dispersion relation (17) (solid line)

Ω

K 0.5

1.0

0 0.5

Figure 9: Dispersion curves for the two local approximations (34)(dashed line) and (35) (dotted

line) and the Rayleigh-Lamb dispersion relation (17) (solid line)

The asymptotic expansion for the first harmonic takes the form

εG1 +G3K
2 +G5Ω

2 = 0, Ωsh ≤ Ω ≪ 1. (37)

Therefore, as usual for a near cut-off expansion, e.g. see Kaplunov et al. (1998),

Ω2 = Ω2
sh + 4r0(1 − κ

2
s )K

2 + ..., (38)

where

Ω2
sh = ε

r0
h
. (39)
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A numerical illustration of (37) is displayed in Figure 10.

Outside a narrow vicinity of the cut-off, the equation (37) can be simplified to

G3K
2 +G5Ω

2 = 0, Ωsh ≪ Ω ≪ 1. (40)

Ω

K 0.5

1.0

0 0.17 1.0 2.0

Figure 10: Dispersion curves of the local asymptotic expansion (37) (dashed line) and the Rayleigh-

Lamb dispersion relation (17) (solid line)

The obtained results are also useful for estimating the cross thickness variations

of plate displacements. As an example, consider the fundamental mode at the

lowest cut-off frequency Ω = Ωsh. As might be expected, the derived two-mode160

uniform approximation (31) should result in polynomial displacement variations

characteristic of long-wave low-frequency behaviour.

First, we have at leading order from (31)

Ω = ε1/2
(r0
h

)1/2

, K = ε1/4
(

3

(1 − κ
2
s)h

3

)1/4

. (41)

On substituting the latter into the formulae (21) and (22), we get

u1c = −ε
χ

4
, u1s = ε

2χ− h− 2

4h
, (42)

and

u2q = ε3/4
i

6

(
27(1− κ

2
s )

h

)1/4

, q = c, s (43)

for the horizontal and vertical displacements, respectively.

Numerical comparison with the exact solutions (21) and (22) at Ω = Ωsh ≈ 0.17

and K ≈ 0.43 is given in Figures 11 and 12. The normalised displacements

U1 = ε−1







u1c, for |χ| ≤ 1

u1s, for 1 ≤ |χ| ≤ 1 + h,

, U2 = ε−3/4 |u2q|, q = c, s (44)
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are plotted for the same as above set of problem parameters. We don’t present here

the variation of U1 at Ω = Ωsh which is virtually identical to that in Figure 5.165

|χ|

U1

−0.2

0.2

0

1.0 2.0

Figure 11: The scaled horizontal displacement (44) calculated by the formulae (42) (dashed line)

and (21) (solid line) for the fundamental mode at Ω = 0.17 and K = 0.43

|χ|

U2

0 1.0 2.0

0.32

0.36

Figure 12: The scaled vertical displacement (44) calculated by the formulae (43) (dashed line) and

(22) (solid line) for the fundamental mode at Ω = 0.17 and K = 0.43

6. Stiff thin skin layers and light core layer (ε ≪ 1, h ∼ ε, and r ∼ ε
2)

For the chosen set of contrast parameters the local approximations are asymp-

totically justified only over the narrow non-overlapping vicinities of Ω = 0 and

Ω = Ωsh ∼ ε1/2, see (26). These are given by

G1Ω
2 +G2εK

4 = 0, Ω ≪ ε1/2, (45)
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and

G1ε+ εK2

(

G3 +
r0
h0

G8

)

+G5Ω
2 = 0, Ω− Ωsh ≪ ε1/2, (46)

for the fundamental mode and the first harmonic, respectively, see Table 2. In the

above

G1 = −h6
0

r30
, G2 = −4

3

h5
0(3h0κ

2
s + κ

2
c − 3h0 − 1)

r20
,

G3 =
2h6

0(2h0κ
2
s − 2h0 − 1)

r30
, G5 =

h7
0

r40
, G8 =

1

3

h7
0(κ

2
c + 1)

r40

(47)

and

r0 =
r

ε2
, h0 =

h

ε
. (48)

Order of γi Terms

Fundamental mode Harmonic

K ∼ ε−1/4Ω1/2 K ∼
(
Ω2 − Ω2

sh

)1/2
ε−1/2

Ω ≪ ε1/2 Ω− Ωsh ≪ ε1/2

γ1 ∼ ε4 γ1Ω
2 ε5K4 ε5

γ2 ∼ ε5 γ2K
4 ε5K4 ε5K4

γ3 ∼ ε4 γ3K
2Ω2 ε5K6 ε5K2

γ4 ∼ ε5 γ4K
6 ε5K6 ε5K6

γ5 ∼ ε3 γ5Ω
4 ε5K8 ε5

γ6 ∼ ε4 γ6K
4Ω2 ε5K8 ε5K4

γ7 ∼ ε5 γ7K
8 ε5K8 ε5K8

γ8 ∼ ε3 γ8Ω
4K2 ε5K10 ε5K2

γ9 ∼ ε4 γ9K
6Ω2 ε5K10 ε5K6

γ10 ∼ ε5 γ10K
10 ε5K10 ε5K10

Table 2: Asymptotic behaviour at ε ≪ 1, h ∼ ε, and r ∼ ε2

Thus, a uniform two-mode asymptotic expansion, similar to that in the previous

section, can not be constructed. As an alternative, we proceed with a composite

expansion

G1εΩ
2 +G2ε

2K4 + εK2Ω2

(

G3 +
r0
h0

G8

)

+G5Ω
4 = 0 (49)

with Ωsh ≈ ε1/2
(
r0
h0

)1/2

, see Van Dyke (1975), Andrianov et al. (2013) and ref-

erences therein. This dispersion equation does not approximate the fundamental

mode near the first shear cut-off, i.e. at Ω ∼ ε1/2. A typical gap in the validity

range of the composite expansion (49), similar to that for a homogeneous plate in170

17



Figure 1, is observed in Figure 13 at ε = 0.014, h = 0.01, r = 0.0002, κc ≈ 0.53,

and κs ≈ 0.46.

Ω

K 0.5

1.0

0 0.14

G

A

P

Figure 13: The dispersion curves for the two-mode approximation (49) (dashed line) and the

Rayleigh-Lamb dispersion relation (17) (solid line) at ε = 0.014, h = 0.01, r = 0.0002, κc ≈ 0.53,

and κs ≈ 0.46

As in the previous section, it is instructive to evaluate the displacements in

the fundamental mode at Ω = Ωsh ≈ 0.14, K ≈ 1.18. As might be expected for

a composite approximation, the cross-sectional variation of the scaled horizontal175

displacement (44) in Figure 14 calculated by (21) is far from a piecewise linear

one. At the same time, computations show that for the first harmonic it is almost

identical to the piecewise linear shape in Figure 5.

|χ|

U1

5

10

0 1.0

Figure 14: The scaled horizontal displacement (44) calculated by the formulae (21) for the funda-

mental mode at Ω ≈ 0.14 and K ≈ 1.18
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7. Stiff skin layers and thin light core layer (ε ≪ 1, h ∼ ε
−1/2, and

r ∼ ε
1/2)180

Order of γi Terms

Fundamental mode Harmonic

K ∼ ε3/8Ω1/2 K ∼ ε1/4
(
Ω2 − Ω2

sh

)1/2

Ω ≪ ε1/4 Ω ≤ Ω ≪ ε3/8

γ1 ∼ ε6 γ1Ω
2 ε9/2K4 ε11/2(K2 + ε3/2)

γ2 ∼ ε9/2 γ2K
4 ε9/2K4 ε9/2K4

γ3 ∼ ε9/2 γ3K
2Ω2 ε3K6 ε4K2(K2 + ε3/2)

γ4 ∼ ε3 γ4K
6 ε3K6 ε3K6

γ5 ∼ ε5 γ5Ω
4 ε2K8 ε4(K2 + ε3/2)2

γ6 ∼ ε7/2 γ6K
4Ω2 ε2K8 ε3K4(K2 + ε3/2)

γ7 ∼ ε2 γ7K
8 ε2K8 ε2K8

γ8 ∼ ε4 γ8Ω
4K2 εK10 ε3K2(K2 + ε3/2)2

γ9 ∼ ε5/2 γ9K
6Ω2 εK10 ε2K6(K2 + ε3/2)

γ10 ∼ ε γ10K
10 εK10 εK10

Table 3: Asymptotic behaviour at ε ≪ 1, h ∼ ε−1/2, and r ∼ ε1/2

Now, in contrast to the consideration above, we have from (28) Ω ≪ ε1/4 and

K ≪ ε1/2, instead of usual restrictions Ω ≪ 1 and K ≪ 1.

Inspection of the entries in Table 3 with Ωsh ∼ ε1/2, see (26), leads to the

two-mode uniform approximation

G1ε
3Ω2 +G2ε

3/2K4 +G3ε
3/2K2Ω2 +G4K

6 +G5ε
2Ω4 = 0, (50)

where Gi are now given by

G1 = −h6
0

r30
, G2 = −4

3

h8
0(κ

2
s − 1)

r20
, G3 =

4h7
0(κ

2
s − 1)

r30
,

G4 =
4

3

h9
0(κ

2
s − 1)2

r20
, G5 =

h7
0

r40
,

(51)

with h0 = ε1/2h and r0 = ε−1/2r. The dispersion curves originating from the

shortened polynomial equation (50) and the Rayleigh-Lamb dispersion relation (17)

are plotted in Figure 15 at ε = 0.001, h = 10.0, r = 0.01, κc ≈ 0.60, and κs ≈ 0.60.185
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Ω

K

0.1

0.2

0.3

0 0.03 0.5

Figure 15: The dispersion curves for the uniform two-mode approximation (50) (dashed line) and

the Rayleigh-Lamb dispersion relation (17) (solid line) at ε = 0.001, h = 10.0, r = 0.01, κc ≈ 0.60,

and κs ≈ 0.60

As in Section 6, the uniform approximation (50) involves two local approxima-

tions of the fundamental mode:

G1ε
3/2Ω2 +G2K

4 = 0, 0 ≤ Ω ≪ ε3/4 (52)

and

G3ε
3/2Ω2 +G4K

4 = 0, ε3/4 ≪ Ω ≪ ε1/4, (53)

as well as the local approximation of the first harmonic

ε3/2G1 +G3K
2 + ε1/2G5Ω

2 = 0, Ωsh ≪ Ω ≪ ε3/8. (54)

At Ω ∼ ε3/8 the term with the factor γ6 in Table 3 should be retained. Also, the

first term in the last equation can be neglected at Ω ≫ ε1/2.
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8. Soft thin skin layers and light core layer (ε ≫ 1, h ∼ ε
−2, and r ∼ ε

−3)

Order of γi Terms

Fundamental mode Harmonic

K ∼ η−1/4Ω1/2 K ∼ η−1/2
(
Ω2 − Ω2

sh

)1/2

Ω ≪ η1/2 Ω− Ωsh ≪ η

γ1 ∼ η γ1Ω
2 η2K4 η2

γ2 ∼ η2 γ2K
4 η2K4 η2K4

γ3 ∼ η γ3K
2Ω2 η2K6 η2K2

γ4 ∼ η2 γ4K
6 η2K6 η2K6

γ5 ∼ 1 γ5Ω
4 η2K8 η2

γ6 ∼ η γ6K
4Ω2 η2K8 η2K4

γ7 ∼ η2 γ7K
8 η2K8 η2K8

γ8 ∼ 1 γ8Ω
4K2 η2K10 η2K2

γ9 ∼ η γ9K
6Ω2 η2K10 η2K6

γ10 ∼ η2 γ10K
10 η2K10 η2K10

Table 4: Asymptotic behaviour at ε ≫ 1, h ∼ ε−2, and r ∼ ε−3

In this case it is more convenient to operate with the small parameter η = ε−1.

As in Section 6, we arrive at a composite expansion, see Table 4 with Ωsh ∼ η1/2.

It is

G1ηΩ
2 +G2η

2K4 +K2Ω2η

(

G3 +
r0
h0

G8

)

+G5Ω
4 = 0, (55)

where r0 = rε3, h0 = hε2 and

G1 = −h6
0

r30
, G2 = −4

3

h5
0(κ

2
c − 1)

r20
, G3 = −2h6

0

r30
,

G5 =
h7
0

r40
, G8 =

1

3

h7
0(κ

2
c + 1)

r40
.
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Ω

K 0.5

1.0

0 0.10

G

A

P

Figure 16: The dispersion curves for the two-mode approximation (55) (dashed line) and the

Rayleigh-Lamb dispersion relation (17) (solid line) at ε = 100.0, h = 0.0001, r = 0.000001,

κc ≈ 0.60, and κs ≈ 0.60.

The associated local approximations take the form

G1Ω
2 +G2ηK

4 = 0, 0 ≤ Ω ≪ η1/2 (56)

and

G1η +K2η

(

G3 +G8

r0
h0

)

+G5Ω
2 = 0, Ω− Ωsh ≪ √

η, (57)

where at leading order Ωsh = η1/2
(
r0
h0

)1/2

.

A numerical illustration typical for non-uniform approximations, see also Figure190

13, is displayed in Figure 16 for ε = 100.0, h = 0.0001, r = 0.000001, κc ≈ 0.60,

κs ≈ 0.60.

9. Two-mode plate models

The uniformly valid polynomial dispersion relations developed in Sections 5

and 7 along with linear transverse variations of the displacements, see (27), (42)195

and (43), appear to be a right starting point for deriving related asymptotic plate

theories. Here we only sketch 1D equations of motion without making a further

insight into all peculiarities of a pretty sophisticated asymptotic methodology, e.g.

see Kaplunov et al. (1998) and references therein.

Let us insert into the dispersion relations (31) and (50) the substitutions

Ω2n → (−1)n
∂2nw

∂τ2n
, K2n → (−1)n

∂2nw

∂ξ2n
, n = 1, 2, 3, ..., (58)
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where w(ξ, t) is the vertical mid-plane displacement, τ and ξ are dimensionless time

and horizontal coordinate. Then, we have from (31) and (50)

G4

∂6w

∂ξ6
− εG2

∂4w

∂ξ4
−G3

∂4w

∂ξ2∂τ2
−G5

∂4w

∂τ4
+ εG1

∂2w

∂τ2
= 0 (59)

and

G4

∂6w

∂ξ6
− ε3/2G2

∂4w

∂ξ4
− ε3/2G3

∂4w

∂ξ2∂τ2
− ε2G5

∂4w

∂τ4
+ ε3G1

∂2w

∂τ2
= 0 (60)

respectively.200

It is worth considering the static limit of these equations, in which
∂2nw

∂τ2n
= 0.

For example, we obtain from (59)

d4

dξ4

(

G4

d2w

dξ2
− εG2w

)

= 0. (61)

The last sixth order differential equation may be split into fourth order and second

order equations. The first of them

d4w

dξ4
= 0 (62)

corresponds to the classical theory for plate bending, while the second one

G4

d2w

dξ2
− εG2w = 0 (63)

governs slowly varying evanescent solutions with a typical wave-length, which is

ε−1/2 times greater than the plate thickness.

Similarly, the composite plate models originating from the dispersion relations

(49) and (55), become

ε2G2

∂4w

∂ξ4
+G5

∂4w

∂τ4
+ ε

(

G3 +
r0
h0

G8

)
∂4w

∂ξ2∂τ2
− εG1

∂2w

∂τ2
= 0 (64)

and

η2G2

∂4w

∂ξ4
+G5

∂4w

∂τ4
+ η

(

G3 +
r0
h0

G8

)
∂4w

∂ξ2∂τ2
− ηG1

∂2w

∂τ2
= 0 (65)

It is interesting that the static limit of the latter is given by the fourth order

equation (62).

10. Concluding remarks205

In contrast to a homogeneous plate, the low-frequency vibration spectrum of

the considered strongly inhomogeneous three-layered plate involves not only the

fundamental bending mode, but also the first harmonic arising at the lowest shear

thickness resonance. An asymptotic approach for deriving two-mode polynomial
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approximations of the transcendental Rayleigh-Lamb dispersion relation is devel-210

oped. Four types of high contrast inspired by modern industrial applications, are

thoroughly investigated. Two-mode approximations can be both uniform or non-

uniform (composite) depending on contrast parameters. The latter are not asymp-

totically justified for studying the fundamental mode near the lowest shear cut-off.

It is remarkable that the leading order uniform approximations analysed in the215

paper are given by six-order polynomials in wave number, while all the consid-

ered composite approximations are forth-order polynomials. A good agreement of

asymptotic results and the numerical data obtained from the Rayleigh-Lamb equa-

tion is demonstrated.

The 1D partial differential equations corresponding to the shortened polynomial220

dispersion relations, reveal a clear potential for developing more general two-mode

asymptotic models for strongly inhomogeneous layered plates. Such models would

be apparently useful for mathematical justification and refinement of various ad

hoc shear deformation theories, e.g. see Qatu (2004), Reddy (2004). In this case a

key challenge may be concerned with formulation of consistent boundary conditions225

for six-order equations of motion starting from an appropriate version of the Saint-

Venant’s principle, e.g. see Gregory & Wan (1985) , Babenkova & Kaplunov (2004)

and references therein.

The proposed methodology is not restricted to four high-contrast setups of a

three-layered plate considered in the paper. A number of extensions, including230

asymmetric multi-layered structures, subject to a variety of interfacial conditions,

seems to be of interest for advanced technologies. However, one should not always

expect a uniform approximation for a high-contrast scenario.
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Appendix A Polynomial coefficients

γ1 = −εh5s4(hs2 + ε),

γ2 = −4

3
εh5s4

(

h(h2 + 3h+ 3)(κ2
s − 1) + ε(κ2

c − 1)
)

,

γ3 =
2

3
h5s4

(

εs2h3(2κ2
s − 3) + 3h2

(
(κ2

s − 1)(ε2 + 2s2)− s2εκ2
s

)
−

3εh(−2κ2
s + s2 + 2) + ε2(2κ2

c − 3)
)

,

γ4 =
4

15
h5s4

(

εh(1− κ
2
s)
(
10hκ2

c (1− ε) + 5h3
κ
2
s + 10h2 + 10εh+ 5 + h4

)
+

5h4
κ
2
s (κ

2
s − 2) + ε2(1 − κ

2
c ) + 5h4

)

,

γ5 =
1

6
h5s4

(

ε2
(
3s2(κ2

s + 1)h2 + κ
2
c + 3

)
+ εhs2

(
h2s2(κ2

s + 3) + 3κ2
c + 9

)
+ 6h2s4

)

,

γ6 =
1

15
s4h5

(

2ε2(κ4
c − 4) + κ

2
c

(
4ε(ε− 5h2s2κ2

s ) + 10ε2h2s2(κ2
s + 1) +

10h(κ2
s − 1)(−4ε2h+ εh2 + 2hs2 + 5εh+ ε)

)
+

h3
κ
4
s (2εh

2s2 + 25εhs2 + 5ε2h+ 10εs2 − 20hs2) +

2h(κ2
s − 1)(2εh4s2 + 30h3s2 + 30ε2h+ 15εh2 + 10hs2 − 5εh+ 15ε) +

10εh2s2κ2
s (2h− 4h2 − ε)− 5ε2h2(h2 + 2s2) + εhs2(5h3 − 4h4 − 50h2 − 10) + 20h4s2

)

,

γ7 =
4

315
h5s4

(

κ
2
c

(
35ε2h4(κ4

s − 1) + 35h4(κ4
s + 1) + 70h4

κ
2
s (−εκ2

s + ε− 1) +

42εh2(ε− 1)(κ2
s − 1)− 2ε2

)
− 35h4(ε2κ4

s − κ
4
s − ε2 − 1) + 14h6(κ4

s + 1) +

2εh(1− κ
2
s )(7h

5
κ
2
s + h6 + 21h4 + 21εh+ 35h2 + 7) + 2ε2 − 28h6

κ
2
s − 70h4

κ
2
s

)

,
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γ8 = − 1

30
h5s4

(

4ε2κ4
c + κ

2
c

(
10h(κ2

s − 1)(ε2h+ 6hs2 + 2ε) + 20ε2h2s2(κ2
s + 1) +

10εh2s2(2h− 5)κ2
s − 30h3s2ε− 10h2s4 − 15hs2ε− 3ε2

)
+

2h4s4κ4
s (2εh+ 5) + h2s2κ2

s (−3εh3s2 − 20εh2s2 + 20h2s2 + 10ε) +

5h(κ2
s − 1)(3ε2h3

κ
2
ss

2 + 6ε2h+ 4hs2 + 4ε) + 10εh2s2(κ2
s + 1)(2hκ2

s − 2hs2 − 3ε)−

5εh4s4(κ4
s − 1)− 9εh5s4 − 10h4s2ε2 − 40h4s4 − 70h3s2ε− 10h2s4 − 25hs2ε− 9ε2

)

,

γ9 =
2h5s4

315

(

2εh7s2(2κ4
s + 2κ2

s − 5) + 7h6
(
ε2(κ4

s − 1) + εs2(2κ6
s + 5κ4

s − 10κ2
s + 1)−

2s2(κ2
s − 1)(κ4

s + 2κ2
s − 5)

)
+ 21εh5

(
3s2κ4

s + (κ2
c + 2s2 + 3)κ2

s − 7s2 − κ
2
c − 3

)
+

h4
{

35ε2
(
κ
4
s(3s

2(1 − κ
2
c )− 2κ2

c + 3) + 3s2κ2
s (κ

2
c − 1) + 2s2(κ2

c − 1) + 2κ2
c − 3

)
+

35ε
(
κ
4
s (5κ

2
cs

2 + 5κ2
c − 1) + κ

2
s (−8κ2

cs
2 − 5κ2

c + 1) + s2κ2
c

)
−

35(κ2
s − 1)

(
κ
2
s (2s

2(κ2
c + 1) + 3κ2

c + 1)− 4s2(κ2
c + 1)− 3κ2

c − 1
)}

+

35εh3
(
κ
2
s (3κ

2
c + 2s2 + 5) + s2κ4

s − 5s2 − 3κ2
c − 5

)
+

h2
{

21
(

ε2
{
κ
2
s

(
s2(κ2

c − 1) + 8− 2κ4
c − 4κ2

c

)
+ s2(κ2

c − 1)− 8 + 2κ4
c + 4κ2

c

}
+

ε
(
κ
2
s (2κ

4
c − 2κ2

cs
2 + 7κ2

c − 1) + 1− 2κ4
c − 7κ2

c

)
+ 2s2(κ2

s − 1)(κ2
c + 1)

)}

−

14εh(−2κ2
s

(
κ
2
c + 2) + s2 + 2κ2

c + 4
)
+ 2ε2(2κ4

c + 2κ2
c − 5)

)

,

γ10 = − 4

2835
h5s4

(

εh9(κ2
s − 1) + 9h8

(
εκ2

s(κ
2
s − 1)− (κ2

s − 1)2
)
+ 36εh7(κ2

s − 1)−

42h6(κ2
s − 1)

(
(κ2

c − 1)(κ2
s + 1)ε2 − 2εκ2

cκ
2
s + (κ2

c + 1)(κ2
s − 1)

)
+

126εh5(κ2
s − 1)− 63h4(κ2

s − 1)
(
(κ2

c − 1)(κ2
s + 1)ε2 − 2εκ2

cκ
2
s + (κ2

c + 1)(κ2
s − 1)

)
+

84εh3(κ2
s − 1)− 36εh2(κ2

s − 1)
(
ε(κ2

c − 1)− κ
2
c

)
+ 9εh(κ2

s − 1) + ε2(κ2
c − 1)

)

,

where s2 = ε/r.235

Appendix B Coefficients in formulae (21) and (22)

Ac = a1cD + a2c, Bc = b1cD + b2c, As = a1sD + a2s, Bs = b1sD + b2s,
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where

a1c = − ir4K(SκsSβcr6βch+ CκsCβcr3βs)

h(−CαcSβcr2r6αcβc + CβcSαcr3r5K
2)
, a2c = − ir4K(CκsSβcr6βch+ CβcSκsr3βs)

h(−CαcSβcr2r6αcβc + CβcSαcr3r5K
2)
,

b1c =
r4(K

2SκsSαcr5h+ CκsCαcr2αcβs)

(CαcSβcr2r6αcβc − CβcSαcr3r5K
2)h

, b2c =
r4(CκsSαcK

2r5h+ CαcSκsr2αcβs)

(CαcSβcr2r6αcβc − CβcSαcK
2r3r5)h

,

a1s =
i

2

4(Q2
1 − 1)Q2βsαs −K2h2r21Q1Q3Q4

Khαsr1Q3

, a2s =
i

2

4Q4(Q
2
1 − 1)βsαs −K2h2r21Q1Q2Q3

Khαsr1Q3

,

b1s = − i

2

−K2Q3Q4r
2
1h

2 + 4Q1Q2αsβs

Khαsr1
, b2s = − i

2

−K2Q2Q3r
2
1h

2 + 4Q1Q4αsβs

Khαsr1
,

and

D = − ia2cr3Sαc + b2cq2r2Sβc + ia2sr4Sθs + ib2sr4Cθs

ia1cr3Sαc + b1cq2r2Sβc + ia1sr4Sθs + ib1sr4Cθs

.

In the above

Q1 = CθsCαs + SθsSαs , Q2 = CκsCβs + SκsSβs ,

Q3 = SθsCαs + CθsSαs , Q4 = SκsCβs + CκsSβs ,

and

r1 =
β2
s

K2h2
+ 1, r2 = 2(ε− 1), r3 = −ε(K2 + β2

c )

K2
+ 2,

r4 = r1 − 2, r5 = −r1 − r3 + 2, r6 = r1 − 2ε.

with Sθs = sinh(θs), Cθs = cosh(θs), Sκs = sinh(κs), Cκs = cosh(κs).
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