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Summary 15 

Atovaquone is used as a fixed dose combination with proguanil (MalaroneTM), either 16 

for treating children and adults with uncomplicated malaria or as a chemoprophylaxis 17 

for preventing malaria in travellers. Indeed in the US, between 2009-2011, MalaroneTM 18 

prescriptions accounted for 70% of all antimalarial pre-travel prescriptions. In 2013 19 

the patent for MalaroneTM will expire, potentially resulting in a wave of low-cost 20 

generics.  Furthermore, the malaria scientific community has a number of antimalarial 21 

quinolones, with a related pharmacophore to atovaquone, at various stages of pre-22 

clinical development. With this in mind, it is timely here to review the current 23 

knowledge of atovaquone, with the purpose of aiding decision making of clinicians 24 

and drug developers involved in the future use of atovaquone generics or atovaquone 25 

derivatives. 26 

 27 

Introduction  28 

Atovaquone is the end product of half a century of research by many groups who researched 29 

the antiparasitic properties of numerous structurally related compounds.1-6 Currently 30 

Atovaquone is used as a fixed dose combination with proguanil (MalaroneTM), for the 31 

treatment of children and adults with uncomplicated malaria or as a chemoprophylactic 32 

agent for preventing malaria in travellers.7, 8 Between 2009 and 2011 in the US MalaroneTM 33 

accounted for 70% of all antimalarial pre-travel prescriptions.9  34 

The development of atovaquone as an antimalarial drug began over 50 years ago when the 35 

outbreak of World War 2 caused substantial shortages in the supply of quinine.10 Intense 36 
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efforts in America led to thousands of structurally diverse compounds being investigated, 37 

several of which were hydroxynaphthoquinones. Modest antimalarial activity when 38 

administered to ducks infected with Plasmodium lophurae resulted in a robust lead 39 

optimisation programme generating more than 300 quinones, some of which demonstrated 40 

greater activity than quinine in the duck assay. However, when administered to malaria 41 

patients these compounds were devoid of any activity due to poor absorption and rapid 42 

metabolism.11, 12 Attempts to solve these problems and produce an orally active quinine were 43 

unsuccessful both then and when the problem was re-visited in the 1960s.13 Research in the 44 

1960s did however lead the development of Lapinone (1), which was given intravenously 45 

and had activity against Plasmodium vivax (Figure 1).14 46 

 47 

The use of quinones as antimalarial agents was then reinvestigated in the 1980s by a group 48 

at the Wellcome Research Laboratories.  More meaningful studies could be carried out at 49 

this time due to the development of test systems using the human parasite Plasmodium 50 

falciparum in vitro or in Aotus monkeys. The aim of this study was to design a quinone with 51 

good antimalarial activity against P. falciparum combined with good metabolic stability in 52 

humans. Several 2-cyclohexyl-3-hydroxy-1,4-naphthoquinone analogues (2 and 3) were 53 

synthesised with the metabolically labile 4’ position of the cyclohexyl ring substituted with a 54 

range of groups.15, 16 Several of these quinones demonstrated a potency of ~1 nM towards 55 

P. falciparum in vitro but only atovaquone (4) was inert to human liver microsomes.17, 18 The 56 

trans isomer of atovaquone is substantially more potent than corresponding cis isomer. The 57 

chemical synthesis of atovaquone was originally disclosed in 1991 in US patent 58 

No.4981874. This route gave a poor yield of 4% atovaquone calculated from only the last 59 

two steps (Figure 2A).19 60 

 61 

Williams and Clark then published a variant of this methodology (Figure 2B) in which oxalate 62 

(11) was used to produce racemic compound (9) in 43% yield and the ester by-product (12) 63 

in 38% yield.20 Conversion to atovaquone was then achieved as described in Figure 2A. The 64 

disadvantages of this process are the column chromatography required to separate (9) from 65 

(12) and the same poor yield problem will still prevail in the final two steps.  66 

 67 

Both processes described so far also involve the use of silver nitrate, a heavy metal which 68 

can be difficult to remove and whose use is tightly regulated. The recently patented (WO 69 

2010/001379) synthesis seen in Figure 2C offers an improved synthesis of atovaquone as it 70 

is higher yielding and doesn’t involve the use of heavy metals.21 71 

 72 



 

 

A common problem with all the routes so far is that large amounts of the potentially useful, 73 

yet significantly less potent  cis isomer of atovaquone are disregarded as only the trans 74 

isomer is required. There are two literature procedures that address this problem. Reacting 75 

the cis isomer of atovaquone, atovaquone intermediates or isomeric mixtures thereof with a 76 

strong acid results in a clean epimerization to the corresponding trans isomer and thus to 77 

high yields of trans atovaquone.22 Heating the cis isomer at reflux in organic solvent also 78 

carries out this transformation.23 79 

 80 

With the patent relating to Malarone due to expire in 2013 the synthesis of atovaquone will 81 

be exploited to its full potential as generic versions of the drug are likely to become common 82 

place. This will in turn have a marked effect on the cost of goods as currently the high cost of 83 

atovaquone is frequently prohibitive in its use by the endemic population within countries 84 

affected by malaria. Increased availability and use of the drug will also have an effect on the 85 

clinical efficacy of atovaquone and factors such as access, sustainability, and resistance 86 

need to be considered.24 Furthermore, the malaria scientific community has a number of 87 

antimalarial quinolones, with a related pharmacophore to atovaquone, at various stages of 88 

pre-clinical development.25-30 89 

 90 

Pharmacodynamics 91 

Mode of Action.  Atovaquone is a competitive inhibitor of ubiquinol, specifically inhibiting the 92 

mitochondrial electron transport chain at the bc1 complex.31 Inhibition of bc1 activity results in 93 

a loss of mitochondrial function.32, 33 During the intra-erythrocytic stage of infection, a key 94 

role of the parasite mitochondrion is to provide orotate for pyrimidine biosynthesis through 95 

the activity of dihydroorotate dehydrogenase (DHODH). Consistent with this, inhibition of the 96 

bc1 complex by atovaquone affects the concentrations of metabolites in the pyrimidine 97 

biosynthetic pathway.34, 35 Indeed, transgenic P. falciparum parasites expressing ubiquinone-98 

independent yeast DHODH have been shown to display an atovaquone-resistant 99 

phenotype.36 In addition, a recent study suggests that a further cellular consequence of 100 

mitochondrial inhibition by atovaquone is the inhibition of purine biosynthesis.37 Blood stage 101 

parasite death as a result of atovaquone is relatively slow compared to other antimalarials 102 

such as artemisinin and chloroquine.25, 38 This feature appears to be consistent with other 103 

mitochondrial-acting antimalarials and is possibly due to the drug acting only on late 104 

trophozoites and not on the earlier “ring” stages.25 Atovaquone is however active against 105 

liver stages, resulting in its utility as a prophylaxis drug, however it is not believed to be 106 

active against “dormant” hypnozoites.8, 39 107 

 108 



 

 

Mechanism of Parasite Resistance to Atovaquone/MalaroneTM.  Although the crystal 109 

structure of the P. falciparum cytochrome bc1 complex is not available, details of atovaquone 110 

binding to cytochrome b have been elucidated based on studies performed on model 111 

organisms and molecular modelling.  These studies, that include Electron Paramagnetic 112 

Resonance spectroscopy of the Rieske [2Fe-2S] cluster, site-directed mutagenesis of model 113 

organism cytochrome b, and gene sequencing of atovaquone-resistant Plasmodium species, 114 

demonstrate that atovaquone is most likely a competitive inhibitor of the parasite's 115 

cytochrome b quinol oxidation (Qo) site (Figure 3).28, 40 116 

 117 

MalaroneTM drug failure has been associated with a mis-sense point mutation at position 268 118 

in cytochrome b, exchanging tyrosine for serine (Y268S) or, less frequently, asparagine 119 

(Y268N).41-45 Position 268 in cytochrome b is highly conserved across all phyla and is 120 

located within the “ef” helix component of the Qo site which is putatively involved in ubiquinol 121 

binding. The resultant atovaquone-resistant growth IC50 phenotype of these mutants is some 122 

1000-fold higher than susceptible strains, however this is accompanied by a ~40 % 123 

reduction in the Vmax of the bc1 complex, suggestive of a significant fitness cost to the 124 

parasite.46 125 

 126 

It is well documented that atovaquone monotherapy gives rise to de novo resistance very 127 

rapidly.47, 48 However, the underlying reason for this phenomenon has not been determined 128 

and, as discussed in the next section, may be partially explained by pharmacokinetic 129 

considerations (related to the physicochemical properties of atovaquone) as well as hitherto 130 

untested considerations related to the molecular target such as for example the effect of an 131 

increased mutation rate of mitochondrially-encoded genes such as cytochrome b compared 132 

to nuclear encoded genes.49 Furthermore, it has been reported that an in vitro atovaquone 133 

resistant parasite line has been generated in the laboratory possessing wild-type cyt b.50 The 134 

mechanism underpinning the parasite’s atovaquone resistant phenotype in this strain 135 

remains to be elucidated. 136 

 137 

Pharmacokinetics 138 

The pharmacokinetic parameters of atovaquone in the currently utilised formulation 139 

(Malarone™, 250 mg atovaquone + 100 mg proguanil) have been determined (Figure 4).51 140 

Median atovaquone plasma AUC (h.µM), t1/2 (h), Cmax (µM) and tmax (h) were 295, 87.2, 3.74, 141 

3.25, respectively, following single-dose and 254, 55.9, 13.8 and 4.00, respectively, upon 142 

reaching steady-state. The similar AUC values observed between single-dose and steady-143 

state dosing suggests no unexpected accumulation of atovaquone following repeated 144 



 

 

administration, although this may be due to saturation of plasma atovaquone concentrations 145 

and an increase in atovaquone concentrations in tissues cannot be ruled out.  146 

 147 

Atovaquone IC50 against susceptible malaria in vitro is very low, ranging from 1 to ~3.5 nM. 148 
31, 52, 53 This has resulted in the belief that atovaquone plasma concentrations (around 1-10 149 

µM, see Figure 4) are sufficient to produce total suppression of malaria. However, 150 

atovaquone shows extremely high levels of plasma protein binding (>99.5%) and therefore 151 

the concentration of un-bound atovaquone is likely to be significantly lower.54 Extrapolations 152 

of Pharmacokinetic-Pharmacodynamic dynamics using in vitro data should therefore be 153 

treated with caution. 154 

 155 

At present, there are no established minimum effective plasma concentrations of 156 

atovaquone for malaria prophylaxis. However, a clear correlation between atovaquone 157 

steady-state plasma concentration and treatment success has been established in 158 

Pneumocystis pneumonia in patients with AIDS.55 Atovaquone plasma concentrations of 10 159 

to <15 µg / mL and 15 to <20 µg / mL resulted in 79% and 95% treatment success, 160 

respectively. Furthermore, there have been case reports of atovaquone treatment failure in 161 

antimalarial therapy that were not explained by drug resistance mutations, and patients with 162 

body weight >100 kg have a marked increased chance of treatment failure compared to 163 

<100 kg patients, both of which suggest drug concentration may be a factor in determining 164 

treatment failure.42, 56, 57 The prediction of atovaquone therapy failure and resistance 165 

selection using drug concentration parameters has the potential to improve current patient 166 

therapy and an investigation determining a PK-PD relationship is warranted. 167 

 168 

Absorption.  Absorption of atovaquone shows dose-limitation, with maximum absorption 169 

observed using 750 mg tablets.58 Poor drug solubility was suggested as the cause of this 170 

limit to absorption, and this led to the development of an atovaquone liquid suspension 171 

formulation, which showed improved Pneumocystis pneumonia treatment success compared 172 

to the tablet formation.59 173 

 174 

The bioavailability of 750 mg atovaquone when taken with food was 23% in HIV-infected 175 

patients.60 Combining data from six clinical trials, the inter-patient variability of atovaquone 176 

bioavailability is substantial and has been determined at 107%, which is likely due to the 177 

drug’s low solubility and the effects of food.60-62 178 

 179 



 

 

The oral absorption of atovaquone increased when taken with a high fat meal (2 slices of 180 

toast with 56 g butter, with 3.9-fold exposure compared to fasted), whereas a minimal-fat 181 

meal (2 slices of toast) had minimal impact on absorption.62 Consequently, it is 182 

recommended that atovaquone be taken with a high-fat meal. However, a recent in vitro 183 

study showed that atovaquone IC50 increased 20-fold when serum used in the assay was 184 

taken from a subject recently given a high-fat meal, compared to serum from a fasted 185 

subject (0.5 ng / mL to 12 ng / mL, p < 0.01).63 A correlation between high serum triglyceride 186 

concentrations and high atovaquone IC50 was observed, suggesting reduced free (unbound) 187 

atovaquone concentrations due to increased drug-fat binding. The clinical relevance of this 188 

finding is unknown, but the impact to atovaquone PK is likely to be transient and is unlikely 189 

to outweigh the benefit of increased atovaquone absorption. 190 

 191 

Dissolution of atovaquone tablets increases in the presence of milk, and therefore the 192 

presence of milk in meals may increase atovaquone bioavailability in patients.61 This may 193 

provide an alternative strategy to high-fat meals when aiming to maximise the bioavailability 194 

of atovaquone, although this has not been shown clinically. 195 

 196 

Distribution.  Atovaquone is highly bound to plasma protein (>99.5%) and shows high affinity 197 

for human serum albumin, although the low drug clearance rate suggests that atovaquone 198 

may also accumulate in tissues, where it is protected from biliary clearance.54 In a study of 199 

atovaquone population pharmacokinetics, the volume of distribution of atovaquone was 7.98 200 

L / kg, although individual values were markedly linked to body weight; volume of distribution 201 

shows a linear increase with increased patient body weight.60 202 

 203 

Metabolism.  Under normal conditions, there is no evidence that atovaquone is significantly 204 

metabolised in humans, or that metabolism is required for drug elimination. It may be 205 

possible that certain enzymes could be induced and therefore lead to increased atovaquone 206 

biotransformation, but this has not been demonstrated. 207 

 208 

Elimination.  Atovaquone pharmacokinetics is characterised by an extremely long elimination 209 

half life of around 50 to 84 hours.58, 62, 64 Elimination is primarily via the liver, with almost 210 

undetectable amounts (<0.6%) of drug being eliminated via the kidney.65 Over 90% of drug 211 

excreted in bile was in the parent form. Elimination of atovaquone is complicated by the 212 

possibility of enterohepatic recirculation of drug, which may help explain atovaquone 213 

pharmacokinetic profiles where reduction and then increases in drug concentration are seen 214 

with time. 215 



 

 

 216 

In a study of atovaquone population pharmacokinetics, the oral clearance of atovaquone 217 

was increased in patients with higher body weight, with 60% increased clearance seen in an 218 

80 kg patient compared to a 40 kg patient.60 In the same study, the average oral clearance 219 

of atovaquone was higher in Oriental (8.49 L / h) and Malay (9.13 L / h) subjects compared 220 

to white (1-7.6 L / h) subjects.60 221 

 222 

Drug interactions 223 

Atovaquone is highly bound to plasma protein (>99.5%) and shows high affinity for human 224 

serum albumin.54 Furthermore, the half life of atovaquone is long, ranging around 50 to 84 225 

hours and the major limiting factor to atovaquone clearance is likely its plasma protein 226 

binding.58, 62, 64 This suggests that any drug which reduces atovaquone plasma protein 227 

binding may potentially alter atovaquone tissue distribution and/or clearance. However, the 228 

authors can find no published articles investigating the drug-mediated displacement of 229 

atovaquone from plasma protein and the clinical impact of these interactions, and this area 230 

requires further research. The interaction observed between atovaquone and antiretrovirals, 231 

where efavirenz, lopinavir and ritonavir (all highly protein-bound drugs) reduced atovaquone 232 

plasma concentrations in HIV-infected patients, may involve atovaquone plasma-protein 233 

displacement, although this was not demonstrated.66 This emphasises the importance of 234 

establishing the interactions between antimalarials, including atovaquone, and antiretrovirals. 235 

 236 

The potential for atovaquone to displace other protein-bound drugs has been investigated. A 237 

case study has recently been published which describes a potential interaction between the 238 

anticoagulant drug warfarin and atovaquone, where the author suggests that atovaquone 239 

caused an increase in free warfarin concentrations to super-therapeutic levels.67 A separate 240 

investigation found that atovaquone did not alter the pharmacokinetics of the antiepileptic 241 

drug phenytoin, another highly protein-bound drug which is susceptible to displacement 242 

interactions.68 The evidence that atovaquone can compete with other drugs for plasma 243 

protein binding is lacking, although further investigations are required to fully understand this 244 

potential factor in atovaquone pharmacokinetics. 245 

 246 

Atovaquone exposure is markedly decreased when taken concomitantly with the antibiotic 247 

drug rifampicin and therefore co-administration of atovaquone and rifampicin is not 248 

recommended.69 The mechanism behind this interaction is not fully understood, although the 249 

ability of rifampicin to induce activity of metabolism enzymes and drug transporters is 250 

assumed to be responsible. However, no metabolite of atovaquone has been identified in 251 



 

 

humans, and the impact of individual enzymes and transporters on atovaquone disposition is 252 

unclear. 253 

 254 

There is evidence that atovaquone can inhibit cytochrome P450 enzymes, although data has 255 

been generated in vitro and the relevance to clinical drug interactions is unknown. 256 

Atovaquone inhibited the metabolism of 50 µM 7-benzyloxy-4-(trifluoromethyl)-coumarin 257 

(BFC) by recombinant CYP3A4, with an IC50 of 4.7 µM.51 Similarly, sulfamethoxazole (SMX) 258 

metabolism by recombinant CYP2C9 was inhibited by atovaquone, with a Ki of 15 µM.70 259 

However, when atovaquone was pre-incubated with human serum and centrifuge-filtered to 260 

remove protein before use, no CYP2C9 inhibitory activity was observed. A recent case study 261 

described a HIV-infected female with a marked increase in plasma concentrations of 262 

antiretroviral drugs etravirine (+55%) and unboosted saquinavir (+274%) following 263 

atovaquone / proguanil prophylaxis.71 In the same study, raltegravir plasma concentrations 264 

were unchanged following atovaquone/proguanil prophylaxis. The evidence that 265 

atovaquone/proguanil prophylaxis increases exposure of etravirine and saquinavir (both 266 

cytochrome P450 substrates) but not raltegravir (no affinity for cytochrome P450 enzymes) 267 

suggests atovaquone, proguanil, or indeed both drugs, may be inhibiting cytochrome P450 268 

activity.72-74 269 

 270 

Co-administration of atovaquone and the nucleoside reverse transcriptase inhibitor 271 

zidovudine increased the exposure (33% increase in AUC0-8h, p < 0.05) and decreased the 272 

oral clearance (25% reduction, p < 0.05) of zidovudine in HIV-infected patients.75 273 

Furthermore, patients taking atovaquone showed a trend towards lower zidovudine-274 

glucuronide plasma concentrations (6% reduction in AUC0-8h, p < 0.1) and a significant 275 

decrease in the ratio between zidovudine-glucuronide and  plasma concentrations (30% 276 

reduction, p < 0.05). Atovaquone exposure was unchanged when co-administered with 277 

zidovudine.  278 

 279 

The atovaquone-mediated 33% increase in zidovudine exposure is in itself unlikely to cause 280 

increased hematologic toxicity, although caution is advised in patients taking additional 281 

drugs with similar toxicity profiles to zidovudine.75 Also, increased zidovudine plasma 282 

concentrations and reduced zidovudine glucuronidation may potentially lead to increased 283 

formation of the cytochrome P450-mediated zidovudine metabolite, 3’-amino-3’-284 

deoxythymidine, which shows seven-fold higher toxicity in bone marrow cells compared to 285 

the parent drug.76 286 

 287 



 

 

The increased exposure and decreased clearance of zidovudine suggests that atovaquone 288 

is inhibiting the glucuronidation of zidovudine. The primary enzyme involved in zidovudine 289 

glucuronidation is uridine 5'-diphospho-glucuronosyltransferase (UGT) 2B7.77 Therefore, 290 

clearance of UGT2B7 substrates, such as the anti-HIV drug efavirenz, may also be 291 

influenced by atovaquone and further investigations are warranted in this area.77 292 

 293 

Atovaquone did not alter the exposure of the anti-HIV protease inhibitor drug indinavir in 294 

healthy volunteers.78 Indinavir is a substrate of the drug efflux transporter, ABCB1, and the 295 

absence of any effect of atovaquone on indinavir pharmacokinetics suggests that 296 

atovaquone is not altering the activity of ABCB1, although this has not been confirmed.79 297 

 298 

Safety and Toxicology  299 

Atovaquone has been found to be generally well tolerated and causes few side effects.  300 

Adverse events are generally mild and include rash, fever, vomiting, diarrhoea, abdominal 301 

pain and headache. Indeed, overdoses as large as 31,500 mg have been reported causing 302 

little or no symptomatology.80 303 

 304 

Conclusion  305 

Despite the extensive use of Atovaquone-Proguanil, there remains a considerable 306 

knowledge gap concerning its pharmacology. The rollout of generics following the expiry of 307 

the patent will undoubtedly see an increase in Atovaquone-Proguanil usage that will be 308 

closely followed by an increase in the treatment failures. Clearly, if the community is to 309 

manage this issue and develop improved derivatives, more effort needs to be placed into 310 

understanding the PK-PD mechanisms underpinning Atovaquone-Proguanil treatment 311 

failure. 312 
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Figure 2: Synthetic routes used to synthesise atovaquone 535 
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 544 
Figure 3: Panel (a). Cartoon representation of the yeast cytochrome bc1 complex 545 

(3CX5.PDB, with atovaquone modelled at the Qo site (boxed area).81 The bc1 complex is a 546 

structural and functional homodimer with a molecular mass of approximately 480 kDa, 547 

consisting of 10 discrete subunits per monomer in yeast and P. falciparum. The electron-548 

transferring catalytic unit of one monomer is highlighted; cytochrome b is represented in 549 

orange, cytochrome c1 in blue and the Rieske iron-sulpur protein (ISP) in green. Haem 550 

groups (cyt b and cyt c1) are shown in red. The remaining subunits of the complex are 551 

rendered in grey. Panel (b) Molecular model of atovaquone (ATO) bound to the Qo site of 552 

the bc1 complex. Subunits are coloured as in panel (a). Atovaquone was modelled into the 553 

Qo site of cytochrome b as described by Fisher N et al.46 Hydrogen-bonding interactions 554 

between the naphthoquinone headgroup of atovaquone and sidechains of Glu-272 (cyt b) 555 

and His-181 (ISP) are indicated by yellow lines. The positions of haem bl (cyt b) and the ISP 556 

[2Fe2S] cluster are also shown. 557 
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Figure 4.  Atovaquone plasma concentration-time profile after single dose of Malarone in 13 560 

healthy individuals. Used with permission from the study by Thaper et al.51 561 
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