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Effect of double fibre-reinforcement on localized bulging of an inflated

cylindrical tube of arbitrary thickness
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Abstract We consider localized bulging of an inflated cylindrical hyperelastic tube of arbitrary thickness

that is helically reinforced by two families of fibres. It is shown that localized bulging may become impossible,

irrespective of the end conditions, when the tube wall becomes thick enough. This is in sharp contrast with

an isotropic hyperelastic tube without fibre-reinforcement for which localized bulging has previously been

shown to be possible no matter how thick the tube wall is and for which the membrane theory provides

a very good approximation for wall-thickness/radius ratio as large as 0.67. Our findings provide a feasible

explanation on why aneurysms cannot occur in healthy arteries but become possible following pathological

changes. They can also be used to guide the design of tubular structures where localized bulging should be

prevented.

Keywords Localized bulging · rubber tubes · aneurysm · fibre-reinforcement · nonlinear elasticity.

1 Introduction

It is well-known that a localized bulge will appear in an inflated tubular balloon when the internal pressure

reaches a certain critical value. This phenomenon was examined more than a century ago by Mallock [1]

who showed that the inflation pressure has a maximum even though the material is described by a linear

constitutive law. This implies that localized bulging is due to geometrical softening, rather than material

softening. This behaviour was commonly believed to be associated with the fact that in uniform inflation

the pressure against volume has an N shape in which the pressure has both a maximum and a minimum.

Interestingly, when commonly used constitutive models for arteries are used to plot the pressure against

volume in uniform inflation, it is found that the behaviour is monotonic. This fact forms the basis for the

prevalent belief that aneurysm initiation cannot be a mechanical phenomenon – it is a purely biological

process. However, recent studies have shown that the correspondence between the maximum pressure in

uniform inflation and initiation pressure for localized bulging only exists when the resultant axial force is
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fixed during inflation, which is the case if the movement of one end of the tube is unrestricted. When it is

the axial length that is fixed, which is the case for arteries, localized bulging may be possible even if the

pressure is monotonic in uniform inflation. We refer to Fu et al [2] and Fu & Ilichev [3] for a review of the

relevant literature.

If aneurysm initiation in pathological arteries is accepted as a mechanical bifurcation phenomenon, an

explanation must also be found for the fact that aneurysms should not occur in healthy arteries. One such

explanation is offered in this paper: it is shown that under double fibre-reinforcement localized bulging may

become impossible if the wall thickness is large enough, with the threshold wall thickness depending on the

strength and orientation of fibre-reinforcement. The latter dependence also accommodates the possibility that

under some pathological changes localized bulging can still occur. This realization may have applications

in other situations where aneurysm prevention is desired. One such situation is the Anaconda wave energy

extraction device which essentially consists of a rubber tube filled with water which is placed in the sea. It is

continuously squeezed or enlarged locally by the surrounding water causing pressure waves along its length.

The distensible tube must be designed to have structural integrity and to have the correct distensibility

so that the bulge wave speed matches the incident wave speed without aneurysm formation; see Bucchi &

Hearn [4].

Our present study is part of a systematic research program devoted to an improved understanding of

the localized bulging phenomenon in inflated cylindrical tubes, and is the second paper in the series that

examines the effects of bending stiffness after Fu et al [5]. It compliments previous studies on the so-called

limiting point instability which refers to the existence of a pressure maximum in uniform inflation. This

instability was studied by Alexander [6], Benedict et al [7] and Caroll [8] for isotropic membrane tubes,

and by Kanner & Horgan [9] and Horny et al [10] for fibre-reinforced membrane tubes. The effect of finite

thickness on this type of instability was first examined by Ren et al [11] who showed that there exists a critical

thickness above which the limiting point instability becomes impossible. However, as mentioned earlier, this

type of instability is relevant to localized bulging only when the resultant axial force is fixed during inflation.

The rest of this paper is organized as follows. In the next section we formulate the problem and derive

the bifurcation condition for localized bulging. Numerical results are then presented in Section 3. The paper

is concluded in Section 4 with a summary and some additional remarks.

2 Governing equations

We are concerned with axi-symmetric deformations of a hyperelastic cylindrical tube that initially has inner

radius A and outer radius B. In terms of cylindrical polar coordinates, the position vector in the undeformed

and current configurations are given by

X = Rer + Zez, x = r(R,Z)er + z(R,Z)ez, (2.1)

respectively, where the unit vectors er and ez denote the usual basis vectors, and we have indicated the fact

that the Eulerian polar coordinates r and z are functions of R and Z only. Since the deformation is axially

symmetric, the kinematics of each surface R = const in the undeformed configuration is the same as that of

a membrane examined in many previous studies, and so the principal directions of stretch coincide with the

lines of latitude, the meridian and the normal to the deformed surface. Denoting the unit vectors in these

principal directions by e1, e2, e3, respectively, we have

e1 = eθ, e2 = cos γez + sin γer, e3 = − sin γez + cos γer, (2.2)
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Fig. 1 Geometry of a helically fibre-reinforced cylindrical tube

where γ is the angle between the meridian and the z-direction in the deformed configuration and is now

dependent on R. The associated principal stretches are given by

λ1 =
r

R
, λ2 =

√

r′2 + z′2, λ3 = 1/(λ1λ2), (2.3)

where a prime denotes partial differentiation with respect to Z, and the incompressibility condition has been

used to write down the expression for λ3. As expected, for each fixed R, these expressions are formally the

same as those for a membrane tube.

We assume that the cylindrical tube is reinforced helically by two symmetric families of fibres; see Fig.1.

With incompressibility assumed, the strain energy function Ψ is then a function of the seven invariants

I1, I2, I4, I5, I6, I7, I8 defined by [12]

I1 = trC, I2 =
1

2
(I21 − trC2), I4 = M · CM , I5 = M · C2

M ,

I6 = M
′
· CM

′, I7 = M
′
· C2

M
′, I8 = M · CM

′, (2.4)

where C is the right Cauchy-Green strain tensor, and M and M
′ are the directions of the two families of

fibres in the reference configuration. The Cauchy stress tensor is then given by

σ = −pI + 2Ψ1B + 2Ψ2(I1B −B2) + 2Ψ4m⊗m

+2Ψ5(m⊗Bm+Bm⊗m) + 2Ψ6m
′
⊗m

′

+2Ψ7(m
′
⊗ Bm

′ +Bm
′
⊗m

′) + Ψ8(m⊗m
′ +m

′
⊗m), (2.5)

where p is the pressure associated with the constraint of incompressibility, B is the left Cauchy-Green strain

tensor, Ψi = ∂Ψ/∂Ii (i = 1, 2, . . . , 8), and m = FM , m′ = FM
′ with F being the deformation gradient.

In terms of the basis vectors, the two fibre directions may be written as

M = cosφeθ + sinφez, M
′ = cosφeθ − sinφez, (2.6)

where φ is the constant angle between one family of fibres and the circumferential direction; see Fig.1. From

the fact that B = λ2
1e1 ⊗ e1 + λ2

2e2 ⊗ e2 + λ2
3e3 ⊗ e3 and C = λ2

1eθ ⊗ eθ + λ2
2ez ⊗ ez + λ2

3er ⊗ er, we may

deduce that the deformation gradient F takes the form

F = λ1e1 ⊗ eθ + λ2e2 ⊗ ez + λ3e3 ⊗ er. (2.7)
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It then follows that

m = FM = λ1 cosφe1 + λ2 sinφe2, m
′ = FM

′ = λ1 cosφe1 − λ2 sinφe2, (2.8)

and so

I4 = m ·m = λ2
1 cos

2 φ+ λ2
2 sin

2 φ = I6, (2.9)

I5 = m ·Bm = λ4
1 cos

2 φ+ λ4
2 sin

2 φ = I7. (2.10)

We make the further assumption that the two families of fibres are mechanically equivalent and so the strain

energy remains invariant when I4 and I6 are interchanged. This implies that Ψ4 = Ψ6 and Ψ5 = Ψ7. It can

then be shown that σ is co-axial with B and that the three principal stresses are given by

σ1 = 2Ψ1λ
2
1 + 2Ψ2(λ

2
1λ

2
2 + λ2

1λ
2
3) + (4Ψ4 + 2Ψ8)λ

2
1 cos

2 φ+ 8Ψ5λ
4
1 cos

2 φ− p, (2.11)

σ2 = 2Ψ1λ
2
2 + 2Ψ2(λ

2
1λ

2
2 + λ2

3λ
2
2) + (4Ψ4 − 2Ψ8)λ

2
2 sin

2 φ+ 8Ψ5λ
4
2 sin

2 φ− p, (2.12)

σ3 = 2Ψ1λ
2
3 + 2Ψ2(λ

2
1λ

2
3 + λ2

2λ
2
3)− p. (2.13)

Furthermore, we may define an effective strain-energy function W (λ1, λ2, λ3) through

W (λ1, λ2, λ3) = Ψ(I1, I2, ..., I8), (2.14)

and show that

σi = λiWi − p, (no summation on i), i = 1, 2, 3, (2.15)

where Wi = ∂W/∂λi. Thus, as far as axisymmetric deformations are concerned, the fibre-reinforced cylindri-

cal tube behaves like a cylindrical tube made of an isotropic hyperelastic material with strain-energy function

W (λ1, λ2, λ3). This in turn ensures that the assumed axisymmetric deformation can indeed be realized.

We now specialize the above formulation to the case when the deformation is a uniform inflation corre-

sponding to an internal pressure P . We denote the deformed inner and outer radii by a and b, respectively.

With the condition of incompressibility taken into account, the deformation must necessarily take the form

r2 = λ−1
z (R2

−A2) + a2, θ = Θ, z = λzZ, (2.16)

where λz is the stretch in the axial direction which is assumed to be a constant throughout this paper.

It can be shown [13] that in terms of the reduced strain-energy function w(λ1, λ2) defined by

w(λ1, λ2) = W (λ1, λ2, (λ1λ2)
−1), (2.17)

the internal pressure is given by

P =

∫ λa

λb

w1

λ2λz − 1
dλ, (2.18)

where w1 = ∂w/∂λ, and the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
,

and are related to each other by

λ2
aλz − 1 =

B2

A2
(λ2

bλz − 1). (2.19)
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The resultant axial force at any cross section is independent of Z and is given by

F (λa, λz) ≡ 2π

∫ b

a

σ22rdr − πa2P = πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2.20)

where w2 = ∂w/∂λz. We have shown F explicitly as a function of λa and λz (the λb in the equation is

eliminated using (2.19)). Likewise, the pressure defined by (2.18) is also viewed as a function of λa and λz

in the subsequent analysis.

By considering an eigenvalue problem governing axisymmetric incremental deformations, it was shown

in Fu et al [5], with the aid of the dynamical systems theory, that the bifurcation condition for the initiation

of a localized bulge has the simple representation

Ω(λa, λz) ≡ J(P, F ) = 0, (2.21)

where the first equation defines the function Ω(λa, λz) and J(P, F ) is the Jacobian of P and F when both

are viewed as functions of λa and λb, that is,

J(P, F ) =
∂P

∂λa

∂F

∂λz

−
∂P

∂λz

∂F

∂λa

. (2.22)

Thus, the bifurcation condition Ω(λa, λz) = 0 has a clear physical meaning: it is satisfied when the Jacobian

of P and F vanishes (or equivalently, P = P (λa, λz) and F = F (λa, λz) cannot locally be inverted to express

λa and λz in terms of P and F ). It was also shown in Fu et al [5] that when F is fixed, the initiation pressure

for localized bulging is simply the maximum pressure in uniform inflation, but this correspondence is lost if

it is the axial stretch λz that is fixed. Finally, in the membrane limit H/Rm → 0, where H and Rm denote

the undeformed wall thickness and mean radius respectively, the pressure and axial force to leading order

are given by

P =
H

Rm

·
w1

λaλz

,
F

2πHRm

= w2 −
λaw1

2λz

, (2.23)

and the bifurcation condition (2.21) reduces to

Ω(0)(λa, λz) ≡ λa(w1 − λzw12)
2 + λ2

zw22(w1 − λaw11) = 0, (2.24)

where λa should now be interpreted as the circumferential stretch in the mid-surface. The above bifurcation

condition has previously been derived with the use of membrane equilibrium equations; see, e.g., Fu et al

[14].

3 Effects of bending stiffness and fibre-reinforcement

Once the strain-energy function is specified, the effects of bending stiffness (through the finite thickness)

and fibre-reinforcement on the initiation of localized bulging can be assessed using the bifurcation condition

(2.21). As an illustration, we consider the material model given by

Ψ = −
1

2
µJm log(1−

I1 − 3

Jm
)−

1

2
µk1Jf

∑

α=4,6

log(1 −
(Iα − 3)2

Jf
), (3.1)

where µ is the ground-state modulus, k1 is a measure of the strength of fibre-reinforcement, whereas Jm

and Jf measure the extensibility of the matrix material and reinforcing fibres, respectively. The first term in

(3.1) for the matrix material is the well-known Gent material model [15]. The second term representing the
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(a) (b)

Fig. 2 The contour plots of Ω(0)(λa, λz) = 0 and F (λa, λz) = 0 under the membrane assumption. (a): k1 = 0; (b): k1 = 1/15,

Jf = 30, φ = 30o. They show the fact that without fibre-reinforcement localized bulging is possible if either the axial stretch

or the axial force is fixed, but with fibre-reinforcement localized bulging is only possible if the axial stretch is fixed to be less

than 1.18.

contribution of the reinforcing fibres was first suggested by Horgan & Saccomandi [16], and the particular

combination in (3.1) was suggested by Ogden & Saccomandi [17] who also compared it with other material

models.

Our subsequent discussion is independent of the shear modulus µ and so we do not need to specify its

value. Without loss of generality, we take B = 1, or equivalently, we take B to be the length unit against

which all other lengths are measured. The effect of bending stiffness is then assessed by changing the value

of the inner radius A. We shall assume that Jm takes the fixed value of 97.2, as suggested by Gent [15], and

investigate the effects of varying the other material parameters φ, k1 and Jf . As demonstrated in our earlier

papers, see, e.g., Fu et al [5], a most transparent way to understand the initiation of localized bulging is by

plotting the solution of the bifurcation condition Ω(λa, λz) = 0 and the equation F (λa, λz) = F0 together in

the (λa, λz)-plane, where F0 is a constant. This is achieved numerically in a straightforward manner with the

aid of Mathematica [18]. The curve F (λa, λz) = F0 is of course only relevant when the resultant axial force is

fixed to be equal to F0, in which case the curve represents the appropriate loading path in the (λa, λz)-plane.

Localized bulging can occur only if the two curves have an intersection. On the other hand, when it is the

axial stretch λz that is fixed, the loading path is simply a horizontal line in the (λa, λz)-plane, and in this

second case localized bulging can occur only if this line and Ω(λa, λz) = 0 have an intersection.

We first consider the effects of fibre reinforcement under the membrane assumption. Fig.2 shows the two

curves mentioned above in the (λa, λz)-plane with F0 = 0. These effects have previously been examined

in our earlier paper [2] and by Demirkoparan & Merodio [19] using different strain-energy functions. It is

seen that when the axial force F is fixed to be zero, localized bulging can occur when there is no fibre

reinforcement, but it becomes impossible when fibre reinforcement is added. However, Fig.2(b) shows that

localized bulging can still occur if the axial stretch λz is fixed to be less than 1.18. This fact has previously

been established in our earlier studies; see, e.g., Fu et al [2].
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(a) (b)

Fig. 3 Plot of Ω(λa, λz) = 0 for three representative values of A. (a): Without fibre-reinforcement; (b): with fibre-reinforcement

(k1 = 1/20, Jf = 30, φ = 30o). It shows the fact that with fibre-reinforcement the bifurcation curve moves down quickly as A

is decreased and the curve disappears completely at a threshold value of A.

Under the membrane assumption, the tube has no bending stiffness. It was shown in [5] that taking into

account bending stiffness in the case of an isotropic hyperelastic tube has no qualitative effect on localized

bulging and the membrane theory is capable of predicting the initiation pressure accurately for thickness

/radius ratio H/Rm as large as 0.67. This is illustrated in Fig.3(a) where it is shown that the bifurcation

condition still has a solution when A is as small as 0.3 (in fact for all values of A although not shown).

In contrast, Fig.3(b) shows that bending stiffness has a drastic effect on the initiation pressure when fibre-

reinforcement is present. It is seen that as A is reduced (that is, as the wall thickness is increased), the

bifurcation curve moves down rapidly, and it disappears completely when A becomes smaller than 0.65.

Thus, for the particular set of material parameters indicated in the caption, localized bulging becomes

impossible when H/Rm becomes bigger than 0.42 whether it is the axial force or axial stretch that is fixed

during inflation.

Fig.4 shows how the behaviour shown in Fig.3(b) depends on the parameter k1, a measure of the volume

fraction of fibre-reinforcement. It is seen that the behaviour is similar when different values of k1 are used,

but the larger the value of k1 is, the earlier the bifurcation curve disappears. For instance, when k1 = 1/10,

the threshold value of A is approximately 0.77, corresponding to a thickness/radius ratio as small as 0.26.

To illustrate the effects of pathological changes in human arteries, we may start with A = 0.77, k1 =

1/10, Jf = 30, φ = 30o for which localized bulging is impossible because the bifurcation condition does not

have a solution. This set of values may be viewed as corresponding to a healthy artery, and pathological

changes may be modeled by a reduction in the fibre volume, or equivalently in the value of k1. As k1 is

reduced from 1/10, the bifurcation condition very quickly begins to have a solution. For instance, when k1

is reduced to 1/11, the bifurcation condition has a solution whose graph lies just below λz = 1.014. This

means that at this slightly reduced value of k1 localized bulging becomes possible provided λz < 1.014.

The effect of varying the fibre extensibility Jf is shown in Fig.5. It is seen that for each fixed value of

A the bifurcation curve also moves down rapidly when Jf is reduced. For the particular set of material and

geometrical parameters shown in the caption, the curve disappears when Jf becomes smaller than 23.
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(a) (b)

Fig. 4 Effects of finite thickness/bending stiffness for two different values of k1 while Js and φ are fixed to be 30 and 30o,

respectively. (a): k1 = 1/15; (b): k1 = 1/10. It is seen that the stronger the fibre-reinforcement, the earlier the bifurcation curve

disappears as A is decreased.

(a) (b)

Fig. 5 Effects of fibre extensibility (characterized by Jf ) with A = 0.9 and φ = 30o fixed. (a): Solution of Ω(λa, λz) = 0 with

k1 = 1/15; (b): solution of Ω(λa, λz) = 0 with k1 = 1/20.

Finally, the effect of changing the fibre orientation is shown in Fig.6(a, b). It is seen that as φ is increased

from zero, the bifurcation curve goes down first until φ reaches approximately 30o after which the curve

goes up and spreads out in the λa-direction. Thus, there exists an optimal angle at which localized bulging

becomes most unlikely.
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(a) (b)

Fig. 6 Effects of fibre orientation φ with A = 0.9, k1 = 1/15 and Jf = 40 fixed. All the curves are the solutions of Ω(λa, λz) = 0

for the values of φ indicated.

4 Conclusion

This paper has focussed on the effects of fibre-reinforcement on localized bulging in an inflated cylindrical

tube of arbitrary thickness. It extends a recent study, Fu et al [5], that examined the effects of bending stiffness

for an isotropic cylindrical tube without fibre-reinforcement. Our study has been facilitated by the fact that

with fibre-reinforcement symmetric with respect to the axis of the cylinder, see Fig.1, the tube under inflation

behaves effectively like an isotropic tube with material constants representing fibre-reinforcement appearing

as passive parameters in the analysis. Thus, the bifurcation condition derived in [5] can be applied after

appropriate modifications. We have used a representative strain-energy function to illustrate the combined

effects of bending stiffness, amount of fibre-reinforcement, fibre extensibility, and fibre orientation. It is

shown that localized bulging can be eliminated completely, irrespective of the end conditions, if the bending

stiffness or the amount of fibre-reinforcement is sufficiently large, or fibre extensibility is sufficiently small. In

contrast, the effect of fibre orientation is not monotonic, and there exists an optimal angle at which localized

bulging is most unlikely to occur if all the other parameters are fixed. In any application where localized

bulging is to be prevented, e.g., in the design of the Anaconda wave energy extraction device, optimization

subject to certain constraint conditions will probably be required, but the necessary ingredients for such

optimization are given in the current paper. Our findings support the view that aneurysms cannot occur

in healthy arteries because of their optimal design through fibre-reinforcement and appropriate thickness,

but may become possible as a mechanical bifurcation phenomenon under pathological changes. Our current

study also provides a good starting point from which other material models and multi-layered or functionally

graded tubes can be studied.
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