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Abstract

We study heat transfer through a composite with periodic microstructure. The thermal conduc-
tivity of the constituents is assumed to be temperature-dependent, and it is modeled as a poly-
nomial in terms of the temperature. The thermal resistance between the constituents is taken to
be nonlinear. In order to determine the effective thermal properties of the material, we apply the
asymptotic homogenization method. We discuss different approaches to determine these effec-
tive properties for the different volume fractions of the inclusions. For high volume fractions of
the inclusion, we apply the lubrication theory. In the case of low volume fractions of the inclu-
sions, we apply the three-phase model. Comparing some special cases of our results to existing
ones in the literature shows a good accuracy.

Keywords: heat transfer, composites, nonlinearity, asymptotic homogenizaton method,
three-phase model, lubrication theory

1. Introduction1

Modeling of the thermal properties of composites might be challenging, especially when the2

size of the heterogeneities is significantly smaller than the macroscopic size of the considered3

structure. In order to simplify the treatment of heat diffusion problems, different approaches have4

been developed, in which the original heterogeneous material is replaced by a homogenized or5

effective material with the same macroscopic properties as the original heterogeneous material.6

Early works on this topic are, for example, the works of Hershey [1], Hill [2], Kerner [3], Kröner7

[4], Keller [5], and van der Poel [6]. Examples for works on computational homogenization are8

article of Özdemir et al. [7], and the work of Geers et al. [8] discusses some trends and challenges9

in this field.10

A powerful and wide-spread technique denoted as the asymptotic homogenization method11

(AHM) has been developed in order to obtain the effective properties of different asymptotic or-12

ders of heterogeneous materials with periodic microstructures. The theory behind this technique13

is described, for example, in the books of Bensoussan et al. [9] and Panasenko [10]. The AHM14

allows to investigate a macroscopic boundary value problem within a single repeated unit cell of15

the microstructure. In this approach, a small parameter is introduced, which relates the size of the16

heterogeneities to the size of the macroscopic problem. The original coordinate variables are then17

replaced by so-called fast coordinate variables, which consider the problem on the micro-scale,18

and by slow coordinates, which consider the problem on the macro-scale. The AHM has been19
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applied to analyze different types of homogenization problem, for example to investigate wave20

propagation in fiber-reinforced composites [11, 12]. There also exist numerous articles, which21

have applied the AHM to determine the effective thermal properties of composites, for example,22

Allaire [13] and Zhang et al. [14]. Telega et al. [15] applied the AHM to study heat transfer,23

which is formulated as a minimization problem. Gałka et al. [16] took temperature-dependent24

thermal parameters of the constituents in the homogenization procedure into account. Allaire &25

Habibi [17] and Yang et al. [18] analyze heat transfer in porous materials, and they include con-26

duction, convection, and radiation into their considerations. A popular method to investigate the27

effective properties of composites with a low volume fraction of the inclusion phase is denoted28

as the three-phase model [19]. The application of such model for the AHM has been discussed29

and justified in [20]. If the volume fraction of the inclusions approach its maximum, then the30

close packing model [21], also denoted as the lubrication theory, has been applied in different31

works. A broader review of trends of the application of the AHM to obtain the effective proper-32

ties of composites is provided by Kalamkarov et al. [22], who state that the different developed33

methods reveal their strengths and disadvantages, and therefore these methods have to be treated34

as complementary tools.35

The effective macroscopic properties result from the properties and the distribution of the36

constituents, but also from the interaction of the constituents. Composites might reveal thermal37

resistance between the different constituents, which might for example result from imperfect con-38

tact, cracks, or from an interphase material. An early work on thermal interfacial resistance is the39

article of Kapitza [23]. Examples for composites with coated inclusions is micro-encapsulated40

paraffin-spheres, which has been studied in different experiments on thermal regulations of build-41

ings (Karkri et al. [24, 25]). Theoretical modeling works on the effective thermal properties,42

which consider such resistance, are, for example, Quang et al. [26, 27, 28] and Andrianov et43

al. [29]. There exist different interface models which have been taken into account in different44

studies, such as hybrid interphase regions [30], and inhomogeneous interphases [31].45

Our article is organized as follows: In Sec. 2 we introduce the herein considered boundary46

value problem, the applied heat diffusion model, and thermal resistance models. In Sec. 3 we47

discuss the application of the AHM in order to obtain the effective thermal parameters of the48

considered composite. The case of large volume fractions of the inclusion is discussed in detail49

in Sec. 4, as well as the case of a layered composite. Illustrative examples are introduced to50

discuss the different features of the derived heat propagation models. In Sec. 5 we apply the51

three-phase model for composites with low volume fractions of the inclusions, and we discuss52

the cases of parallel fibers and spherical inclusions in the matrix. Special cases of our results53

are compared to known results from the literature. In the final section, we discuss the obtained54

results, and we provide a brief outlook.55

2. Nonlinear heat diffusion in a composite56

Consider a heterogeneous material with a periodic microstructure, which is assumed to consist57

of two constituents, the inclusion Ω(1) and the surrounding matrix Ω(2). In the framework of58

this article we will mainly focus on inclusions of spherical shape, as shown in Fig. 1,and on59

inclusions of cylindrical shape. In a Cartesian coordinate system with the three base unit vectors60

{E1,E2,E3}, the microstructure of the material can be described by repeated unit cells in form of61

parallelepipeds of the lengths ℓk in the Ek-directions, k = 1, 2, 3. The volume of such unit cell62

then becomes v = ℓ1ℓ2ℓ3. In the following, we want to study heat diffusion in such composite.63

Section 2.1 gives a brief general summary on the applied heat diffusion model, and Sec. 2.264

2



x1

ℓ1

ℓ3

ℓ2

n

∂Ω(1,2)
: interface between the inclusion and the matrix

x2

x3

Ω
(2)

: matrix

Ω
(1)

: inclusion

Figure 1: A single unit cell of the periodic composite microstructure: The inclusion Ω(1) is surrounded by the matrix
Ω(2). The interface between Ω(1) and Ω(2) is denoted as ∂Ω(1,2), and n is the outer normal unit vector to the inclusion.

specifies such model for heat diffusion in a composite. The interaction of the constituents has a65

crucial role in the behavior of the overall thermal properties, and we consider thermal resistance66

at the common interface ∂Ω(1,2) of Ω(1) and Ω(2).67

2.1. Summary of the heat equation model68

The heat energy flux q = q(T (x, t)) for a material with isotropic thermal properties is given by69

q(T (x, t)) = −κ(T (x, t))
∂T (x, t)

∂xk

, k = 1, 2, 3, (1)

where κ = κ(T (x, t)) is the thermal conductivity and T = T (x, t) is the temperature at the location70

x = E1 x1 + E2 x2 + E3 x3, (2)

at time t. Note that (1) represent a form of the heat flux equation in which the thermal properties71

are taken to be independent from the considered direction. We model the thermal conductivity72

κ = κ(T (x, t)) as a function of the temperature, and therefore it is taken to be a polynomial in73

terms of the temperature in the form74

κ(T (x, t)) =
imax
∑

i=0

ai [T (x, t)]i = a0 + a1T (x, t) + . . . , (3)

where ai are constants. Such model has been applied, for example, by Lienemann et al. [32], and75

this general form allows to describe different types of effects: The first term of the right side of (3)76

is the linear term, which is independent from the temperature. The following higher-order terms77

define the temperature-dependence of the conductivity. The number of terms in (3) depends78
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on the accuracy of the conductivity model in the considered temperature range. If for example79

the considered temperature range is low, then it might be sufficient to restrict (3) to the leading80

term. On a large temperature range the thermal conductivity might reveal a strong nonlinear81

behavior. To give an example, on the temperature range from 0 Kelvin to its melting point, the82

conductivity of aluminum strongly increases to its maximum, and then slowly decreases with83

rising temperatures (see, for example, Table 3a in Hatch [33]). Thermal conductivities in the84

form κ = amT m, m = 2, 3, . . . have been studies in different works, and for an overview of the85

different application of the specific stipulations of this power law forms, we refer to Hristov [34].86

In the following we restrict the polynomial expansion of the conductivity to imax = 1, so that87

terms of an order higher than explicitly shown on the right side of (3) will be neglected.88

The heat equation which describes the nonlinear heat propagation is taken the form89

3
∑

k=1

∂

∂xk

(

κ
∂T

∂xk

)

= ρp

∂T

∂t
, (4)

where ρp = ρp(x) = cp ρ is the product of the specific heat capacity cp = cp(x) and the mass90

density ρ = ρ(x) of the material. While ρp is taken to be independent from the temperature in this91

article, this shall be noted that this parameter reveals a strong temperature-dependence in the case92

of phase-changes [25]. After the substitution the specific stipulation of the thermal conductivity93

(3) for imax = 1 into the heat equation (4), we obtain a nonlinear heat equation in the form94

3
∑

k=1















a0
∂2T

∂x2
k

+ a1















(

∂T

∂xk

)2

+ T
∂2T

∂x2
k





























= ρp

∂T

∂t
. (5)

This form of the heat equation in a homogeneous and isotropic solid will serve as a basis for our95

considerations in the now following section, in which we formulate the governing relations in96

the considered composite.97

2.2. Heat diffusion in a composite98

Let us consider the heat flux piece-wise for every constituent Ω(i), where i = 1, 2. From (1),
(3), and (5) we obtain the following set of equations,

q(i) = −κ(i)
∂T (i)

∂xk

, k = 1, 2, 3, (6a)

κ(i)(T (i)(x, t)) = a
(i)
0 + a

(i)
1 T (i)(x, t), (6b)

3
∑

k=1















a
(i)
0

∂2T (i)

∂x2
k

+ a
(i)
1















(

∂T (i)

∂xk

)2

+ T (i) ∂
2T (i)

∂x2
k





























= ρ(i)
p

∂T (i)

∂t
, (6c)

where T (i) = T (i)(x, t) is the temperature, ρ(i)
p is the product of the specific heat capacity and the99

mass density, q(i) = q(i)(T (x, t)) is the heat flux, and κ(i) = κ(i)(T (i)(x, t)) in the constituent Ω(i). In100

(6b) and (6c), the parameters a
(i)
0 are the temperature-independent term of the thermal conductiv-101

ity, and the parameters a
(i)
1 define the change of the conductivity κ(i) with the temperature.102

Let us assume thermal resistance at the common interface ∂Ω(1,2) of the constituents Ω(1) and103

Ω(2). Such resistance might for example results from imperfect bonding between the components,104
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cracks in the interface, corrosion, or from a thin interphase material such as a coating. The105

interface conditions are taken into account by two conjugate conditions, which are now specified106

in detail.107

• Equality of the heat flux at ∂Ω(1,2): The heat flux in both constituents is taken to be equal108

at their common interface ∂Ω(1,2), so that together with (6a) we can formulate this conjugate109

condition as follows:110
{

κ(1) ∂T
(1)

∂nx

= κ(2) ∂T
(2)

∂nx

}
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

, (7)

where111

∂

∂nx

= n1
∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
(8)

is a directional derivative, and nk, k = 1, 2, 3, are the elements of the normal unit vector n to112

the interface ∂Ω(1,2) (see Fig. 1). After substitution of the specific stipulation for the thermal113

conductivity (6b) into (7), this equation takes the form114

{

(

a
(1)
0 + a

(1)
1 T (1)

) ∂T (1)

∂nx

=
(

a
(2)
0 + a

(2)
1 T (2)

) ∂T (2)

∂nx

}
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

. (9)

• Temperature difference at ∂Ω(1,2): Different articles such as Quang et al. [26, 27] consider115

the differences in the temperature at ∂Ω(1,2) as a linear function of the heat flux. In the116

present article we assume, that the temperature difference ∆T = T (2) − T (1) is related in a117

nonlinear way to the heat flux, and we apply the following model118



















±∆T =

jmax
∑

j=1

b j

(

κ(1) ∂T
(1)

∂nx

) j


















∣

∣

∣

∣

∣

∣

∣

∣

∂Ω(1,2)

, (10)

where b j are constants which specify the quality of the interfacial resistance. If all constants119

b j = 0, then there is not thermal resistance at ∂Ω(1,2). If the terms b j for j ≥ 2 are neglected,120

then (10) reduces to the classical Kapitza model [23] for thermal resistance. On the left121

side of Eq. (10), the upper part of "±" belongs to the interface ∂Ω(1,2), which is located in122

the positive E1-direction from the inclusion Ω(1), and the bottom part "±" belongs to the123

interface ∂Ω(1,2), which is located in the negative E1-direction from the inclusion Ω(1).124

In the following parts of this article, we consider the case of jmax = 2 in (10). After substi-125

tution of the proposed stipulation for the conductivity (6b) into (10), this equation takes the126

form127

{

± ∆T = b1

[

(

a
(1)
0 + a

(1)
1 T (1)

) ∂T (1)

∂nx

]

+ b2

[

(

a
(1)
0 + a

(1)
1 T (1)

) ∂T (1)

∂nx

]2 }
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

. (11)

Let us rewrite the right-hand side of (11) as follows128

a
(1)
0 b1

∂T (1)

∂nx

+ a
(1)
1 b1 T (1) ∂T

(1)

∂nx

+
[

a
(1)
0

]2
b2

(

∂T (1)

∂nx

)2

+2a
(1)
0 a

(1)
1 b2 T (1)

(

∂T (1)

∂nx

)2

+
[

a
(1)
1

]2
b2

[

T (1)
]2

(

∂T (1)

∂nx

)2

.

(12)
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If we assume a weak nonlinearity with a
(1)
0 ≫ a

(1)
1 T (1) and

[

a
(1)
0

]2
≫ 2a

(1)
0 a

(1)
1 T (1), then we129

can take the last two terms in (12) to be negligibly small in comparison to the other terms.130

Applying this assumption, Eq. (11) becomes131

{

± ∆T = a
(1)
0 b1

∂T (1)

∂nx

+ a
(1)
1 b1 T (1) ∂T

(1)

∂nx

+
[

a
(1)
0

]2
b2

(

∂T (1)

∂nx

)2 }
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

. (13)

This thermal resistance model has some analogies to the nonlinear spring-layer bonding model132

for mechanical problems, which has been initially proposed by Goland & Reissner [35]. This133

model is based on the assumption that the interfacial stress is a function of the gap in the dis-134

placements. Linear and non-linear versions of this model have been discussed, for example, in135

[36].136

3. Application of the asymptotic homogenization method to obtain the effective heat equa-137

tion138

In order to determine the effective or homogenized thermal properties of the composite, the139

boundary value problem which consists of the heat Eq. (6c) and conjugate conditions to describe140

the thermal resistance at the interface in Eqs. (9) and (13) is analyzed by the application of the141

AHM.142

The size of the heterogeneities ℓ is considered to be much smaller than the macroscopic size L143

of the considered problem, ℓ ≪ L. The ratio of the length ℓ to the length L is defined by a small144

parameter ǫ,145

L = ǫ−1ℓ. (14)

Two types of Cartesian coordinate variables η and ζ are now introduced in the form

η = E1 η1 + E2 η2 + E3 η3, (15a)

ζ = E1 ζ1 + E2 ζ2 + E3 ζ3. (15b)

The coordinate variables η are denoted as the slow coordinate variables, and they measures the146

temperature in the area of interest, while the coordinate variables ζ are denoted as the fast co-147

ordinates, and they measure the temperature in the considered unit cell. These fast and slow148

coordinate variables are related to the original coordinate variables x via (see, i.e., Bensoussan et149

al. [9])150

x→ η, ζ = ǫ−1η. (16)

The boundary value problem contains first and second derivatives with respect to the elements
of x, and directional derivatives normal to the interface. In the notations of the slow and fast
coordinates, these derivatives are also substitutes as follows,

∂

∂xk

→
∂

∂ηk

+
1

ǫ

∂

∂ζk
, k = 1, 2, 3, (17a)

∂2

∂x2
k

→
∂2

∂η2
k

+
2

ǫ

∂2

∂ηk ∂ζk
+

1

ǫ2
∂2

∂ζ2
k

, k = 1, 2, 3, (17b)

∂

∂nx

→
∂

∂nη
+

1

ǫ

∂

∂nζ
, (17c)
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where

∂

∂nη
= n1

∂

∂η1
+ n2

∂

∂η2
+ n3

∂

∂η3
, (18a)

∂

∂nζ
= n1

∂

∂ζ1
+ n2

∂

∂ζ2
+ n3

∂

∂ζ3
. (18b)

In terms of the slow coordinate variables η, the lengths of the unit cell remains ℓk in the direction151

Ek, where k = 1, 2, 3. In the notation of the fast coordinate variables ζ, the length of the unit cell152

then becomes Lk, which is related to the lengths ℓk by the small parameter in the following way:153

Lk = ǫ
−1ℓk, k = 1, 2, 3. (19)

The distribution of the temperature T (i) in the constituent Ω(i) is now searched in form of an154

asymptotic expansion in powers of the small parameter ǫ,155

T (i) =
∑

n=0

ǫnT (i)
n . (20)

The first summand T
(i)
0 = T

(i)
0 (η, t) = T0 in (20) is the homogenized term, and it is a function156

of the slow coordinate η, which replaces the original coordinate x, and time t (see Bakhvalov&157

Panasenko [37]). The then following terms T
(i)
n = T

(i)
n (η, ζ, t) for n = 1, 2, . . . are correction158

terms of the order ǫn, which therefore depend on both the slow coordinate variables η and time t159

as the homogenized leading term as well as on the fast coordinate variables ζ. The periodicity of160

the composite structure results into the following periodicity condition for the corrections terms161

of the temperature field in terms of the fast coordinate variables ζ,162

T (i)
n (η, ζ, t) = T (i)

n (η, ζ + L, t), n = 1, 2, . . . , (21)

where L is a translation vector in the form163

L = E1 λ1L1 + E2 λ2L2 + E3 λ3L3, (22)

where λk = ±1,±2, . . . are integers, k = 1, 2, 3. The unit cell with the length Lk = ǫ
−1ℓk in terms164

of the fast coordinate variables ζk is symmetric with respect to the axes of the coordinate system165

{E1,E2,E3}.166

3.1. Homogenized heat equation of different asymptotic orders167

In the present section we apply the AHM to the boundary value problem in Sec. 2.2. After168

substitution of the asymptotic expansion of the temperature field (20) into the heat Eq. (6c) and169

applying the derivatives in (17), we derive a heat equation in terms of the slow and fast coordinate170
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variables in the form171

3
∑

k=1

{

a
(i)
0

∑

n

ǫn












∂2T
(i)
n

∂η2
k

+
2

ǫ

∂2T
(i)
n

∂ηk ∂ζk
+

1

ǫ2
∂2T

(i)
n

∂ζ2
k













+a
(i)
1

[

∑

n

ǫn












∂T
(i)
n

∂ηk

+
1

ǫ

∂T
(i)
n

∂ζk













]2

+a
(i)
1















∑

n

ǫnT (i)
n















[

∑

n

ǫn












∂2T
(i)
n

∂η2
k

+
2

ǫ

∂2T
(i)
n

∂ηk ∂ζk
+

1

ǫ2
∂2T

(i)
n

∂ζ2
k













]}

= ρ(i)
p

∑

n

ǫn
∂T

(i)
n

∂t
.

(23)

The thermal resistance of the interface ∂Ω(1,2) is modeled by the conjugate conditions in (9)172

and (13), and we also want to present these conditions in terms of the slow and fast coordinate173

variables.174

• Equality of the heat flux at ∂Ω(1,2): In terms of slow and fast coordinates, the conjugate175

condition Eq. (9) takes the form,176

{

a
(1)
0

[

∑

n

ǫn












∂T
(1)
n

∂nη
+

1

ǫ

∂T
(1)
n

∂nζ













]

+a
(1)
1















∑

n

ǫnT (1)
n















[

∑

n

ǫn












∂T
(1)
n

∂nη
+

1

ǫ

∂T
(1)
n

∂nζ













]

= a
(2)
0

[

∑

n

ǫn












∂T
(2)
n

∂nη
+

1

ǫ

∂T
(2)
n

∂nζ













]

+a
(2)
1

(

∑

n
ǫnT

(2)
n

) [

∑

n ǫ
n

(

∂T
(2)
n

∂nη
+ 1
ǫ

∂T
(2)
n

∂nζ

)

}
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

.

(24)

• Temperature difference at ∂Ω(1,2): Equation (13) can be rewritten as177

{

±
∑

n

ǫn∆Tn = a
(1)
0 b1

[

∑

n

ǫn












∂T
(1)
n

∂nη
+

1

ǫ

∂T
(1)
n

∂nζ













]

+ a
(1)
1 b1

(

∑

n
ǫnT

(1)
n

) [

∑

n ǫ
n

(

∂T
(1)
n

∂nη
+ 1
ǫ

∂T
(1)
n

∂nζ

)

]

+
[

a
(1)
0

]2
b2

[

∑

n

ǫn












∂T
(1)
n

∂nη
+

1

ǫ

∂T
(1)
n

∂nζ













]2}∣
∣

∣

∣

∣

∣

∂Ω(1,2)

,

(25)

where ∆Tn = T
(2)
n − T

(1)
n is the temperature difference of the n-th order terms of expansion178

of the temperature field at the interface ∂Ω(1,2).179

In the equations (23) - (25) we find terms of different orders ǫn which result from the expansion180

of the temperature field in (20), and which might result from the differences of the material pa-181

rameter values. For example, if the ratio of the thermal conductivities κ(2)/κ(1) of the constituents182
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is of the n-th order of the small parameters ǫ, then this has to be taken into account in deriving183

heat equations of the different asymptotic orders. Cherednichenko et al. [38] and Gałka et al. [16]184

discuss material parameters of different asymptotic orders, which gives a splitting scheme that185

may result into non-local effects in the effective equations. In the boundary value problem (23)186

- (25), the material parameters of the different constituents and the parameters in the bonding187

conditions are taken to be of the same asymptotic order188

a
(1)
0 ∼ a

(2)
0 , a

(1)
1 ∼ a

(2)
1 . (26)

In order to derive the effective thermal properties of different asymptotic orders, we subdivide189

the boundary value problem in (23) - (25) into a recurrent system of equations of different orders190

with respect to the small parameter ǫ. Such splitting of the heat Eq. (23) gives191

3
∑

k=1

{

a
(i)
0















∂2T
(i)
n−2

∂η2
k

+ 2
∂2T

(i)
n−1

∂ηk∂ζk
+
∂2T

(i)
n

∂ζ2
k















+a
(i)
1

[ n−2
∑

m=0















∂T
(i)
m

∂ηk

+
∂T

(i)
m+1

∂ζk





























∂T
(i)
n−m−2

∂ηk

+
∂T

(i)
n−m−1

∂ζk















]

+a
(i)
1

[ n−2
∑

m=0

T (i)
m















∂2T
(i)
n−m−2

∂η2
k

+ 2
∂2T

(i)
n−m−1

∂ηk∂ζk
+
∂2T

(i)
n−m

∂ζ2
k















]}

= ρ(i)
p

∂T
(i)
n−2

∂t
,

(27)

where n = 1, 2, . . . and T
(i)
n−2 = T0 . In the case of a negative subscript in one of the temperature192

terms, this terms will become equal to zero, e.g., T
(i)
−1 = 0.193

Let us apply the separation of the terms of different orders the interface conjugate conditions.194

• Equality of the heat flux at ∂Ω(1,2): If we apply this splitting scheme to (24), then we195

obtain196

{

a
(1)
0















∂T
(1)
n−1

∂nη
+
∂T

(1)
n

∂nζ















+ a
(1)
1

[ n−1
∑

m=0

T (1)
m















∂T
(1)
n−m−1

∂nη
+
∂T

(1)
n−m

∂nζ















]

= a
(2)
0















∂T
(2)
n−1

∂nη
+
∂T

(2)
n

∂nζ















+ a
(2)
1

[ n−1
∑

m=0

T (2)
m















∂T
(2)
n−m−1

∂nη
+
∂T

(2)
n−m

∂nζ















]}
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

.

(28)

• Temperature difference at ∂Ω(1,2): For (25) we obtain197

{

± ǫ
(

T (2)
n − T (1)

n

)

= a
(1)
0 b1















∂T
(1)
n−1

∂nη
+
∂T

(1)
n

∂nζ















+a
(1)
1 b1

n−1
∑

m=0

T (1)
m















∂T
(1)
n−m−1

∂nη
+
∂T

(1)
n−m

∂nζ















+
[

a
(1)
0

]2
b2

[ n−2
∑

m=0















∂T
(i)
m

∂nη
+
∂T

(i)
m+1

∂nζ





























∂T
(i)
n−m−2

∂nη
+
∂T

(i)
n−m−1

∂nζ















]}
∣

∣

∣

∣

∣

∣

∂Ω(1,2)

.

(29)

On the left-hand side of (29), we find the small parameter ǫ as a factor. To derive the198

different-order terms in the expansion of the temperature field in (20), we start with the199

lowest reasonable order n = 1. If we would apply±
(

T
(2)
n−1 − T

(1)
n−1

)

instead of±ǫ
(

T
(2)
n − T

(1)
n

)

,200

then the left side in Eq. (29) would be equal to zero for n = 1, because T
(2)
0 = T

(1)
0 = T0.201
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We have to choose ansatzes for T
(i)
n , which satisfy the conditions (27) - (29). Once these ansatzes202

are found and their integration constants have been determined by the conjugate conditions, the203

homogenizing operator204

〈·〉 =
1

V

L3
2

∫

−
L3
2

L2
2

∫

−
L2
2

L1
2

∫

−
L1
2

(·) dζ1 dζ2 dζ3, (30)

is applied to both sides of (27) in order to determine the homogenized or effective material205

parameters, where V = L1L2L3.206

In the following, we simplify the problem under consideration, and we take the unit cell is207

cubic with the side lengths ℓ1 = ℓ2 = ℓ3 = ℓ in the notation of the slow coordinate variables, and208

L1 = L2 = L3 = L in the notation of the fast coordinate variables.209

We have presented a method based on asymptotic homogenization to derive the effective heat210

equations of different asymptotic orders, which also take nonlinear effects into account. The de-211

gree of nonlinearity results from two sources, the amount of terms, which are taken into account212

in the thermal conductivity model (1), and the number of terms which are taken into account in213

the thermal resistance model for the interface ∂Ω(1,2) in (11). The here proposed asymptotic ho-214

mogenization paradigm allows to study a wide range of thermal effects. In the following sections215

we apply this method to study composites with a large volume fractions of the inclusions close216

to the maximum volume fraction, and small volume fractions of the inclusions.217

• In Sec. 4 we apply the close packing model, which is also denoted as the lubrication theory218

to study the case of large inclusions. In this section, we mainly study the case of large219

spherical inclusions. We will show, that the obtained results applicable to problems of220

heat diffusion in arbitrary directions in the E1 − E2-plane for both spherical inclusions and221

cylindrical inclusions. At the end of that section, we also briefly discuss layered composite222

materials.223

• In Sec. 5 we apply the three-phase model in order to study the effective properties of the224

composite when the volume fractions of the inclusions are considered to be small. Two225

different types of inclusions will be considered. In the first part we study heat transfer in226

directions perpendicular to the parallel cylindrical inclusions. In the second case, we apply227

the three-phase model in order to obtain the effective thermal properties of composites with228

spherical inclusions.229

The herein studied limiting cases of large and small volume fractions of the inclusions might be230

matched in order to obtain the effective thermal properties of the material for intermediate volume231

fractions for the inclusion, for example by the application of two-point Padé approximants [39].232

This matching the limiting solutions lies beyond the scope of the present article.233

4. Densely packed composites: using of lubrication theory234

The main idea of the lubrication theory relies on changing the boundary value problem with
possibly uneven surfaces of the inclusion from the original space into the space of a simplified ge-
ometry. Figure 2 shows two examples for inclusions with uneven geometries. It should be noted
that while employing the inclusions with a large size, these inclusions are almost in touch and the
most important physical processes (for instance, heat flux) take place in a very thin domain. The

10



ζ1

ζ2

ζ3

ζ1

ζ2

ζ3

Figure 2: Two cubic unit cells in terms of the fast coordinate variables ζk, where k = 1, 2, 3. The left unit cell has a
spherical inclusion, and the right unit cell a cylindrical inclusion with an axis oriented in the ζ3-direction.

lubrication theory plays a key role in calculations of the high contrast, densely packed compos-
ites. In order to define the character of an asymptotic behavior, one needs to employ methods,
which clearly exhibit the physical behavior of the processes, which occur in the investigated
composites. For the high contrast, densely packed composites, the most adequate approaches are
represented by network approximation methods [40] and lubrication theory [21]. Note that the
lubrication theory is more suitable in our case, because it allows to obtain solutions for a large
interval of parameters, for instance, for a finite but large heat conductivity of the inclusions. Such
model has been justified and applied in different studies on asymptotic homogenization, for ex-
ample by Kalamkarov et al. [22] for heat diffusion problems, for by Andrianov et al. [11, 41] for
wave propagation problems. Frankel & Acrivos [42] applied this model to determine the effec-
tive viscosity of a concentrated suspension of solid spheres. This approach allows us to consider
the heat problem direction-wise in the E1, E2, and E3 directions. We use terms lubrication theory
or densely packed model approach, which is also dented as the concentrated suspension model
or the lubrication approximation by Christensen [21]. From the mathematical standpoint we ap-
ply the thin layer approach (see Tayler [43]). This approach results into simplified models by
assuming that the length scales in a direction Ek are much smaller than in the directions normal
to it. The used formal procedure is to rescale the xk variable with a small parameter ǫ expressing
the ration of the relative length scales. For a cubic unit cell with a large inclusion in its center, the
symmetry of the presented problem in the space of a simplified geometry allows us to consider
a single direction Ek, where k = 1, 2, 3, and to generalize the results for the three-dimensional
case. Figure 3 shows a brief example of the lubrication theory model for heat propagation in the
ζ1-direction. The figure shows a cross-sectional area of the cubic unit cell in the E1 − E2 plane
(all considerations for the E1 − E3 plane are analogue to these considerations). The original
inclusion geometry is replaced by an inclusion strip of the length L(1). In the matrix strips Ω(2)

⊥ ,
which are perpendicular to the direction of heat diffusion, the changes in the temperature field
T

(2)
n in ζ1-directions are dominant in comparison to the changes in ζ2-direction, and in the matrix

strips Ω(2)
‖

, which are parallel to the direction of heat diffusion, the changes in the temperature
field in ζ2-directions are dominant in comparison to the changes in ζ1-direction (see, for example,

11



����������������������

�����������
�����������
�����������
�����������

L = ǫ−1ℓ

ζ2

L = ǫ−1ℓ

L(1)
= ǫ−1ℓ(1)

ζ1

heat diffusion in

ζ1 − direction
a cubic unit cell
cross-sectional area of

original inclusion geometry

modeling inclusion geometry

Ω
(2)
⊥

Ω
(2)
‖

ζ1

ζ2

ζ3

∂Ω(1,2)

Figure 3: Lubrication theory model for large volume fractions of the inclusion Ω(1) and heat propagation into the ζ1-
direction: The figure shows a cross-sectional area of the cubic unit cell in the E1 − E2 plane (all considerations for the
E1 −E3 plane are analogue to these considerations). The original inclusion geometry is replaced by an inclusion strip of
the length L(1), which for a spherical inclusion corresponds to the diameter of the spherical inclusion. In the matrix strips

Ω
(2)
⊥ the changes in the temperature field T

(2)
n in ζ1-directions are dominant in comparison to the changes in ζ2-direction,

and in the matrix strips Ω(2)
‖

the changes in the temperature field in ζ2-directions are dominant in comparison to the
changes in ζ1-direction.

Andrianov et al. [44]):

matrix strip Ω(2)
⊥

∂2T
(2)
n

∂ζ2
1

>>
∂2T

(2)
n

∂ζ2
2

, (31a)

matrix strip Ω(2)
‖

∂2T
(2)
n

∂ζ2
2

>>
∂2T

(2)
n

∂ζ2
1

. (31b)

Analogously for the considerations in the E1 − E3 plane, for the strip Ω(2)
⊥ we obtain ∂

2T
(2)
n

∂ζ2
1
>>235

∂2T
(2)
n

∂ζ2
3

, and for the strip Ω(2)
‖

we obtain ∂
2T

(2)
n

∂ζ2
3
>>

∂2T
(2)
n

∂ζ2
1

. For heat transfer in the directions of ζ2236

and ζ3, these considerations are applied in a similar fashion. A justification of the lubrication237
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theory model for spherical inclusions and cylindrical inclusions can be found, for example, in238

Christensen & Lo [19].239

Let us substitute n = 1 into the heat equation (27), and we obtain for the constituent Ω(i)
240

∂2T
(i)
1

∂ζ2
1

+
∂2T

(i)
1

∂ζ2
2

+
∂2T

(i)
1

∂ζ2
3

= 0, i = 1, 2. (32)

Bakhvalov & Panasenko [37] have shown that for such symmetric unit cell the condition (21)
can be replaced by two boundary conditions in the center and at the outer boundaries of the unit
cell in the form

{

T (1)
n = 0

}

∣

∣

∣

∣

ζk=0
, (33a)

{

T (1)
n = 0

}

∣

∣

∣

∣

ζk=±
Lk
2

. (33b)

This replacement has been applied in different works on the asymptotic analysis of the effective241

properties of periodic materials, for example, in [11] for the effective mechanical properties of242

composites, and in [29] for the effective thermal properties.243

By applying the lubrication theory model to a cubic unit cell with a large inclusion (see Fig.244

3 and Eqs. (31)) for the separate considerations in the Ek directions, where k = 1, 2, 3, we can245

replace the ansatz in (32) by the following set of ansatzes for T
(i)
1 ,246

∂2T
(i)
1

∂ζ2
k

= 0 ⇔ T
(i)
1 =

(

c
(i)
k,1 + c

(i)
k,2ζk

) ∂T0

∂ηk

, k = 1, 2, 3, i = 1, 2, (34)

where c
(i)
k,1 and c

(i)
k,2 are four integration constants for each direction of the heat flux Ek.247

In the interface conjugate conditions (28) and (29) we find the directional derivatives ∂
∂nη

and248

∂
∂nζ

. For the asymptotic lubrication model these derivatives take the forms ∂
∂nη
= ∂
∂ηk

and ∂
∂nζ
=249

∂
∂ζk

, where k = 1, 2, 3. The conjugate conditions (28) and (29) in the interface ∂Ω(1,2) then take250

the following forms:251

• Equality of the heat flux at ∂Ω(1,2): For n = 1, conjugate condition (28) takes the following252

form after collecting the terms and canceling out ∂T0

∂ηk
on both sides:253

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c
(1)
k,2

)

=
[

a
(2)
0 + a

(2)
1 T0

] (

1 + c
(2)
k,2

)

, k = 1, 2, 3. (35)

• Temperature fifference at ∂Ω(1,2): For n = 1, the conjugate condition (29) becomes254

ǫ

[

(

c
(2)
1,k − c

(1)
1,k

)

±
L1

2

(

c
(2)
2,k − c

(1)
2,k

)

]

= b1

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c
(1)
2,k

)

, k = 1, 2, 3, (36)

where L1 = ǫ
−1ℓ1. Note that in the here considered first approximation equation (36) is255

independent from b2. The upper sign in "±" results from the boundary condition at ζk =256

L1/2, and the bottom sign results from the boundary condition at ζk = −L1/2.257

In the ansatz for T
(i)
1 in Eq. (34) we find four constants c

(i)
k,1 and c

(i)
k,2, which are determined from258

the four conjugate conditions (33), (35) and (36).259
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Let us apply the homogenizing operator (30) to the heat equation (27) for n = 2, and we obtain260

1

L3

3
∑

k=1

L
2

∫

− L
2

L
2

∫

− L
2

L
2

∫

− L
2

a
(i)
0















∂2T0

∂η2
k

+
∂2T

(i)
1

∂ηk∂ζk















+ a
(i)
1















∂T0

∂ηk

+
∂T

(i)
1

∂ζk















2

+ a
(i)
1 T0















∂2T0

∂η2
k

+
∂2T

(i)
1

∂ηk∂ζk















dζk dζr dζs

=
1

L3

3
∑

k=1

L
2

∫

− L
2

L
2

∫

− L
2

L
2

∫

− L
2

ρ(i)
p

∂T0

∂t
dζk dζr dζs, r , k, r , s, s , k.

(37)

Although the substitution n = 2 has been applied, all terms which contain the correction terms261

T
(2)
2 have been canceled out (also see Appendix A and [29]).262

We substitute the now known forms of T
(i)
1 into (37), and expand the result into a McLaurin263

series for the homogenized term T0 of the temperature field. After neglecting all terms of a264

higher order than the terms in the given boundary value problem, we obtain a homogenized heat265

equation in the form of the homogenized parameters 〈·〉 of the order O(ǫ0),266

3
∑

k=1















〈a0〉
∂2T0

∂η2
k

+ 〈a1〉















(

∂T0

∂ηk

)2

+ T0
∂2T0

∂η2
k















+ O(ǫ1)















= 〈ρp〉
∂T0

∂t
, (38)

where on the left side 〈a0〉 and 〈a1〉 are homogenized parameters which result from thermal
conductivities of the constituents, the geometry of the unit cell, and the bonding factors. On
the right side, 〈ρp〉 is a homogenized parameter which results from the product of the specific
heat capacities and the mass densities of the constituents and the geometry. These homogenized
parameters have the forms

〈a0〉 =
(γ1 + α1) ℓ

[N + Nb]2
, (39a)

〈a1〉 =
β1ℓ

[N + Nb]2
, (39b)

〈ρp〉 =
ρ

(1)
p ℓ

(1)
k
+ ρ

(2)
p ℓ

(2)
k

ℓ
, k = 1, 2, 3, (39c)

where ℓ(1)
k

for k = 1, 2, 3 are the lengths of the inclusions in the Ek directions in terms of the slow
coordinate variables, ℓ(2)

k
= ℓk − ℓ

(1)
k

, and

α1 =
[

a
(1)
0

]2
a

(2)
0 ℓ

(2)
k
+ a

(1)
0

[

a
(2)
0

]2
ℓ

(1)
k
, k = 1, 2, 3, (40a)

β1 =
[

a
(1)
0

]2
a

(2)
1 ℓ

(2)
k
+ a

(1)
1

[

a
(2)
0

]2
ℓ

(1)
k
, k = 1, 2, 3, (40b)

γ1 = 2
[

a
(1)
0 a

(2)
0

]2
b1, (40c)

N = a
(1)
0 ℓ

(2)
k
+ a

(2)
0 ℓ

(1)
k
, k = 1, 2, 3, (40d)

Nb = 2a
(1)
0 a

(2)
0 b1. (40e)
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Note that parameters in (40c) and (40e) include the constant b1, which takes into account the267

thermal resistance at the interface ∂Ω(1,2). The homogenization scheme in (34)-(37) can be con-268

tinuously repeated in order to derive the homogenized heat equations of higher asymptotic orders269

ǫn, n ≥ 2.270

Once the effective parameters 〈a0〉 and 〈a0〉 have been determined, we obtain the homogenized
thermal conductivity 〈k〉 and the homogenized heat flux 〈q〉 of the order ǫ0 in the form

〈k〉 = 〈a0〉 + T0 〈a1〉, (41a)

〈q〉 = − [〈a0〉 + T0 〈a1〉]
∂T0

∂ηk

, k = 1, 2, 3. (41b)

In the case of a
(1)
1 = a

(2)
1 = 0 the effective thermal conductivity 〈k〉 = 〈a0〉 becomes271

〈a0〉 =
a

(1)
0 a

(2)
0 ℓ

a
(1)
0 ℓ

(2) + a
(2)
0 ℓ

(1) + 2a
(1)
0 a

(2)
0 b1

, (42)

which is temperature-independent. The result in (42) shows some analogies to the effective272

elastic properties of composites with imperfect bonding which have been obtained by Topol273

[45]. In the case of the absence of thermal resistance, b1 = 0, (42) reduces to274

〈a0〉 =
a

(1)
0 a

(2)
0 ℓ

a
(1)
0 ℓ

(2) + a
(2)
0 ℓ

(1)
. (43)

The form (43) for effective parameter in linear problems is well known from different problems in275

the field of mechanics. For example, Andrianov et al. [11] obtained a similar form for the effec-276

tive elastic material parameters for wave propagation in layered composite for three-dimensional277

problems with large volume fractions of the inclusions. Zhang et al. [14] obtained this result in278

(43) as well as results for the effective thermal parameters of higher asymptotic orders.279

4.1. Heat diffusion in a layered composite280

The asymptotic homogenization of a layered composite is a well studied topic. Nevertheless,281

this relatively simple case of a layered material is useful to illustrate and to highlight the different282

features of the effective heat equation which has been obtained by the homogenization technique.283

Figure 4 shows a layered composite with the unit cell length ℓ. The material is considered to284

consist of to alternating layers Ω(1) and Ω(2) with the lengths ℓ(1) and ℓ(2), respectively, in the285

E1-direction, so that ℓ(1) + ℓ(2) = ℓ. In such case the governing heat equation can be derived from286

(38), which then takes the form287

〈a0〉
∂2T0

∂η2
1

+ 〈a1〉















(

∂T0

∂η1

)2

+ T0
∂2T0

∂η2
1















+ O(ǫ1) = 〈ρp〉
∂T0

∂t
. (44)

While (38) is valid for large size of the inclusions, i.e., ℓ(1)
k
→ ℓk, where k = 1, 2, 3, Eq. (44) is288

valid for arbitrary thicknesses of the layers.289
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L = ǫ−1ℓ

heat diffusion in

ζ1 − direction

Ω
(2)

Ω
(1)

ζ1

L(1)
= ǫ−1ℓ(1)

∂Ω(1,2)

Figure 4: One-dimensional heat diffusion in a layered composite. The material is considered to consist of to alternating
layers Ω(1) andΩ(2) with the lengths L(1) and L(2), respectively, in the E1-direction in terms of the fast coordinate variable
ζ1, so that L(1) + L(2) = L, where L is the total length of a single unit cell.

4.2. Numerical examples290

We present two numerical examples to illustrate the different features of the herein derived291

homogenized heat equation. In the first example, we study a one-dimensional heat-diffusion292

problem in a layered composite, in which we contrast the results of the homogenized heat equa-293

tion and the results of the heterogeneous original problem. In the second example, we study294

two-dimensional heat diffusion in a quadratic plate. The different results illustrate the influences295

of the temperature-dependent thermal conductivity of the constituents and varying interfacial296

conditions on the heat propagation in the plate. In both examples, we apply the finite difference297

method to treat the heat equations (38) and (44). Such method is described in detail in works298

such as [46], and the details of the herein applied form of such method are briefly summed up in299

Appendix B.300

Heat diffusion in a layered composite. In the present example we consider a composite which301

consists of two alternating layers Ω(1) and Ω(2). The properties of Ω(1) are based on the param-302

eters of austenitic steel (Kh18N10T), and the properties of Ω(2) are based on the parameters of303

aluminum 99.99, and the specific values of these parameters are cited from [47] for 293.14 K,304

and they are as follows:305

constituent Ω(1) Ω(2)

length ℓ
(i)
1 ℓ

(1)
1 = 0.5 ℓ ℓ(2)

1 = 0.5 ℓ

thermal conductivity a
(i)
0 [W m−1K−1] 14.5 238

mass density ρ(i) [kg m−3] 7900 2700

specific heat capacity c
(i)
p [J kg−1K−1] 470 945

The thermal parameters are taken to be temperature-independent, a
(i)
1 = 0, and the thermal resis-306

tance at the interface ∂Ω(1,2) is neglected, b1 = 0. We consider a layered composite of the length307

L = 0.1 m in the direction E1 of heat diffusion, x1 ∈ [0, L]. The length of one unit cell is taken308

to be ℓ, and both constituents to have the same thickness of ℓ(1)
1 = ℓ

(2)
1 = ℓ/2. Heat diffusion309

analyzed by the application of the finite difference method. Therefore L is subdivided into 100310
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Figure 5: One-dimensional heat diffusion in a composite with two alternating layers Ω(1) and Ω(1).

intervals, so that all 101 noted are located at x1 = N mm, where N = 0, 1, 2, . . . , 101. At all311

times t, the nodes for N = 1, 2 have the temperature 323.15 K, and the nodes for N = 100, 101312

have the temperature 273.15 K. At time t = 0 all further nodes have the temperature 273.15 K.313

We want to contrast the solutions for the heat distribution at time t = 120 s (in 24 · 103 steps)314

in the material four different thicknesses for ℓ(1)
1 = ℓ

(1)
2 : (a) 50 mm, (b) 10 mm, (c) 5 mm,315

and (d) 2 mm. Figure 5 compares these cases to the homogenized solution of the order O(ǫ0)316

in (44). In panel (a) we find that heat diffusion just took place in constituent Ω(1). In the then317

following panels the thickness decreases, and the solution for the heterogeneous materials comes318

closer to the homogenized solution. Although the solution for the heterogeneous materials and319

the homogenized solution in panel (d) are pretty close together, we still find a small but visible320

difference between these solutions. If we would consider a heterogeneous material with a finer321

microstructure, then we would have to apply a finer mesh, and therefore larger computing times.322

Nonlinear heat diffusion in a quadratic plate. In the present example we consider two-323

dimensional heat diffusion in a quadratic plate with the side lengths L = 0.1 m, so that x1 ∈ [0, L],324

x2 ∈ [0, L], and ∂T
∂x3
= 0. The microstructure consists of quadratic unit cells of the side length325

ℓ, where ℓ ≪ L, with quadratic inclusions Ω(1) of the side lengths ℓ(1)
1 = ℓ

(1)
2 = 0.95 ℓ. The326

governing heat Eq. is given by (38). The material properties of constituent Ω(1) are based on327

properties of copper 99.99, and the properties of constituent Ω(2) are based on the properties of328
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aluminum 99.99. These properties are taken from [47], and they are as follows:329

constituent Ω(1) Ω(2)

length ℓ(i) ℓ
(1)
k
= 0.95 ℓ ℓ(1)

k
= 0.05 ℓ

thermal conductivity a
(i)
0 [W m−1K−1] 401 238

mass density ρ(i) [kg m−3] 8960 2700

specific heat capacity c
(i)
p [J kg−1K−1] 385 945

The plate is subdivided into 21×21 nodes. At all times t, the nodes located at the edges x1 = L and330

x2 = L have the temperature 273.13 K, and all other edge nodes have the temperature 373.13 K.331

At time t = 0 all other nodes have the temperature 273.13 K. The temperature distribution for a332

later time t = 4 s is illustrated in Fig. 6.333

• The panels (a)-(c) of Fig. 6 illustrate the heat diffusion for temperature-independent thermal334

parameters, 〈a1〉 = 0, and different values of the thermal resistance. Panel (a) is for the335

absence of any thermal resistance at ∂Ω(1,2), b1 = 0, panel (b) is for b1 = 0.001 W−1K, and336

panel (c) is for b1 = 0.01 W−1K. These panels illustrate how increasing the values for b1337

slow down the diffusion of heat in the plate.338

• For the bottom three panels (d)-(f) of Fig. 6 we assume the total absence of any thermal339

resistance at the interface ∂Ω(1,2), so that b1 = 0. We take the thermal conductivity of340

constituent Ω(1) to be temperature-dependent, and therefore we define the parameter a
(1)
1341

relative to a
(1)
0 ,342

a
(1)
1 = M/K a

(1)
0 . (45)

For negative values for M, the values for the thermal conductivity κ(1) decrease with in-343

creasing temperatures. Such decrease of the thermal conductivity is usual for many metals344

in the considered temperature range [47]. Panel (d) is for M = −1/1000, panel (e) is for345

M = −1/500, and panel (f) is for M = −1/400. These panels show the change in the346

temperature diffusion when the thermal conductivity decreases with rising temperatures.347

5. Low volume fraction of the inclusions: using of three-phase model348

In the case of low volume fractions of the inclusions, v(1)

v
→ 0, we will apply the three-phase349

model in order to obtain the effective thermal properties of the composite. The three-phase350

model is also denoted as the self-consistent approximation, and it was proposed by Hershey [1]351

and Kerner [3], and then later further developed by Kröner [4], van der Poel [6], and Hill [2]. The352

theory behind this approach is explained, for example, in Christensen & Lo [19] and Christensen353

[21]. The application of the three-phase model for the asymptotic analysis of heat conduction354

problems with small inclusions has been applied in different works, for example in [20]. In this355

approach, the original problem is replaced by a unit cell which contains one single inclusion356

Ω(1), the first phase, which is surrounded by the matrix Ω(2), the second phase. This inclusion-357

matrix part is surrounded by a third phase Ω(3) with the same effective and yet unknown thermal358

properties as the composite on the macro-scale. By introducing a third phaseΩ(3), we also have to359

consider the interaction between the matrix and the third phase at their common interface ∂Ω(2,3).360

At this interface we do not consider any thermal resistance, so that the conjugate conditions can361

be stated as follows:362
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Figure 6: Two-dimensional heat diffusion in a quadratic plate: The top three panels (a)-(c) illustrate the heat diffusion for
temperature-independent thermal parameters and different values of the thermal resistance. Panel (a) is for b1 = 0, panel
(b) is for b1 = 0.001 W−1K, and (c) is for b1 = 0.01 W−1K. The bottom three panels (d)-(f) show the heat distribution in
the plate for temperature-dependent thermal conductivities of the inclusion.

• Equality of the heat flux in ∂Ω(2,3): Analogously to (46), we obtain363

{

a
(2)
0















∂T
(2)
n−1

∂nη
+
∂T

(2)
n

∂nζ















+ a
(2)
1

[ n−1
∑

m=0

T (1)
m















∂T
(2)
n−m−1

∂nη
+
∂T

(2)
n−m

∂nζ















]

= a
(3)
0

(

∂T
(3)
n−1

∂nη
+
∂T

(3)
n

∂nζ

)

+ a
(3)
1

[

n−1
∑

m=0
T

(3)
m

(

∂T
(3)
n−m−1

∂nη
+
∂T

(3)
n−m

∂nζ

)

]}
∣

∣

∣

∣

∣

∣

∂Ω(2,3)

.

(46)
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• Temperature difference in ∂Ω(2,3): In absence of any thermal resistance, the temperatures364

are equal at ∂Ω(2,3).365

{

(

T (2)
n = T (3)

n

)

}
∣

∣

∣

∣

∣

∣

∂Ω(2,3)

. (47)

In the following we will apply the three-phase model to analyze two different problems, which366

are illustrated in Fig. 2:367

1. In the first case we analyze the effective properties of a composite in which the inclusions368

are arranged in a regular pattern of parallel cylindrical fibers. Heat diffusion is studied in369

the directions perpendicular to the fiber orientation.370

2. In the second case, the inclusions are taken to have spherical shapes.371

∂Ω(1,2)

∂Ω(2,3)

original unit
cell boundary

boundary

ζ2

ζ1

model

Ω
(1)

Ω
(2)

r(1)

r(2)

r(3)

Ω
(3)

r
φ

Figure 7: Three-phase model: A single unit cell of the composite. In this approach, the original problem is replaced by
a unit cell which contains one single inclusion Ω(1), the first phase, which is surrounded by the matrix Ω(2), the second
phase. This inclusion-matrix part is surrounded by a third phase Ω(3) with the same effective properties as the composite
on the macro-scale.

In this three-phase model, the original problems are studies by the application of an asymptotic372

model in which the original inclusion-matrix cell is replaced by a cylindrical cell in the case of373

parallel fibers, and by a spherical cell in the case of spherical inclusions (see Fig. 7). Such a374

modeling cell consists of the inclusion Ω(1) in its center, a surrounding matrix phase Ω(2). This375

inclusion-matrix part is surrounded by a third phase Ω(3) with the same effective properties as376

the composite on the macro-scale. Such replacement has been applied in different works, and it377

is based on the zero-order approximation of the boundary shape perturbation method (see, for378

example, Guz & Nemish [48] and Kalamkarov et al. [49]).379

5.1. Three-phase model applied to a composite with fiber inclusions380

We consider an array of parallel fibers in the matrix, which are oriented in the E3-direction.381

The centers of the fibers form a square lattice, and we assume heat diffusion in the E1 −E2-plane382

perpendicular to the fiber orientation. Because ∂T
(i)

∂η3
= ∂T

(i)

∂ζ3
= 0, the considered boundary value383

problem can be reduced to a two-dimensional problem. The fibers have a circular cross-sectional384

area with the radius r(1) in the notation of the fast coordinate variables.385
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It is now more convenient to consider this problem in a cylindrical coordinate system which is
defined by the three base unit vectors

{

Erc
,Eφ,Eζ3

}

, and therefore we replace the Cartesian fast
coordinate variables in ζ by cylindrical fast coordinate variables ζc with the elements {r, φ, ζ3}.
These coordinate systems are related via

ζ1 = r cos φ, r =

√

ζ2
1 + ζ

2
2 , (48a)

ζ2 = r sin φ, φ = atan2 (ζ2, ζ1) , (48b)

where r ≥ 0 and 0 ≤ φ ≤ 2π.386

We replace the previously applied notation of correction term T
(i)
n (η, ζ, t) of the temperature387

field by a notation in which we apply the cylindrical coordinates:388

T̄ (i)
n (η, ζc, t) = T (i)

n (η, ζ, t), i = 1, 2, 3. (49)

The conjugate conditions (33) for the center and the outer boundaries of the original unit cell
are replaced by the two conditions at the center of the cylindrical cell and at r → ∞ (see, for
example, [20]),

{

T̄ (1)
n = 0

}

∣

∣

∣

∣

r→0
, (50a)















∂T̄
(3)
n

∂r
= 0















∣

∣

∣

∣

∣

∣

∣

r→∞

, (50b)

where n = 1, 2, 3, . . .. Substituting n = 1 into the heat equation (27), we obtain the following389

equation for the first correction term T̄
(i)
1 of the temperature in the three constituents Ω(i),390

∂2T̄
(i)
1

∂ζ2
1

+
∂2T̄

(i)
1

∂ζ2
2

= 0, i = 1, 2, 3. (51)

Both ζ1 and ζ2 are fast Cartesian coordinates, and T̄
(i)
1 is now defined in terms of the cylindrical

coordinates r and φ. Therefore in (51) we apply the derivatives with respect to ζ1 and ζ2 in the
forms

∂

∂ζ1
= cos φ

∂

∂r
−

sinφ

r

∂

∂φ
, (52a)

∂

∂ζ2
= sin φ

∂

∂r
+

cosφ

r

∂

∂φ
, (52b)

so that (51) becomes391

∂2T̄
(i)
1

∂r2
+

1

r

∂T̄
(i)
1

∂r
+

1

r2

∂2T̄
(i)
1

∂φ2
= 0, i = 1, 2, 3. (53)

We now have to choose ansatzes which are capable to satisfy the conditions (50) and (53), and392

we choose393

T̄
(i)
1 =

∂T0

∂nη

[

c
(i)
1 r + c

(i)
2 r−1

]

, i = 1, 2, 3, (54)
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where ∂T0

∂nη
=
∂T0

∂η1
cos φ + ∂T0

∂η2
sinφ is the directional derivative in radial direction n = E1 cos φ +394

E2 sin φ, normal to the interfaces of the three constituents. The six parameters c
(i)
1 and c

(i)
2395

for i = 1, 2, 3 are determined from the two conjugate conditions in (50), which immediately396

givec
(1)
2 = c

(3)
1 = 0, and from the four conjugate conditions at the interfaces ∂Ω(1,2) and ∂Ω(2,3).397

Specifically, the conjugate conditions at the interface ∂Ω(1,2) are given in Eqs. (28) and (29), and398

for the interface ∂Ω(2,3) in (46) and (47), and for the here discussed boundary value problem these399

conjugate conditions take the following forms for the ǫ0 order considerations:400

• Equality of the heat flux at the interface ∂Ω(1,2): From (28) we obtain401

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c(1)
)

=
[

a
(2)
0 + a

(2)
1 T0

]

(

1 + c
(2)
1 − c

(2)
2

[

r(1)
]−2

)

. (55)

• Temperature difference at the interface ∂Ω(1,2): From (29) we obtain402

±ǫ

[

(

c
(2)
1 − c(1)

)

r(1) + c
(2)
2

[

r(1)
]−1

]

= b1

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c(1)
)

. (56)

• Equality of the heat flux at the interface ∂Ω(2,3): From (46) we obtain403

[

a
(2)
0 + a

(2)
1 T0

]

(

1 + c
(2)
1 − c

(2)
2

[

r(2)
]−2

)

=
[

a
(3)
0 + a

(3)
1 T0

]

(

1 − c
(3)
2

[

r(2)
]−2

)

. (57)

• Temperature difference at the interface ∂Ω(2,3): From (47) we obtain404

c
(2)
1 r(2) + c

(2)
2

[

r(2)
]−1
= c(3)

[

r(2)
]−1
. (58)

For the herein considered two-dimensional problem in terms of the fast Cartesian coordinates,405

the left side of heat Eq. (27) takes the following form,406

H(i) =

2
∑

k=1

a
(i)
0
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,

(59)

where H(i) = H(i)(η, ζ). Recalling ∂2

∂η1 ∂η2
= 0 and applying the change from fast Cartesian407

coordinate variables to cylindrical coordinate variables in (49), Eq. (59) takes the following form408

after substitution of the ansatzes (54),409

H̄(i) =

2
∑

k=1

a
(i)
0















∂2T0

∂η2
k

+
∂2T̄

(i)
1

∂ηk ∂ζk















+ a
(i)
1















∂T0

∂ηk

+
∂T̄

(i)
1

∂ζk















2

+ a
(i)
1 T0















∂2T0

∂η2
k

+
∂2T̄

(i)
1

∂ηk ∂ζk















,

(60)

where H̄(i) = H̄(i)(η, ζc). The specific forms of the derivatives in (60) are presented in Appendix410

C.1.411
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Applying the homogenization operator in terms of cylindrical coordinates,412

〈·〉 =
1

A

∫∫

A

(·) r dr dφ, (61)

over (60) we obtain413

1

A

{

2π
∫

0

r(1)
∫

0

H̄(1) r dr dφ +

2π
∫

0

r(2)
∫

r(1)

H̄(2) r dr dφ +

2π
∫

0

r(3)
∫

r(2)

H̄(3) r dr dφ

]

=
1

A

{

a
(1)
0 A(1) ᾱ

(1)
0 + a

(2)
0 A(2) ᾱ

(2)
0 + a

(3)
0 A(3) ᾱ

(2)
0

+ a
(1)
1 A(1) ᾱ

(1)
1 + a

(2)
1 A(2) ᾱ

(2)
1 + a

(3)
1 A(3) ᾱ

(3)
1

+ a
(1)
1 A(1) T0 ᾱ

(1)
0 + a

(2)
1 A(2) T0 ᾱ

(2)
0 + a

(3)
1 A(3) T0 ᾱ

(3)
0

}

,

(62)

where we have applied the abbreviations

ᾱ
(1)
0 =

(

c
(1)
1 + 1

)

α
(3)
0 , (63a)

ᾱ
(2)
0 =

(

c
(2)
1 + 1

)

α
(3)
0 , (63b)

ᾱ
(3)
0 =













∂2T0

∂η2
1

+
∂2T0

∂η2
2













, (63c)

and

ᾱ
(1)
1 =

(

c
(1)
1 + 1

)2














(

∂T0

∂η1

)2

+

(

∂T0

∂η2

)2














, (64a)

ᾱ
(2)
1 =





















(

c
(2)
1 + 1

)2
+

[

c
(2)
2

]2

2
[

r(1)r(2)
]2



































(

∂T0

∂η1

)2

+

(

∂T0

∂η2

)2














, (64b)

ᾱ
(3)
1 =





















[

c
(3)
2

]2

2
[

r(2)r(3)
]2
+ 1



































(

∂T0

∂η1

)2

+

(

∂T0

∂η2

)2














. (64c)

In (62), A = A(1)+A(2)+A(3) = π
[

r(3)
]2

is the cross-sectional area of the unit cell, A(1) = π
[

r(1)
]2

414

is the cross-sectional area of Ω(1), A(2) = π

(

[

r(2)
]2
−

[

r(1)
]2
)

is the cross-sectional area of Ω(2),415

and A(3) = π

(

[

r(3)
]2
−

[

r(2)
]2
)

is the cross-sectional area of Ω(3). Equation (62) is equal to the left416

hand side of the homogenized heat equation in the form417

2
∑

k=1















〈a0〉c
∂2T0

∂η2
k

+ 〈a1〉c















(

∂T0

∂ηk

)2

+ T0
∂2T0

∂η2
k





























, (65)

23



where 〈a0〉c and 〈a1〉c are the effective thermal parameters. The outer phase Ω(3) of the unit cell418

has the same properties as overall thermal properties the composite, so that 〈a0〉c = a
(3)
0 and419

〈a1〉c = a
(3)
1 . If we now write “(65)=(62)", subtract the double underlined terms in (62) and (64)420

from both sides, and multiply both sides with A, then we arrive to an equation in the following421

form:422

2
∑

k=1















〈a0〉c
∂2T0

∂η2
k

+ 〈a1〉c















(

∂T0

∂ηk

)2

+ T0
∂2T0

∂η2
k





























=
1

A(1) + A(2)

[

a
(1)
0 A(1)

(

c
(1)
1 + 1

)













∂2T0

∂η2
1

+
∂2T0

∂η2
2













+ a
(2)
0 A(2)

(

c
(2)
1 + 1

)













∂2T0

∂η2
1

+
∂2T0

∂η2
2













+ a
(1)
1 A(1)

(

c
(1)
1 + 1

)2














(

∂T0

∂η1

)2

+

(

∂T0

∂η2

)2














+ a
(2)
1 A(2)





















(

c
(2)
1 + 1

)2
+

[

c
(2)
2

]2

2
[

r(1)r(2)
]2



































(

∂T0

∂η1

)2

+

(

∂T0

∂η2

)2














+ a
(1)
1 A(1)

(

c
(1)
1 + 1

)

T0













∂2T0

∂η2
1

+
∂2T0

∂η2
2













+ a
(2)
1 A(2)

(

c
(2)
1 + 1

)

T0













∂2T0

∂η2
1

+
∂2T0

∂η2
2













}

.

(66)

Because the radius r(3) of the unit cell is taken to be of infinite length in the asymptotic model,423

r(3) → ∞, the single underlined term in (64) has vanished. Note that due to the conjugate424

conditions at the interfaces the parameters c
(i)
1 and c

(i)
3 are also functions of T0 and its derivatives.425

If we substitute c
(i)
1 and c

(i)
3 into (66), linearize the result and neglect all terms of higher order than426

in the effective heat equation, then we obtain the effective parameters by comparing the different427

terms on the left-hand sides and right-hand sides of (66).428

• By comparing the factors of ∂
2T0

∂η2
1

(or ∂
2T0

∂η2
2

), we obtain429

〈a0〉c = a
(2)
0

a
(1)
0 r̄+ + a

(2)
0 r̄− + a

(1)
0 a

(2)
0 b̂1r̄−

a
(1)
0 r̄− + a

(2)
0 r̄+ + a

(1)
0 a

(2)
0 b̂1r̄+

, (67)

where r̄+ =
[

r(2)
]2
+

[

r(1)
]2

, r̄− =
[

r(2)
]2
−

[

r(1)
]2

, and b̂1 = b1/r
(1).430

• If we compare the factors of either T0
∂2T0

∂η1
or

(

∂T0

∂η1

)2
on both sides of (66) and substitute (67),431
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then we obtain432

〈a1〉c = −

{

(

[

a
(1)
0

]2
+

[

a
(2)
0

]2
)

a
(2)
1

[

r(1)
]4
− 2

(

[

a
(1)
0

]2
+

[

a
(2)
0

]2
)

a
(2)
1

[

r(2)
]4

−8a
(1)
1

[

a
(2)
0

]2 [

r(1)r(2)
]2
+

(

[

a
(1)
0

]2
+

[

a
(2)
0

]2
)

a
(2)
1

[

r(1)r(2)
]2

+

(

6
[

r(1)r(2)
]2
− 2

[

r(1)
]4
− 4

[

r(2)
]4
)

a
(1)
0 a

(2)
0 a

(2)
1

+2
(

a
(1)
0

[

a
(2)
0

]2
−

[

a
(1)
0

]2
a

(2)
0

)

a
(2)
1 b̂1

[

r(1)
]4

−4
(

a
(1)
0

[

a
(2)
0

]2
+

[

a
(1)
0

]2
a

(2)
0

)

a
(2)
1 b̂1

[

r(2)
]4

+
[

a
(1)
0 a

(2)
0

]2
a

(2)
1 b̂2

1

(

[

r(1)
]4
− 2

[

r(2)
]4
+

[

r(1)r(2)
]2
)

+

(

2a
(1)
0

[

a
(2)
0

]2
+ 6

[

a
(1)
0

]2
a

(2)
0

)

a
(2)
1 b̂1

[

r(1)r(2)
]2

}

/
{

2
[

a
(1)
0

(

[

r(2)
]2
−

[

r(1)
]2
)

+ a
(2)
0

(

[

r(2)
]2
+

[

r(1)
]2
)

+a
(1)
0 a

(2)
0 b̂1

(

[

r(2)
]2
+

[

r(1)
]2
) ]2

}

.

(68)

5.2. Three-phase model applied to a composites with spherical inclusions433

We consider spherical inclusions with the radius r(1) in terms of the fast coordinate variables.
This problem will be considered in a spherical coordinate system which is defined by the three
base unit vectors

{

Er,Eφ,Eθ
}

, and therefore we replace the Cartesian fast coordinate variables in
ζ by spherical fast coordinate variables ζ s with the elements {r, φ, θ},

ζ1 = r sin θ cos φ, r =

√

ζ2
1 + ζ

2
2 + ζ

2
3 , (69a)

ζ2 = r sin θ sin φ, φ = atan2 (ζ2, ζ1) , (69b)

ζ3 = cos θ, θ = arccos
(

ζ3/

√

ζ2
1 + ζ

2
2 + ζ

2
3

)

, (69c)

where r ≥ 0, 0 ≤ φ ≤ 2π, and 0 ≤ θ ≤ π.434

We replace the previously applied notation of correction term T
(i)
n (η, ζ, t) of the temperature435

field by a notation in which we apply the fast spherical coordinates:436

T̂ (i)
n (η, ζ s, t) = T (i)

n (η, ζ, t), i = 1, 2, 3. (70)

The conjugate conditions (33) for the center and the outer boundaries of the unit cell then take437

the forms (50), where now r is the spherical radial coordinate. Substituting n = 1 into the438

heat equation (27), we obtain the following equation for the first correction term T̂
(i)
1 of the439

temperature in the three constituents Ω(i),440

∂2T̂
(i)
1

∂ζ2
1

+
∂2T̂

(i)
1

∂ζ2
2

+
∂2T̂

(i)
1

∂ζ2
3

= 0, i = 1, 2, 3. (71)

In (71) ζ1, ζ2 and ζ3 are fast Cartesian coordinates, and T̂
(i)
1 is now defined in terms of the fast

spherical coordinates r, θ, and φ. Therefore we apply the derivatives with respect to ζ1, ζ2, and
25



ζ3 in the forms

∂

∂ζ1
= cos φ sin θ

∂

∂r
−

sin φ

r sin θ

∂

∂φ
+

cos φ cos θ

r

∂

∂θ
, (72a)

∂

∂ζ2
= sin φ sin θ

∂

∂r
+

cos φ

r sin θ

∂

∂φ
+

sin φ cos θ

r

∂

∂θ
, (72b)

∂

∂ζ3
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
, (72c)

so that (71) becomes441

∂2T̂
(i)
1

∂r2
+

2

r

∂T̂
(i)
1

∂r
+

1

r2 sin2 θ

∂2T̂
(i)
1

∂2φ
+

cos θ

r sin θ

∂T
(i)
1

∂θ
+

1

r2

∂2T
(i)
1

∂θ2
= 0, (73)

where i = 1, 2, 3. Ansatzes which satisfy (50) and (73) are442

T
(i)
1 =

∂T0

∂nη

[

c
(i)
1 r + c

(i)
2 r−2

]

, i = 1, 2, 3, (74)

where ∂T0

∂nη
=

[

∂T0

∂η1
sin θ cos φ + ∂T0

∂η2
sin θ sinφ + ∂T0

∂η3
cos θ

]

is the directional derivative in radial443

direction n = E1 sin θ cos φ + E2 sin θ sin φ + E3 cos θ. As in the previous section, the six444

parameters c
(i)
1 and c

(i)
2 for i = 1, 2, 3 are determined from the two conjugate conditions in (50),445

which immediately give c
(1)
2 = c

(3)
1 = 0, from the four conjugate conditions at the interface ∂Ω(1,2)

446

in Eqs. (28) and (29), and for the interface ∂Ω(2,3) in Eqs. (46) and (47):447

• Equality of the heat flux at the interface ∂Ω(1,2): From (28) we obtain448

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c(1)
)

=
[

a
(2)
0 + a

(2)
1 T0

]

(

1 + c
(2)
1 − 2c

(2)
2

[

r(1)
]−3

)

. (75)

• Temperature difference at the interface ∂Ω(1,2): From (29) we obtain449

±ǫ

[

(

c
(2)
1 − c(1)

)

r(1) + c
(2)
2

[

r(1)
]−2

]

= b1

[

a
(1)
0 + a

(1)
1 T0

] (

1 + c(1)
)

. (76)

• Equality of the heat flux at the interface ∂Ω(2,3): From (46) we obtain450

[

a
(2)
0 + a

(2)
1 T0

]

(

1 + c
(2)
1 − 2c

(2)
2

[

r(2)
]−3

)

=
[

a
(3)
0 + a

(3)
1 T0

]

(

1 − 2c
(3)
2

[

r(2)
]−3

)

. (77)

• Temperature difference at the interface ∂Ω(2,3): From (47) we obtain451

c
(2)
1 r(2) + c

(2)
2

[

r(2)
]−2
= c(3)

[

r(2)
]−2
. (78)

For the herein considered problem in terms of the Cartesian coordinates, the left side of (27)452

takes the following form,453

H(i) =

3
∑

k=1

a
(i)
0















∂2T0

∂η2
k

+
∂2T

(i)
1

∂ηk ∂ζk















+ a
(i)
1















∂T0

∂ηk

+
∂T

(i)
1

∂ζk















2

+ a
(i)
1 T0















∂2T0

∂η2
k

+
∂2T

(i)
1

∂ηk ∂ζk















,

(79)
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where H(i) = H(i)(η, ζ). Recalling ∂2

∂ηp ∂ηq
= 0 for p , q and applying the change of the variables454

in (70), Eq. (79) takes the following form after then after substitution of (54)455

Ĥ(i) =

3
∑

k=1

a
(i)
0















∂2T0

∂η2
k

+
∂2T̂

(i)
1

∂ηk ∂ζk















+ a
(i)
1















∂T0

∂ηk

+
∂T̂

(i)
1

∂ζk















2

+ a
(i)
1 T0















∂2T0

∂η2
k

+
∂2T̂

(i)
1

∂ηk ∂ζk















,

(80)

where Ĥ(i) = H̄(i)(η, ζ s). The specific forms of the derivatives in (80) are presented in Appendix456

C.2.457

Applying the homogenization operator in terms of the fast spherical coordinates,458

〈·〉 =
1

V

∫∫

V

(·) r2 sin θ dr dφ dθ, (81)

over (80) we obtain459

1

V

{

π
∫

0

2π
∫

0

r(1)
∫

0

Ĥ(1) r2 sin θ dr dφ dθ +

π
∫

0

2π
∫

0

r(2)
∫

r(1)

Ĥ(2) r2 sin θ dr dφ dθ

+

π
∫

0

2π
∫

0

r(3)
∫

r(2)

Ĥ(3) r2 sin θ dr dφ dθ

}

=
1

V

{

a
(1)
0 V (1) α̂

(1)
0 + a

(2)
0 V (2) α̂

(2)
0 + a

(3)
0 V (3) α̂

(3)
0

+ a
(1)
1 V (1) α̂

(1)
1 + a

(2)
1 V (2) α̂

(2)
1 + a

(3)
1 V (3) α̂

(3)
1

+ a
(1)
1 V (1) T0 α̂

(1)
0 + a

(2)
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where we have applied the abbreviations
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and
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In (82), V = V (1) + V (2) + V (3) = 4
3π

[

r(3)
]3

is the volume of the unit cell, V (1) = 4
3π

[

r(1)
]3

is the460

volume of Ω(1), V (2) = 4
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(
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r(2)
]3
−

[
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is the volume of Ω(2), and V (3) = 4
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)

461

is the volume of Ω(3). Equation (82) is equal to the left hand side of the homogenized heat462

equation in the form463
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where 〈a0〉c and 〈a1〉c are the effective thermal parameters. The outer phase Ω(3) of the unit cell464

has the same properties as overall thermal properties, so that 〈a0〉c = a
(3)
0 and 〈a1〉c = a

(3)
1 . If465

we now write “(85)=(82)", subtract the double underlined terms in (82) and (84) from both sides466

and multiply both sides with V , then we arrive to an equation in the following form:467
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Because the radius r(3) of the unit cell is taken to be of infinite length in the asymptotic model,468

r(3) → ∞, the single underlined term in (84) has vanished. The parameters c
(i)
1 and c

(i)
3 are also469

functions of T0 and its derivatives. If we substitute c
(i)
1 and c

(i)
3 into (86), linearize the result and470

neglect all terms of higher order than in the effective heat equation, then we obtain the effective471

parameters.472

• By comparing the factors ∂
2T0

∂η2
1

in (86) we obtain473
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where r̂− =
[

r(2)
]3
−

[

r(1)
]3

, b̂1 = b1/r
(1).474

• If we compare the factors of either T0
∂2T0

∂η2
or

(

∂T0

∂η

)2
on both sides of (86) and substitute (87),475

then we obtain476
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(88)

5.3. Numerical examples477

The present sections presents some numerical examples for the effective thermal conductivities478

which are obtained by the application of the three-phase model. The first part of the numerical479

examples compares some special cases of our results to known results from the literature, and480

the second part analyzes the influence of temperature-dependence of the thermal conductivity of481

the constituents as well as the impact of the thermal resistance on the effective properties.482

Comparison of the present solution for the effective thermal conductivity to known results. We483

consider a composite which consists of the inclusions Ω(1) which are embedded in the matrix484

Ω(2), and we assume no thermal resistance between the constituents, so that b1 = 0. The effective485

thermal conductivity is taken to be temperature independent and defined as486

〈k〉 =

{

〈a0〉c for cylindrical inclusions,
〈a0〉s for spherical inclusions,

(89)
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Figure 8: Panel (a): normalized effective thermal conductivity 〈a0〉c/a
(2)
0 versus the volume fraction v(1)/v of the cylindri-

cal inclusions. The thin solid lines correspond to the present solution in (67), and all other lines to the results of Perrins et

al. [50]. Panel (b): normalized effective thermal conductivity 〈a0〉c/a
(2)
0 versus the volume fraction v(1)/v of the spherical

inclusions. The thin solid lines correspond to the present solution in (87), and the thick line to the results of McPhedran
& McKenzie [51].

where 〈a0〉c is given in (67), and 〈a0〉s is given in (87).487

• Panel (a) of Fig. 8 shows the normalized effective thermal conductivity 〈a0〉c/a
(2)
0 versus488

the volume fraction v(1)/v of the inclusion. The thin solid lines correspond to the present489

solution in (67), and all other lines to the results of Perrins et al. [50].490

• Panel (b) of Fig. 8 shows the normalized effective thermal conductivity 〈a0〉s/a
(2)
0 versus491

the volume fraction v(1)/v of the inclusion. The thin solid lines correspond to the present492

solution in (87), and the thick line to the results of McPhedran & McKenzie [51].493

For both the results for the cylindrical and spherical inclusions we find that there herein obtained494

results coincide well with the results from the literature in the case of small and intermediate495

volume fractions of the inclusion.496

Effective temperature-dependent thermal conductivity for thermal resistance between the con-497

stituents. Consider a composite which consists of the inclusionsΩ(1) which are embedded in the498

matrix Ω(2). The inclusion Ω(1) is assumed to have the temperature-dependent thermal conduc-499

tivity, k(1) = a
(1)
0 + T0 a

(1)
1 , where a

(1)
0 = 100 W m−1K−1, and T0 = 293.15 K are chosen. We500
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apply Eq. (45), which allows as to define a
(1)
1 relative to a

(1)
0 by the parameter M. If M > 0,501

then the conductivity increases with rising temperatures, and if M < 0, then the conductivity502

decreases with rising temperatures. The matrix is assumed to have a constant thermal conduc-503

tivity of k(2) = a
(2)
0 = a

(1)
0 /10. The thermal resistance between the constituents at their common504

interface Ω(1,2) is defined by the parameter b1.505

From the geometry of the composites, the thermal properties of the constituents, and the ther-506

mal resistance we obtain the effective thermal conductivity 〈k〉,507

〈k〉 =



















〈a0〉c + T0 〈a1〉c for cylindrical inclusions,

〈a0〉s + T0 〈a1〉s for spherical inclusions,
(90)

where 〈a0〉c and 〈a1〉c are given in (67) and (68), respectively, and 〈a0〉s and 〈a1〉c are given in508

(87) and (88), respectively.
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Figure 9: Normalized effective thermal conductivity 〈k〉/k(2) versus v(1)/v(2) for cylindrical inclusions and different
values for M, where v(1)/v(2) = π/4 corresponds to the maximum volume fraction of the inclusions. The upper curves in
a certain line style correspond the positive values for M, and the lower curves correspond to negative values for M.

509

• Figure 9 show the normalized effective thermal conductivity 〈k〉/k(2) versus v(1)/v(2) for510

cylindrical inclusions and different values for M, where v(1)/v(2) = π/4 corresponds to the511

maximum volume fraction of the inclusions. The upper curves in a certain line style corre-512

spond the positive values for M, and the lower curves correspond to negative values for M.513

Panel (a) shows the case of the absence of any thermal resistance between the constituents,514

panel (b) shows the case of b̂(1) = b1 r(1) = 0.01 W−1 K, panel (c) shows the case of515

b̂(1) = 0.1 W−1 K, and panel (d) shows the case of b̂(1) → ∞. Decreasing values for M516

result in lower values for the thermal conductivity. If b̂1 becomes sufficiently large, then the517
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effective properties decrease with increasing values of the inclusion. The case of b̂(1) → ∞518

describes a thermally insulated inclusion. In such case, the effective thermal conductivity519

depends on the geometry of the inclusions, but not on their thermal properties.520

• Figure 10 show the normalized effective thermal conductivity 〈k〉/k(2) versus v(1)/v(2) for521

spherical inclusions and different values for M, where v(1)/v(2) = π/6 corresponds to the522

maximum volume fraction of the inclusions. As in the previous part, panel (a) shows the
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Figure 10: Normalized effective thermal conductivity 〈k〉/k(2) versus v(1)/v(2) for spherical inclusions and different values
for M, where v(1)/v(2) = π/6 corresponds to the maximum volume fraction of the inclusions. The upper curves in a certain
line style correspond the positive values for M, and the lower curves correspond to negative values for M.

523

case of the absence of any thermal resistance between the constituents, panel (b) shows the524

case of b̂(1) = b1 r(1) = 0.01 W−1 K, panel (c) shows the case of b̂(1) = 0.1 W−1 K, and525

panel (d) shows the case of b̂(1) → ∞.526

6. Conclusions527

In the present article we applied the AHM in order to obtain the effective thermal properties of528

a composite with a regular microstructure. These effective or homogenized thermal properties of529

the heterogeneous solid are obtained analytically in an explicit form. The thermal conductivity530

of the single constituents has been taken to be a polynomial in terms of the temperature, and the531

thermal resistance at the interface of the constituents has been taken to be nonlinear. The details532

of the heat diffusion model and the conjugate conditions are presented in Sec. 2. A general form533

of the homogenized heat equation is then derived in Sec. 3. This article then discusses some534

specific cases of the composite structure.535
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In Sec. 4, we apply the AHM to derive a homogenized heat equation which is capable to536

describe the behavior of composites with inclusions of large volume fractions by the application537

of the well-known lubrication theory, see Christensen & Lo [19] and Christensen [21]. The538

relatively simple case of a layered composite is also discussed to highlight some features of539

our results. In the numerical examples we illustrate both the impact of the different material540

parameters of the constituents and the interaction of the constituents on the effective thermal541

behavior. In these numerical examples, the finite difference method has been applied.542

Different articles on the application of the AHM have shown, that the three-phase model is543

a useful method to derive the effective properties of periodic composites for the case of low544

volume-fractions of the inclusions. In the framework of this article we applied this method545

in Sec. 5, and we considered two cases for inclusions, parallel fibers and spherical inclusions.546

We also took into account thermal resistance at the common interfaces between the inclusions547

and the matrix. A special case of the our nonlinear homogenized solution, the linear case in548

absence of thermal resistance, has been compared to well-known results, i.e., to Perrins et al.549

[50] for cylindrical inclusions and to McPhedran & McKenzie [51] for spherical inclusions. This550

comparison has shown that especially for small volume fractions of the inclusions our results551

coincidence the results from the literature. In the then following examples we studied the impact552

of temperature-dependent thermal conductivity and thermal resistance on the effective thermal553

properties of the composites.554

For intermediate values of the volume fractions the results from the lubrication theory and555

the three-phase model can be combined, for example by the application of Padé approximants556

(see, for example [52, 53]). In such approach, the results of the three-phase model will dominate557

when v(1)

v
takes small values, and the results of the lubrication theory will dominate if v(1)

v
becomes558

larger. For works which apply Padé approximants in the homogenization theory of heat transfer559

problems, we refer to the articles of Andrianov et al. [54] and Gałka et al. [16].560

There herein present results find their applications in different fields of engineering, for exam-561

ple in the automotive industry, in the field of civil engineering, and also in military and space562

industry. Different studies are devoted to the development of encapsulated spherical phase-563

changing materials (PCM) in order to improve the thermal efficiency of buildings (see, for ex-564

ample, Didier et al. [55] and Krupa et al. [56]), especially for civil engineering applications in565

regions with rough climatic conditions such as the Arabian/Persian Gulf. Rockets and space566

vehicles are subjected to extreme thermal conditions, which motivates the development of new567

composite materials with the required thermal properties, for example by the use of a matrix568

components with stronger nonlinear thermal properties than the reinforcing component; see for569

example Fisher et al. [57] on ceramic composite thermal protection systems, Jenkins [58] on fi-570

brous refractory composite insulation (FRCI) tiles applicable to the NASA Space Shuttle orbiter.571

Together with the evaluation of the effective thermal properties the there herein presented572

asymptotic approaches allow to determine the distribution of the local temperature and flux fields573

on microlevel. This may be crucially important for the materials, which are used at rapidly574

changing temperatures under extreme conditions.575
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Appendix A. Simplification of the homogenized heat equation576

In order to derive the homogenized heat Eq. (36), we have applied577

L
2

∫

− L
2

a
(i)
k
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


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(i)
n−1

∂ηk ∂ζk
+
∂2T

(i)
n

∂ζ2
k















dζ = 0 (A.1)

where k = 1, 2. This procedure removed all terms which contain the yet unknown corrections578

terms T
(i)
2 in (37). For details on the proof of (A.1), we refer to Appendix A1 in Topol [45].579

Appendix B. Finite difference method580

We apply finite difference method to approximate the solution to the homogenized equation
(38) numerically. Therefore, let us apply the central difference scheme for the different forms of
the derivatives of T0 with respect to η = ηk at the location η = ηp and time t = tq which occur in
the homogenized heat equation,

∂T0(η, t)
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∂2T0(η, t)
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∣

∣
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ηp,tq

≈
T

q

p+1 − 2 T
q
p + T

q

p−1

δη2
, (B.1c)

where δη = ηp+1 − ηp is a location step. The subscript p in T
q
p refers to the location ηp, and581

the superscript q refers to the time tq, i.e., T
q

p+1 = T0(ηp + δη, tq), T
q
p = T0(ηp, tq), and T

q

p−1 =582

T0(ηp−δη, tq). Let us now also apply the forward difference method to approximate the derivative583

of T0 with respect to t at the location η = ηp and time t = tq,584

∂T0(η, t)

∂t
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∣

∣
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∣

ηp,tq

≈
T

q+1
p − T

q
p

δt
, (B.2)

where δt = tq+1− tq is time step, T
q+1
p = T0(ηp, tq), and T

q+1
p = T0(ηp, tq+δt). If the substitute the585

finite difference approximations (B.1) and (B.2) into the homogenized heat Eq. (38), we derive586

the following systems of equations,587
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(B.3)
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where 〈āi〉 = 〈ai〉/〈ρp〉. If we now rewrite (B.3) in the following way588
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(B.4)

then we obtain an iteration scheme in which the temperature distribution T
q+1
p at the location ηp589

at time tq−1 is obtained from the temperature distribution at the earlier time step tq. This process590

is started with a given set of initial values for T
q+1
p .591

Appendix C. Abbreviations in Sec. 5592

Appendix C.1. Cylindrical Inclusions593

In (60) we have applied the abbreviations
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Appendix C.2. Spherical Inclusions594

In (80) we have applied the abbreviations
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and
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