
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Random Projection Neural Network Approximation

Peter Andras

School of Computing and Mathematics

Keele University

Newcastle-under-Lyme, UK
p.andras@keele.ac.uk

Abstract— Neural networks are often used to approximate

functions defined over high-dimensional data spaces (e.g. text

data, genomic data, multi-sensor data). Such approximation

tasks are usually difficult due to the curse of dimensionality and

improved methods are needed to deal with them effectively and

efficiently. Since the data generally resides on a lower

dimensional manifold various methods have been proposed to

project the data first into a lower dimension and then build the

neural network approximation over this lower dimensional

projection data space. Here we follow this approach and combine

it with the idea of weak learning through the use of random

projections of the data. We show that random projection of the

data works well and the approximation errors are smaller than

in the case of approximation of the functions in the original data

space. We explore the random projections with the aim to

optimize this approach.

Keywords—function approximation, high-dimensional, neural

network, random projection, weak learning

I. INTRODUCTION

Approximation of functions is a general task in the context
of applications of neural networks to complex engineering or
data analytics problems (e.g. analysis of multi-sensor data in
complex engines [1], assessing the relevance of pieces of text
for a certain topic [2], calculating the risk associated with
complex investment portfolios [3], etc.). Often the data that the
problem involves is very high dimensional (10s / 100s / 1000s
of dimensions), which makes solving the problem difficult.

The „curse of dimensionality‟ [4] applies often to these
function approximation problems, which means that as the
dimensionality of the data grows the solution of the problem
gets harder. The reason is that as the dimensionality of the data
space grows, the sample of the data gets more sparse within the
data space, providing less information about how the function
behaves over this space. One common way of dealing with this
problem is to impose regularisation constraints on the solution
(e.g. smoothness, limited variation between points with known
function values) [5], however, this approach may limit
considerably the correctness of the approximation (i.e. if the
space of allowed approximations that conform with the
imposed constraints is far from the actual real function). An

alternative approach relies on the feature of the data that this
usually lays on a manifold within the data space such that the
effective dimensionality of this manifold is much lower than
the dimensionality of the data space [6]. In such cases the
function may be approximated over this lower dimensional
manifold, reducing the problem of data sparsity.

Previously, there have been proposals that utilise the
assumption about the existence of a low-dimensional data
manifold within the high-dimensional data space by projecting
the data first into a low-dimensional space and then training a
neural network over this projection space instead of training it
over the original data space. One approach uses topology-
preserving self-organising maps [7] to project the data into a
low dimensional space [6], while another uses local linear
embedding (LLE) [8] to implement this projection [9].

Recently, there has been considerable interest in using
„weak learners‟ as an ensemble approach to develop relatively
simple solutions to complex machine learning problems
[10,11]. One such approach is to use to use a set of random
linear projections of the data into a lower dimensional space to
reduce the difficulty of the learning step and then combine the
resulting „weak learners‟ into a more robust solution [12].

Here we propose to combine the last two approaches in the
context of approximation of functions defined over high-
dimensional data. Assuming that the data relies on a low-
dimensional manifold we use random linear projections into a
low-dimensional space and then use a neural network to learn
the approximation of the function over the projection space.
Combining a set of such neural networks provides a robust
combination of „weak learners‟, which are based on random
projections of the data space into the low dimensional space.
We investigate options to choose optimally the projection
vectors and matrices, however we find that none of the
intuitive ideas about optimal choice really works. The results
show that the combination of multiple neural networks based
on different random projections indeed reduces the variance of
the function approximation performance, although it does not
improve the approximation performance itself.

The rest of the paper is structured as follows. First we
review briefly the related other works. Next we describe in

detail the proposed combination of random projections with
neural networks for the approximation of high-dimensional
functions. Then we present a set of application examples.
Finally the paper is closed by the conclusions section.

II. RELATED WORKS

The theoretical approximation properties of neural
networks have been established over 20 years ago [13-15]. It is
known that neural networks with a single hidden layer of
neurons with certain nonlinear activation functions (e.g.
sigmoidal, Gaussian) have the property of universal
approximation of all continuous functions and all functions that
can be approximated arbitrarily correctly by continuous
functions [13-15].

Approximation error bounds have been also derived for a
range of neural network approximations [16,17]. In general, the
approximation bounds get tighter as the number of neurons in
the single hidden layer grows, i.e. the approximation bound is
proportional to the inverse of the square root of the number of
neurons [16]. However, it has also been shown that in many
cases the multiplicative constants in the approximation error
expressions grow exponentially with the dimensionality of the
data [17]. The latter reflects the „curse of dimensionality‟, i.e.
that as the sparseness of the data grows with the
dimensionality, there is more room for error in the
approximation of the function.

Given that often the high-dimensional data relies on a much
lower dimensional manifold embedded into the high-
dimensional space, the idea of learning function approximation
over the lower dimensional manifold or some transformation of
this has considered by various researchers [6,18]. One
approach is to project the manifold into a low-dimensional
space of appropriate dimension and then approximate the
function over this low-dimensional projection space.
Previously, self-organising maps (SOM) [7] and local linear
embedding (LLE) [8] have been demonstrated to work well for
the projection step [6,9]. The underlying idea of these
approaches is that the projection preserves the topological
organisation of the data over the manifold, which is expected to
help the correct approximation of the target function. However,
in order to achieve this topology preserving mapping, both of
these approaches involve considerable computational effort to
calculate the low dimensional projections. The error bounds for
such combined projection neural network approximations have
also been established and show that the projection based
function approximations are better than the neural network
function approximations over the original high-dimensional
space [9,18].

The concept of „weak learners‟ has been used in various
ways over the last 30 years [19,20], generally meaning the
combination of not-very-good learning machines (in our
context variants of function approximation machines, such as
neural networks) such that the combination achieves a much
better learning performance than the „weak‟ components. For
example, random forests with shallow trees in the context of
classification [21,22], various „bagging‟ and „ensemble‟
learning approaches [19,20], feeding the output of „weaker‟
learning engines into a „stronger‟ learning engine [10], and so

on. In general, the assumption is that each „weak learner‟
performs a relatively imprecise approximation of the target
function, but combining of these imprecise approximations
improves the overall approximation as approximation errors
cancel out through the combination.

One approach to „weak learning‟ in the context of high-
dimensional data is to use random linear projections of the data
into a low-dimensional space and then perform the learning
task over the projection space [12]. A big advantage of this
approach is that it does not require computationally expensive
data processing to achieve the low-dimensional projection,
since it relies on using randomly picked matrices to generate
the random linear projections. It has been shown that in the
context of linear classification of high-dimensional data the
random linear projections work well [12]. Error bounds have
been derived demonstrating that the performance of the
random projection approach is better than the classification
over the high-dimensional original data space [12].

III. RANDOM PROJECTION NEURAL NETWORKS

We assume that the function approximation task is
specified as a set of data points and associated function values,

{x
i
, yi = f(x

i
)}, i = 1,...,n, x

i
R

d
, yiR. It is also assumed that the

data points reside on a manifold M embedded into the d-
dimensional data space R

d
, such that the intrinsic

dimensionality of M is d’ < d. The approximation of the target
function f is performed using neural networks with a single
hidden layer, having neurons with a nonlinear activation
function (e.g. Gaussian or sigmoidal).

The core idea of projection based neural network function
approximation is that if we know d’ the dimensionality of M
then we can project the data points, for which the target
function f has given values, onto a d’ dimensional space and
perform the approximation of the target function over this
space [6]. The expectation is that, given the reduced
dimensionality of the space over which we approximate the
function, the approximation will be more precise. The reason
for this expectation is that the approximation error bounds for
approximation over a low-dimensional space are tighter than
for neural network approximation over a high-dimensional
space [17]. Earlier papers confirm that this expectation is valid
and indeed the neural network function approximations over
the projection space are significantly better than the neural
network approximations over the original data space [6,9,23].

The intrinsic dimensionality of M can be determined with a
variety of dimensionality estimation methods. For example we
can use the box counting method [24]. For this, we count the
number of boxes or balls of decreasing size, required for full
coverage of the known part of the manifold (given by the
points x

i
, i = 1,...,n). Then calculate the exponent in the

exponential relationship between the box side or ball radius
and the number of required boxes or balls. The integer part of
this exponent gives the estimated intrinsic dimensionality of
the manifold.

Previously used projection based neural network
approximations of high-dimensional functions assumed that the
preservation of the topological structure of the data space
through the projection into the lower dimensional space is

required for the good approximation performance [6,9,23]. To
achieve the preservation of the topological structure of the data
manifold these methods rely on computationally expensive
projections (e.g. self-organising maps or local linear
embedding) [7,8].

However, the idea of „weak learners‟ [10,12] suggests that
similarly good approximation performance may be achieved by
combining a set of neural network approximations over the
projection space, where each of these approximations use a
much simpler projection, which is computationally cheap. Such
simple projections can be generated by picking randomly a
projection matrix and performing a linear projection of the data
space using the projection matrix. Formally this is written as
follows.

Let a
kl
 be projection vectors with randomly set components,

a
kl
R

d
, k = 1,..., p, l = 1,...,d’, where p is the number of

random projection matrices that we use. Then a projection

matrix is a d’  d matrix:

 A
k
 = (a

k1
, …, a

kd’
)

T
 

The corresponding projection of data manifold is given by

 z
i,k

 = A
k
  xi

 

where i = 1,...,n and z
i,k
R

d’
. The neural networks then learn

the approximation of the functions defined as

 yi = f
*,k

(z
i,k

) = f(x
i
)  

Let us denote by g
*,k

 the function implemented by the neural
network that learned to approximate the function f

*,k
. Then the

combined neural network approximation is given as

 y
*

i =(1/p) k = 1,…,p g
*,k

(z
i,k

)  

Let us denote by g the function implemented by the neural
network that learned to approximate the function f over the
original data space, and let us define

 y
+

i = g(x
i
)  

In all these cases above the neural network approximation of
the target functions is a linear combination of nonlinear basis
functions, which act as the activation functions of the neurons
in the hidden layer of the neural network. The learning process
happens by adjusting the summation weights of the nonlinear
basis functions using some form of gradient descent (or
related) learning algorithm. We note that in principle other
parameters of the activation functions of neurons can be
adjusted as well, however, to keep the learning process simple,
we assume here the basic learning process involving only the
adjustment of summation weights.

 Following the learning over the projection space and the
original data space we expect that the approximation error of

the high-dimensional neural network approximation will be
larger than the approximation error of the averaged low-
dimensional neural network approximation. Formally this is
stated as:

 (1/n)  i=1,…,n (y
+

i – yi)
2
 > (1/n)  i=1,…,n (y

*
i – yi)

2
  

Generally, the approximation error over the projection
space will be proportional to r

d’
, while the approximation over

the original data space will be proportional to r
d
, where r > 1 is

an appropriate constant that depends on the activation
functions used in the neurons of the hidden layer of the neural
networks [17]. Assuming that we use the same kind of
activation functions in the hidden layer neurons and that the
number of neurons in the hidden layer is the same, this implies
that the approximation error due to the projection distortion

should be less than (r
d
 – r

d’
) for some appropriate  > 0 in

order for equation (6) to be satisfied.

While none of the linear projections through the projection
matrices A

k
 is likely to satisfy the topological mapping

requirement that was used in previous works to show the
tighter approximation for the low-dimensional case, it is
reasonable to expect that each A

k
 will preserve the topological

structure of M for some of its parts, M
k
 M. Thus for any

sufficiently small M’  M we can set K(M’)  {1,...,p} such

that we have that M’

 M

k
 for kK(M’) and M’

 M

k
 for

k{1,...,p} – K(M’). If p – |K(M’)| is sufficiently large, i.e. if p
is sufficiently large, it is reasonable to expect that the
approximation errors due to randomly set projection matrices

A
k
 , k{1,...,p} – K(M’), will cancel out together when summed

up. For all projection matrices A
k
 , kK(M’) we can use the

previous neural network approximation error results [9] that
show that when the topological structure of the data manifold
is preserved through the projection the above stated condition
for the validity of the inequality in equation (6) is satisfied over
M’.

Thus, if for M we can find a coverage C(M) = {M’j |

M’jM, jJ}, where J is an index set, such that M 

M’C(M)M’ and M’M’’ =  if M’  M’’, M’,M’’C(M) and

for each M’  C(M) we have that K(M’)  , then the
combined neural network approximation using the set of
random linear projections will approximate the target function
better than the neural network approximation trained using the
original data in the high-dimensional space over the whole
manifold M. This condition is likely to be satisfied if the
number of random linear projections is sufficiently large.

We note that the proposed approximation of the target
function is valid only on and around the manifold on which the
data points reside. In fact the target function is expected to be
defined only on the manifold. Consequently, extending the
approximation well outside of the data manifold is meaningless
and it should not be considered, even if purely technically the
projection matrices work everywhere in the full original data
space, including well outside of the data manifold.

We also note that while the above argument applies to the
case of a sufficiently large set of random linear projection
matrices, A

k
 , k = 1,...,p, in principle it is also possible that even

for a single random linear projection the neural network
approximation over the projection space works better than the
neural network approximation over the original high-

dimensional data space. This can be the case if the largest M’ 
M such that K(M’) = {1} (note that there is only one linear
projection matrix in this case, i.e. p = 1), is sufficiently large,
implying that the improved approximation applies for most of
M and the potentially larger errors apply only to a small part of
M. In this case the overall approximation performance of the
neural network trained over the projection space is likely to be
better than the approximation performance of the neural
network trained over the high-dimensional original data space.

Considering the last note, it might be interesting to try to
optimize the projection matrix such that the corresponding
largest M’ is maximal, while at the same time the
computational cost of the optimization is kept low. In principle,
the optimization objective is to keep the function over the
projection space similar to the function over the original data
space, which would be approximately achieved if the mapping
would preserve the topological organisation of the data
manifold. Given that the projection space is typically multi-
dimensional itself, the direct measurement of the match
between the original and projected function is computationally
very expensive. Thus we could consider proxy optimization
objective that apply to the component projection vectors of the
projection matrices.

By considering the component projection vectors a
kl
R

d
, k

= 1,..., p, l = 1,...,d’, the optimisation criteria can be formulated
in terms of the resulting function following projection with a

chosen projection vector, fkl:R  R,

 fkl(u)= (1/|I(u,k,l,δ)|)  iI(u,k,l,δ) f(x
i
)  

where I(u,k,l,δ) is the index set for the indices of all x
i
 such that

 |a
kl T xi

 – u| ≤ δ  

for some appropriately chosen small δ > 0. In effect, this means
that the values of fkl(u) are defined as the average of the values
of the target function over all x

i
-s for which their projection by

a
kl
 is close to u. While δ = 0 would be the best choice in

principle, in practice this may not work well and this is why we
chose a δ > 0.

 Naturally the fkl functions are not likely to be very close to
the target function, however we may find features of these
projection functions that make them better than other
projection functions for the purpose of faithful approximation
of f over the projection space.

One option is to consider the variance of the values of fkl. In
principle if this variance is small, it means that the projection
function is close to constant, which may imply that the
projection by the corresponding projection vector is not very
discriminative in terms of the values of the projection function
and may not contribute very much to the faithful
approximation of f. Thus, one criterion for the selection of
projection vectors is to maximise the variance of the values of
the corresponding projection function. Formally, let us define

 U = {u | x
i
 : u = a

kl T xi
 , i = 1,…,n}  

Then the mean (expectation) and variance of fkl(u) values is
given as

 E(fkl) = (1/|U|) uU fkl(u)  

 V(fkl) = (1/|U|) uU (fkl(u) – E(fkl))
2
  

Then the optimisation aims to maximise V(fkl) corresponding to
the projection vector a

kl
.

Another optimization idea for the projection vectors comes
from the consideration of independent component analysis
(ICA) [25], i.e. each projection vector and corresponding
projection function may perform good approximation over
some particular part of the data manifold, which may be
projected to some particular part of the projection line
corresponding to this projection vector, elsewhere on the
projection line the projection function values may average to
some constant (e.g. 0 or 1). In such case the target function
would be approximated as a linear combination of the
projection functions. To find projection vectors with this
property we look for vectors for which the kurtosis of the
projection function values is maximal, i.e. the expectation is
that the projection function approximates the target function in
some particular value range of the target function. Formally,

 E2(fkl) = (1/|U|) uU (fkl(u))
2
  

 E4(fkl) = (1/|U|) uU (fkl(u))
4
  

 kurt(fkl) = E4(fkl)/ E2(fkl) – 3  

and we aim to optimise the projection vector a
kl
 by maximising

kurt(fkl).

Finally, a third optimisation idea is to look for projection
vectors for which the Kullback-Leibler distance [26] of the
distributions of the values of the target function f and of the
values of fkl is minimal, i.e. projection vectors for which the
two value distributions are similar. In principle, similar value
distributions may indicate similar level of discrimination
between values corresponding to different function arguments,
thus the projection function may help to construct a good
approximation of the target function over the projection space.
Formally,

 kl(v) = (1/|U|) |{u | |v – fkl(u)| ≤ }|  

 f(v) = (1/n) |{x
i
 | |v – f(x

i
)| ≤ }|  

 Dkl = – v f(v)  ln(kl(v)/ f(v))  

for a set of appropriate v values and an appropriately chosen

small  > 0, such that if |v – f(x
i
)| ≤  and |v’ – f(x

i
)| ≤  then this

implies that v = v’, and the same is true in the context of fkl(u).

Again,  = 0 would be the best choice in principle, but in
practice may not work well. Then we aim for projection
vectors for which Dkl is minimal.

Unfortunately, none of the above ideas about optimising
the projection vectors yields a straightforward way for the
optimisation process, i.e. the optimized quantity is not a
sufficiently direct function of the projection vector to allow the
effective optimisation of the projection vector. Consequently
the practical application of these methods relies on searching
for the best vectors among a set of randomly generated vectors.
We note that in principle various heuristic optimisation
methods (e.g. particle swarm optimisation [27]) may be used
for more efficient search, however, all these come with
considerably increased computational costs and for this reason
such methods are not considered here.

IV. APPLICATION EXAMPLES

To test the proposed random linear projection neural
network approximation of functions defined over high-
dimensional data we used a set of functions reported for similar
purposes in earlier papers [6,9,23]. We built neural networks
with 20 hidden neurons, each with a Gaussian activation
function. The neural network architecture was the same for
both high-dimensional and low-dimensional approximations.

We generated the high-dimensional data by mapping 5-
dimensional random vectors into a 60-dimensional space,
following previous papers [6,9,23]. The mapping used a
deformed multiple Swiss roll manifold to calculate the 60-
dimensional vectors. The relationship between the 5-
dimensional z vectors and 60-dimensional x vectors is given by
the following equations:

 x3(j–1) (10–j)+6(i–j–1)+1=3(j–1) (10–j)+6(i–j–1)+1zjcos(zj) 

 x3(j–1) (10–j)+6(i–j–1)+2=3(j–1) (10–j)+6(i–j–1)+2zi 

 x3(j–1) (10–j)+6(i–j–1)+3=3(j–1) (10–j)+6(i–j–1)+3zjsin(zj) 

 x3(j–1) (10–j)+6(i–j–1)+4=3(j–1) (10–j)+6(i–j–1)+4zicos(zi) 

 x3(j–1) (10–j)+6(i–j–1)+5=3(j–1) (10–j)+6(i–j–1)+5zj 

 x3(j–1) (10–j)+6(i–j–1)+6=3(j–1) (10–j)+6(i–j–1)+6zisin(zi) 

where j<i, j=1,5, and i=j+1,5,

 =(5||z||)
-1

(2(1+exp(-||z||
2
)
-1

-1) 

and j = 10 for j = 1,...,5, j = 0.1 for j = 6,...,10 and j = 1 for j
> 10.

In practice this means that, for any two components zi, zj of the
5-dimensional vector, with j<i, we have six components of the
x vector using the deformed Swiss roll equations (18). There
are ten such combinations of two components zi, zj of the 5-
dimensional vector, with j<i, so in total we get a 60-
dimensional x vector. The indices of the components of the
vector x corresponding to the pair of components zi, zj of the 5-

dimensional vector are 3(j–1)(10–j)+6(i–j–1)+t, where t goes
from 1 to 6.

The ten functions that we used for the purpose of functions
approximation are adopted from previous papers [6,9,23] with
minor variations. The functions are:

1) Squared modulus:

 f1(x(z))=||z||
2
 

2) Second degree polynomial:

 f2(x(z))=(1/500) j=1,4zj
2zj+1 

3) Exponential square sum:

 f3(x(z))= (1/5) j=1,5 exp(zj
2
/50) 

4) Exponential-sinusoid sum:

f4(x(z))=(1/5) (j=1,4 exp(zj
2
/50)sin(zj+1) +

exp(z5
2
/50)sin(z1)) 

5) Polynomial-sinusoid sum:

 f5(x(z))=(1/50) j=1,5zj
2cos(jzj) 

6) Inverse exponential square sum:

 f6(x(z))= 100 (j=1,5 exp(zj
2
/25))

-1
 

7) Sigmoidal:

 f7(x(z))= 10 (1+exp(-j=1,5 zj/5))
-1
 

8) Gaussian:

 f8(x(z))= 10 exp(-j=1,5 zj
2
/100) 

9) Linear:

 f9(x(z))= j=1,5 jzj 

10) Constant:

 f10(x(z))=1 

To evaluate the neural network approximations we
generated 20 different data sets for each function. We also
generated 20 additional data sets to assess the effectiveness of
the considered projection vector optimisation methods. Each
data set consisted of 5000 randomly chosen training data points
and 400 randomly chosen test data points. The 5-dimensional
vectors for the training and testing sets were selected using
uniform sampling of [–10,10]

5
. The 60-dimensional data

vectors were generated as described above.

First, we compared neural networks trained using high-
dimensional data with ensembles of 20 neural networks trained
with low-dimensional data using 20 different random linear
projection matrices and with neural networks trained with low-
dimensional data generated by a single random linear
projection matrix. For the comparison we calculated the
average squared error for the approximations and then
averaged these errors over the 20 different data sets. The
approximation performance evaluation results are presented in
Table I.

The results show that the performance of the neural
networks trained with low-dimensional data is statistically
significantly (p-value < 0.05 calculated for a t-test for the
comparison of mean values) better than the performance of the
neural networks trained with high-dimensional data for eight
functions (f1, f2, f3, f6, f7, f8, f9, f10) and comparable (not
statistically significantly different) to the performance of the
neural networks trained with high-dimensional data for the
remaining two functions (f4, f5). This applies both to a single
neural network trained over the projection space and to an
ensemble of neural networks trained over the projection spaces.

These results confirm our expectations and theoretical
reasoning in the previous section about the benefits of
projecting the high-dimensional data into an appropriate lower
dimension. Interestingly, these results also show that improved
approximation performance can be achieved for the majority of
the considered functions through a simple random projection of
the high-dimensional data into the low-dimensional projection
space. We note that the performance improvement is achieved
for all functions if the projection is performed using a mapping
that preserves the topological structure of the data manifold, as
reported in earlier papers [9,23]. This means that topology
preservation may be important for some, sufficiently
complicated, functions, but in many cases of less complicated
functions simple randomly chosen linear projections may work
sufficiently well to achieve significant improvement of the
neural network approximation performance.

The results on the comparison of single linear projection
based neural network approximation and the approximations
with the ensemble of neural networks based on a set of random
linear projections (20 projections in our case) show that the
ensemble version achieved statistically significantly better
performance only in two cases (f5, f10) and almost statistically
significantly better performance in another two cases (f2, f8). In
two cases (f7, f9) the ensemble performed statistically

TABLE I. PERFORMANCE COMPARISON OF NEURAL

NETWORKS TRAINED WITH HIGH-DIMENSIONAL AND LOW-
DIMENSIONAL DATA

Performance measure: mean squared errors over 20 data sets

Function

High-dim

Data –

average,

(standard

deviation)

Low-dim

Data, 1

projection

– average,

(standard

deviation)

, high-low

p-value

for t-test

Low-dim

Data, 20

projections –

average,

(standard

deviation),

high-low p-

value for t-

test, [1–20

p-value for t-

test], {1–20

p-value for

F-test}

Squared modulus (f1)
28787

(33245)

5385

(1477)
0.0053

5639

(1693)

0.0053
[0.9154]

{0.7555}

Second degree polynomial (f2)
33.64

(25.61)

10.81

(5.356)

8.41E-4

8.339
(1.185)

2.98E-4

[0.0584]
{7.92E-9}

Exponential square sum (f3)
5.585

(5.569)

0.6355
(0.167)

8.13E-4

0.6347

(0.1188)
8.05E-4

[0.9142]

{0.0798}

Exponential-sinusoid sum (f4)
0.9921

(0.1927)

1.1387

(0.4438)

0.1871

1.151
(0.2741)

0.091

[0.7574]
{0.0028}

Polynomial-sinusoid sum (f5)
2.434

(0.7923)

2.689
(0.7931)

0.3158

2.251

(0.3505)
0.2975

[0.0244]

{2.62E-4}

Inverse exponential square sum

(f6)

50.79

(53.75)

11.17

(2.571)
0.0038

10.66

(2.008)

0.0033
[0.3216]

{0.2877}

Sigmoidal (f7)
138.9

(251.4)

8.432

(0.8278)

0.0315

23.47
(2.293)

0.0526

[1.93E-10]
{2.52E-11}

Gaussian (f8)
11.78

(13.51)

2.87
(0.853)

0.0082

2.449

(0.2945)
0.006

[0.0529]

{5.41E-4}

Linear (f9)
20765

(31258)

1869

(416.4)

0.014

2565

(500.3)

0.017

[2.84E-4]

{0.2661}

Constant (f10)
0.7191

(0.7634)

4.25E-5
(5.12E-5)

4.72E-4

1.41E-5

(6.68E-6)
4.72E-4

[0.0442]
{1.04E-6}

significantly less well then the selected single projection based
neural network. With one exception (f7) the standard deviations

of the ensemble approach are significantly smaller (p < 0.05
calculated for the F-test for the comparison of standard
deviations) or comparable to the standard deviations of the
single projection based neural networks. This indicates that the
ensemble approach can reduce the performance variance, but it
does not make the approximation performance better on
average. This implies that the benefits of averaging over a
number of neural network approximations calculated with a set
of random linear projections are limited and in most cases a
single random projection can achieve as much as the ensemble
approach in terms of improvement of the average squared
approximation error.

Next, we considered the three approaches to optimise the
choice of the projection vector components of the projection
matrices. We had 20 different runs for each approach (variance
maximisation, kurtosis maximisation, Kullback-Leibler
distance minimisation), selecting the best combination of 5
projection vectors from 2000 randomly generated projection
vectors. For the performance comparison we calculated the
average squared error for each run and then averaged these
over the 20 runs. The results of approximation performances
for optimized projection matrices are presented in Table II. The
corresponding approximation performance data for the
randomly picked projection matrix case are shown in Table I.

The results show that in most cases the average
performances of the neural networks working with low-
dimensional data generated using optimized matrices is
numerically better than the performance of neural networks
using data projected with a randomly selected projection
matrix (an exception is function f7, for which only one of the
three optimized projections leads to a better approximation
performance), however the differences in most cases are not
statistically significant. The most significantly better than
random projection based performances are found for the
projection matrices optimized for maximum standard deviation
(in the case of functions f5, f7, f8, f9, f10) – there is only one other
case, for projection matrices optimized for maximal kurtosis
for function f8.

The results imply that picking projection vectors that
maximize the standard deviation of the projection function
values may give better projection matrices than the ones that
can be picked randomly. However, the other two optimization
approaches (kurtosis maximisation and Kullback-Leibler
distance minimisation) seem to be less effective in improving
the performance of the neural network approximations using
projected low-dimensional data.

V. CONCLUSIONS

In this paper we introduced the use of random linear
projections in combination with neural network approximation
for improved approximation of functions defined over high-
dimensional data. We assumed that the data resides on a lower
dimensional manifold and then projected it using a random
linear matrix into a low-dimensional space that matches the
dimensionality of the data manifold. We have shown that such
linear projections work well and in most of the cases of the
considered function examples the neural networks using the

TABLE II. PERFORMANCE COMPARISON OF NEURAL NETWORKS

TRAINED WITH LOW-DIMENSIONAL DATA FOLLOWING RANDOM PROJECTION

AND PROJECTION WITH OPTIMIZED PROJECTION MATRICES – „+‟ MARKS

LARGER MEAN AND STANDARD DEVIATION VALUES FOR OPTIMIZED

PROJECTIONS

Performance measure: mean squared errors over 20 data sets

Function

Low-dim

Data, max

variance

projection –

average,

(standard

deviation),

[random-

optimized p-

value for t-

test],

{random-

optimized p-

value for F-

test}

Low-dim

Data, max

kurtosis

projection –

average,

(standard

deviation),

[random-

optimized p-

value for t-

test],

{random-

optimized p-

value for F-

test}

Low-dim

Data, min

KL distance

projection –

average,

(standard

deviation),

[random-

optimized p-

value for t-

test],

{random-

optimized p-

value for F-

test}

Squared modulus (f1)

5150

(1578+)
[0.6303]

{0.7768}

4878

(967.1)
[0.208]

{0.0722}

5065

(1669+)
[0.5252]

{0.5998}

Second degree polynomial
(f2)

9

(2.986)
[0.1965]

{0.0143}

9.405

(2.615)
[0.3005]

{0.003}

8.523

(2.799)
[0.1012]

{0.0068}

Exponential square sum

(f3)

0.5529
(0.1051)

[0.0704]

{0.0502}

0.5804
(0.0936)

[0.2076]

{0.0153}

0.6154
(0.1445)

[0.6857]

{0.5345}

Exponential-sinusoid sum

(f4)

0.9227

(0.1093)

[0.0465]
{9.46E-8}

1.1364

(0.3232)

[0.985]
{0.1759}

0.9977

(0.1445)

[0.1898]
{9.37E-6}

Polynomial-sinusoid sum
(f5)

2.228

(0.3366)
[0.0244]

{4.76E-4}

2.4292

(0.7054)
[0.2802]

{0.6148}

2.503

(0.3607)
[0.3478]

{0.0012}

Inverse exponential square

sum (f6)

11.61+
(5.397+)

[0.7421]

{0.0022}

10.04
(1.79)

[0.1175]

{0.1233}

10.48
(3.36+)

[0.4756]

{0.2522}

Sigmoidal (f7)

4.469

(1.471+)

[1.51E-11]
{0.0158}

9.584+

(2.004+)

[0.0253]
{3.25E-4}

11.13+

(3.676+)

[0.0043]
{2.02E-8}

Gaussian (f8)

2.298

(0.3896)

[0.0111]
{0.0012}

2.348

(0.3676)

[0.0185]
{5.85E-4}

2.479

(0.677)

[0.1168]
{0.3222}

Linear (f9)

1185

(384.4)
[3.91E-6]

{0.7308}

1762

(215)
[0.3135]

{0.0059}

1877+

(764.8+)
[0.9691]

{0.011}

Constant (f10)

7.3E-6
(5.39E-6)

[0.0064]

{2.07E-14}

3.43E-5
(6.28E-5+)

[0.6556]

{0.3808}

2.26E-5
(2.51E-5)

[0.1299]

{0.003}

projected data led to better approximation performance then
neural networks that were trained with high-dimensional data.

 Somewhat surprisingly we found that single projection
matrices worked similarly well as ensembles of projection
matrices with their corresponding combination of neural
network approximations. We assessed three heuristics for

optimizing the projection matrices and we found that the
maximisation of the variance of the values of projection
functions corresponding to projection vectors (components of
projection matrices) lead in some of the cases to improved
performance compared to random picking of the projection
matrix.

The results reported here are important since they show that
computationally inexpensive, linear projections of the high-
dimensional data space into a low-dimensional space work
often comparably well as computationally expensive projection
methods (e.g. self-organising maps [7], local linear embedding
[8]) for neural network approximation of functions defined
over high-dimensional data. This opens up an interesting
research avenue on exploring the use of random linear
projections into low-dimensional spaces of high-dimensional
data for a variety of data analytics tasks, including function
approximation.

Future work will include the more theoretical analysis of
the approximation error for the proposed linear projection
based neural network function approximation methodology.
Better understanding of the nature of and contributions to the
approximation error may unveil more efficient ways of
computationally inexpensive optimisation of projection
matrices.

REFERENCES

[1] J. Hwangbo, I. Sa, R. Siegwart and M. Hutter, “Control of a quadrotor
with reinforcement learning”, IEEE Robotics and Automation Letters,
vol.2, pp.2096-2103, 2017.

[2] A. Conneau, H. Schwenk, Y. Le Cun, L. Barrault, “Very deep
convolutional networks for text classification”, Proceedings of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics, pp.1107-1116, 2017.

[3] J.B. Heaton, N.G. Polson, and J.H. White, “Deep learning for finance:
deep portfolios”, Applied Stochastic Models in Business and Industry,
vol.33, pp.3-12, 2017.

[4] J.H. Friedman, “On bias, variance, 0/1 – loss and the curse-of-
dimensionality”, Data Mining and Knowledge Discovery, vol.1, pp.55-
77, 1997.

[5] J.H. Friedman, “An overview of predictive learning and function
approximation”, NATO ASI Series F Computer and System Science
136, 1994.

[6] P. Andras, “Function approximation using combined unsupervised and
supervised learning”, IEEE Transactions on Neural Networks and
Learning Systems, vol.25, pp.495-505, 2014.

[7] T. Kohonen, Self-Organizing Maps, Springer, 2001.

[8] S. Roweis, L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding.”, Science, vol.290, pp.2323-2326, 2000.

[9] P. Andras, “High-Dimensional Function Approximation With Neural
Networks for Large Volumes of Data”, IEEE Transactions on Neural
Networks and Learning Systems, in press – available online, 2017.

[10] J. Tompson, M. Stein, Y. Le Cun, and K. Perlin, “Real-time continuous
pose recovery of human hands using convolutional networks”, ACM
Transactions on Graphics, vol.33, art.169, 2014.

[11] C. Dubout and F. Fleuret, “Adaptive smapling for large scale boosting”,
Journal of Machine Learning Research, vol.15, pp.1431-1453, 2014.

[12] R.J. Durrant and A. Kaban, “Random projections as regularizers:
learning a linear discriminant from fewer observations than dimensions”,
Machine Learning, vol.99, pp.257-286, 2015.

[13] K. Hornik, “Multilayer feedforward networks are universal
approximators”, Neural Networks, vol.2, pp.183-192, 1989.

[14] K. Hornik, M. Stinchcombe, H. White, P. Auer, “Degree of
approximation results for feedforward networks approximating unknown
mappings and their derivatives”, Neural Computation, vol.6, pp.1262-
1275, 1994.

[15] M.B. Stinchcombe, “Neural networks approximation of continuous
functional and continuous functions on compactifications”, Neural
Networks, vol.12, pp.467-477, 1999.

[16] A.R. Barron, “Approximation and estimation bounds for artificial neural
networks”, Machine Learning, vol.14, pp.115-133, 1991.

[17] A.R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function”, IEEE Transactions on Information Theory, vol.39,
pp.930-945, 1993.

[18] K. Yu, T. Zhang, Y. Gong, “Nonlinear learning using local coordinate
coding”, Advances in Neural Information Processing Systems – NIPS
22, pp.2223-2231, 2009.

[19] L. Breiman, “Bagging predictors”, Machien Learning, vol.24, pp.123-
140, 1996.

[20] T. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting and
randomization”, Machine Learning, vol.40, pp.139-157, 2000.

[21] Y. Ganjisaffar, R. Caruana, C.V. Lopes, “Bagging gradient-boosted
trees for high precision, low variance ranking models”, Proceedings of
the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp.85-94, 2011.

[22] E. Ohn-Bar and M.M. Trivedi, “To boost or not to boost? On the limits
of boosted trees for object detection”, in Proceedings of the 23rd
International Conference on Pattern Recognition (ICPR), 2016.

[23] P. Andras, “High-dimensional function approximation using local linear
embedding”, in Proceedings of the International Joint Conference on
Neural Networks, 2015.

[24] F. Camastra, “Data dimensionality estimation methods: a survey”,
Pattern Recognition, vol.36, pp.2945-2954, 2003.

[25] A. Hyvarinen, “Independent component analysis by minimization of
mutual information”, Helsinki Univesity of Technology, Report A 46,
1997.

[26] J.M. Joyce, “Kullback-Leibler Divergence”, in: M. Lovric (ed)
International Encyclopedia of Statistical Science. Springer, Berlin,
Heidelberg, 2011.

[27] P. Andras “A Bayesian Interpretation of the Particle Swarm
Optimization and Its Kernel Extension”, PLoS ONE vol.7, e48710,
2012.

