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Abstract— Neural networks are often used to approximate 

functions defined over high-dimensional data spaces (e.g. text 

data, genomic data, multi-sensor data). Such approximation 

tasks are usually difficult due to the curse of dimensionality and 

improved methods are needed to deal with them effectively and 

efficiently. Since the data generally resides on a lower 

dimensional manifold various methods have been proposed to 

project the data first into a lower dimension and then build the 

neural network approximation over this lower dimensional 

projection data space. Here we follow this approach and combine 

it with the idea of weak learning through the use of random 

projections of the data. We show that random projection of the 

data works well and the approximation errors are smaller than 

in the case of approximation of the functions in the original data 

space. We explore the random projections with the aim to 

optimize this approach. 

Keywords—function approximation, high-dimensional, neural 

network, random projection, weak learning 

I. INTRODUCTION  

Approximation of functions is a general task in the context 
of applications of neural networks to complex engineering or 
data analytics problems (e.g. analysis of multi-sensor data in 
complex engines [1], assessing the relevance of pieces of text 
for a certain topic [2], calculating the risk associated with 
complex investment portfolios [3], etc.). Often the data that the 
problem involves is very high dimensional (10s / 100s / 1000s 
of dimensions), which makes solving the problem difficult. 

The „curse of dimensionality‟ [4] applies often to these 
function approximation problems, which means that as the 
dimensionality of the data grows the solution of the problem 
gets harder. The reason is that as the dimensionality of the data 
space grows, the sample of the data gets more sparse within the 
data space, providing less information about how the function 
behaves over this space. One common way of dealing with this 
problem is to impose regularisation constraints on the solution 
(e.g. smoothness, limited variation between points with known 
function values) [5], however, this approach may limit 
considerably the correctness of the approximation (i.e. if the 
space of allowed approximations that conform with the 
imposed constraints is far from the actual real function). An 

alternative approach relies on the feature of the data that this 
usually lays on a manifold within the data space such that the 
effective dimensionality of this manifold is much lower than 
the dimensionality of the data space [6]. In such cases the 
function may be approximated over this lower dimensional 
manifold, reducing the problem of data sparsity. 

Previously, there have been proposals that utilise the 
assumption about the existence of a low-dimensional data 
manifold within the high-dimensional data space by projecting 
the data first into a low-dimensional space and then training a 
neural network over this projection space instead of training it 
over the original data space. One approach uses topology-
preserving self-organising maps [7] to project the data into a 
low dimensional space [6], while   another uses local linear 
embedding (LLE) [8] to implement this projection [9]. 

Recently, there has been considerable interest in using 
„weak learners‟ as an ensemble approach to develop relatively 
simple solutions to complex machine learning problems 
[10,11]. One such approach is to use to use a set of random 
linear projections of the data into a lower dimensional space to 
reduce the difficulty of the learning step and then combine the 
resulting „weak learners‟ into a more robust solution [12]. 

Here we propose to combine the last two approaches in the 
context of approximation of functions defined over high-
dimensional data. Assuming that the data relies on a low-
dimensional manifold we use random linear projections into a 
low-dimensional space and then use a neural network to learn 
the approximation of the function over the projection space. 
Combining a set of such neural networks provides a robust 
combination of „weak learners‟, which are based on random 
projections of the data space into the low dimensional space. 
We investigate options to choose optimally the projection 
vectors and matrices, however we find that none of the 
intuitive ideas about optimal choice really works. The results 
show that the combination of multiple neural networks based 
on different random projections indeed reduces the variance of 
the function approximation performance, although it does not 
improve the approximation performance itself. 

The rest of the paper is structured as follows. First we 
review briefly the related other works. Next we describe in 



detail the proposed combination of random projections with 
neural networks for the approximation of high-dimensional 
functions. Then we present a set of application examples. 
Finally the paper is closed by the conclusions section. 

II. RELATED WORKS 

The theoretical approximation properties of neural 
networks have been established over 20 years ago [13-15]. It is 
known that neural networks with a single hidden layer of 
neurons with certain nonlinear activation functions (e.g. 
sigmoidal, Gaussian) have the property of universal 
approximation of all continuous functions and all functions that 
can be approximated arbitrarily correctly by continuous 
functions [13-15]. 

Approximation error bounds have been also derived for a 
range of neural network approximations [16,17]. In general, the 
approximation bounds get tighter as the number of neurons in 
the single hidden layer grows, i.e. the approximation bound is 
proportional to the inverse of the square root of the number of 
neurons [16]. However, it has also been shown that in many 
cases the multiplicative constants in the approximation error 
expressions grow exponentially with the dimensionality of the 
data [17]. The latter reflects the „curse of dimensionality‟, i.e. 
that as the sparseness of the data grows with the 
dimensionality, there is more room for error in the 
approximation of the function. 

Given that often the high-dimensional data relies on a much 
lower dimensional manifold embedded into the high-
dimensional space, the idea of learning function approximation 
over the lower dimensional manifold or some transformation of 
this has considered by various researchers [6,18]. One 
approach is to project the manifold into a low-dimensional 
space of appropriate dimension and then approximate the 
function over this low-dimensional projection space. 
Previously, self-organising maps (SOM) [7] and local linear 
embedding (LLE) [8] have been demonstrated to work well for 
the projection step [6,9]. The underlying idea of these 
approaches is that the projection preserves the topological 
organisation of the data over the manifold, which is expected to 
help the correct approximation of the target function. However, 
in order to achieve this topology preserving mapping, both of 
these approaches involve considerable computational effort to 
calculate the low dimensional projections. The error bounds for 
such combined projection neural network approximations have 
also been established and show that the projection based 
function approximations are better than the neural network 
function approximations over the original high-dimensional 
space [9,18]. 

The concept of „weak learners‟ has been used in various 
ways over the last 30 years [19,20], generally meaning the 
combination of not-very-good learning machines (in our 
context variants of function approximation machines, such as 
neural networks) such that the combination achieves a much 
better learning performance than the „weak‟ components. For 
example, random forests with shallow trees in the context of 
classification [21,22], various „bagging‟ and „ensemble‟ 
learning approaches [19,20], feeding the output of „weaker‟ 
learning engines into a „stronger‟ learning engine [10], and so 

on. In general, the assumption is that each „weak learner‟ 
performs a relatively imprecise approximation of the target 
function, but combining of these imprecise approximations 
improves the overall approximation as approximation errors 
cancel out through the combination. 

One approach to „weak learning‟ in the context of high-
dimensional data is to use random linear projections of the data 
into a low-dimensional space and then perform the learning 
task over the projection space [12]. A big advantage of this 
approach is that it does not require computationally expensive 
data processing to achieve the low-dimensional projection, 
since it relies on using randomly picked matrices to generate 
the random linear projections. It has been shown that in the 
context of linear classification of high-dimensional data the 
random linear projections work well [12]. Error bounds have 
been derived demonstrating that the performance of the 
random projection approach is better than the classification 
over the high-dimensional original data space [12]. 

III. RANDOM PROJECTION NEURAL NETWORKS 

We assume that the function approximation task is 
specified as a set of data points and associated function values, 

{x
i
, yi = f(x

i
)}, i = 1,...,n, x

i
R

d
, yiR. It is also assumed that the 

data points reside on a manifold M embedded into the d-
dimensional data space R

d
, such that the intrinsic 

dimensionality of M is d’ < d. The approximation of the target 
function f is performed using neural networks with a single 
hidden layer, having neurons with a nonlinear activation 
function (e.g. Gaussian or sigmoidal). 

The core idea of projection based neural network function 
approximation is that if we know d’ the dimensionality of M 
then we can project the data points, for which the target 
function f has given values, onto a d’ dimensional space and 
perform the approximation of the target function over this 
space [6]. The expectation is that, given the reduced 
dimensionality of the space over which we approximate the 
function, the approximation will be more precise. The reason 
for this expectation is that the approximation error bounds for 
approximation over a low-dimensional space are tighter than 
for neural network approximation over a high-dimensional 
space [17]. Earlier papers confirm that this expectation is valid 
and indeed the neural network function approximations over 
the projection space are significantly better than the neural 
network approximations over the original data space [6,9,23]. 

The intrinsic dimensionality of M can be determined with a 
variety of dimensionality estimation methods. For example we 
can use the box counting method [24]. For this, we count the 
number of boxes or balls of decreasing size, required for full 
coverage of the known part of the manifold (given by the 
points x

i
, i = 1,...,n). Then calculate the exponent in the 

exponential relationship between the box side or ball radius 
and the number of required boxes or balls. The integer part of 
this exponent gives the estimated intrinsic dimensionality of 
the manifold. 

Previously used projection based neural network 
approximations of high-dimensional functions assumed that the 
preservation of the topological structure of the data space 
through the projection into the lower dimensional space is 



required for the good approximation performance [6,9,23]. To 
achieve the preservation of the topological structure of the data 
manifold these methods rely on computationally expensive 
projections (e.g. self-organising maps or local linear 
embedding) [7,8].  

However, the idea of „weak learners‟ [10,12] suggests that 
similarly good approximation performance may be achieved by 
combining a set of neural network approximations over the 
projection space, where each of these approximations use a 
much simpler projection, which is computationally cheap. Such 
simple projections can be generated by picking randomly a 
projection matrix and performing a linear projection of the data 
space using the projection matrix. Formally this is written as 
follows. 

Let a
kl
 be projection vectors with randomly set components, 

a
kl
R

d
, k = 1,..., p, l = 1,...,d’, where p is the number of 

random projection matrices that we use. Then a projection 

matrix is a d’  d matrix: 

 A
k
 = (a

k1
, …, a

kd’
)

T
 

The corresponding projection of data manifold is given by 

 z
i,k

 = A
k
  xi

 

where i = 1,...,n and z
i,k
R

d’
. The neural networks then learn 

the approximation of the functions defined as 

 yi = f
*,k

(z
i,k

) = f(x
i
)   

Let us denote by g
*,k

 the function implemented by the neural 
network that learned to approximate the function f

*,k
. Then the 

combined neural network approximation is given as 

 y
*

i =(1/p) k = 1,…,p g
*,k

(z
i,k

)   

Let us denote by g the function implemented by the neural 
network that learned to approximate the function f over the 
original data space, and let us define 

 y
+

i = g(x
i
)   

In all these cases above the neural network approximation of 
the target functions is a linear combination of nonlinear basis 
functions, which act as the activation functions of the neurons 
in the hidden layer of the neural network. The learning process 
happens by adjusting the summation weights of the nonlinear 
basis functions using some form of gradient descent (or 
related) learning algorithm. We note that in principle other 
parameters of the activation functions of neurons can be 
adjusted as well, however, to keep the learning process simple, 
we assume here the basic learning process involving only the 
adjustment of summation weights.  

 Following the learning over the projection space and the 
original data space we expect that the approximation error of 

the high-dimensional neural network approximation will be 
larger than the approximation error of the averaged low-
dimensional neural network approximation. Formally this is 
stated as: 

 (1/n)  i=1,…,n (y
+

i  – yi)
2
 > (1/n)  i=1,…,n (y

*
i  – yi)

2
    

Generally, the approximation error over the projection 
space will be proportional to r

d’
, while the approximation over 

the original data space will be proportional to r
d
, where r > 1 is 

an appropriate constant that depends on the activation 
functions used in the neurons of the hidden layer of the neural 
networks [17]. Assuming that we use the same kind of 
activation functions in the hidden layer neurons and that the 
number of neurons in the hidden layer is the same, this implies 
that the approximation error due to the projection distortion 

should be less than (r
d
 – r

d’
) for some appropriate  > 0 in 

order for equation (6) to be satisfied. 

While none of the linear projections through the projection 
matrices A

k
 is likely to satisfy the topological mapping 

requirement that was used in previous works to show the 
tighter approximation for the low-dimensional case, it is 
reasonable to expect that each A

k
 will preserve the topological 

structure of M for some of its parts, M
k 
 M. Thus for any 

sufficiently small M’  M we can set K(M’)  {1,...,p} such 

that we have that M’
 
 M

k
 for kK(M’) and M’

 
 M

k
 for 

k{1,...,p} – K(M’). If p – |K(M’)| is sufficiently large, i.e. if p 
is sufficiently large, it is reasonable to expect that the 
approximation errors due to randomly set projection matrices 

A
k
 , k{1,...,p} – K(M’), will cancel out together when summed 

up. For all projection matrices A
k
 , kK(M’) we can use the 

previous neural network approximation error results [9] that 
show that when the topological structure of the data manifold 
is preserved through the projection the above stated condition 
for the validity of the inequality in equation (6) is satisfied over 
M’. 

Thus, if for M we can find a coverage C(M) = {M’j | 

M’jM, jJ}, where J is an index set, such that M  

M’C(M)M’ and M’M’’ =  if M’  M’’, M’,M’’C(M) and 

for each M’  C(M) we have that K(M’)   , then the 
combined neural network approximation using the set of 
random linear projections will approximate the target function 
better than the neural network approximation trained using the 
original data in the high-dimensional space over the whole 
manifold M. This condition is likely to be satisfied if the 
number of random linear projections is sufficiently large. 

We note that the proposed approximation of the target 
function is valid only on and around the manifold on which the 
data points reside. In fact the target function is expected to be 
defined only on the manifold. Consequently, extending the 
approximation well outside of the data manifold is meaningless 
and it should not be considered, even if purely technically the 
projection matrices work everywhere in the full original data 
space, including well outside of the data manifold. 

We also note that while the above argument applies to the 
case of a sufficiently large set of random linear projection 
matrices, A

k
 , k = 1,...,p, in principle it is also possible that even 



for a single random linear projection the neural network 
approximation over the projection space works better than the 
neural network approximation over the original high-

dimensional data space. This can be the case if the largest M’  
M such that K(M’) = {1} (note that there is only one linear 
projection matrix in this case, i.e. p = 1), is sufficiently large, 
implying that the improved approximation applies for most of 
M and the potentially larger errors apply only to a small part of 
M. In this case the overall approximation performance of the 
neural network trained over the projection space is likely to be 
better than the approximation performance of the neural 
network trained over the high-dimensional original data space. 

Considering the last note, it might be interesting to try to 
optimize the projection matrix such that the corresponding 
largest M’ is maximal, while at the same time the 
computational cost of the optimization is kept low. In principle, 
the optimization objective is to keep the function over the 
projection space similar to the function over the original data 
space, which would be approximately achieved if the mapping 
would preserve the topological organisation of the data 
manifold. Given that the projection space is typically multi-
dimensional itself, the direct measurement of the match 
between the original and projected function is computationally 
very expensive. Thus we could consider proxy optimization 
objective that apply to the component projection vectors of the 
projection matrices. 

By considering the component projection vectors a
kl
R

d
, k 

= 1,..., p, l = 1,...,d’, the optimisation criteria can be formulated 
in terms of the resulting function following projection with a 

chosen projection vector, fkl:R  R, 

 fkl(u)= (1/|I(u,k,l,δ)|)  iI(u,k,l,δ) f(x
i
)   

where I(u,k,l,δ) is the index set for the indices of all x
i
 such that 

 |a
kl T xi

  – u| ≤ δ   

for some appropriately chosen small δ > 0. In effect, this means 
that the values of fkl(u) are defined as the average of the values 
of the target function over all x

i
-s for which their projection by 

a
kl
 is close to u. While δ = 0 would be the best choice in 

principle, in practice this may not work well and this is why we 
chose a δ > 0. 

 Naturally the fkl functions are not likely to be very close to 
the target function, however we may find features of these 
projection functions that make them better than other 
projection functions for the purpose of faithful approximation 
of f over the projection space.  

One option is to consider the variance of the values of fkl. In 
principle if this variance is small, it means that the projection 
function is close to constant, which may imply that the 
projection by the corresponding projection vector is not very 
discriminative in terms of the values of the projection function 
and may not contribute very much to the faithful 
approximation of f. Thus, one criterion for the selection of 
projection vectors is to maximise the variance of the values of 
the corresponding projection function. Formally, let us define 

 U = {u | x
i
 : u = a

kl T xi
  , i = 1,…,n}   

Then the mean (expectation) and variance of fkl(u) values is 
given as 

 E(fkl) = (1/|U|) uU fkl(u)   

 V(fkl) = (1/|U|) uU (fkl(u) – E(fkl))
2
   

Then the optimisation aims to maximise V(fkl) corresponding to 
the projection vector a

kl
. 

Another optimization idea for the projection vectors comes 
from the consideration of independent component analysis 
(ICA) [25], i.e. each projection vector and corresponding 
projection function may perform good approximation over 
some particular part of the data manifold, which may be 
projected to some particular part of the projection line 
corresponding to this projection vector, elsewhere on the 
projection line the projection function values may average to 
some constant (e.g. 0 or 1). In such case the target function 
would be approximated as a linear combination of the 
projection functions.  To find projection vectors with this 
property we look for vectors for which the kurtosis of the 
projection function values is maximal, i.e. the expectation is 
that the projection function approximates the target function in 
some particular value range of the target function. Formally, 

 E2(fkl) = (1/|U|) uU (fkl(u))
2
   

 E4(fkl) = (1/|U|) uU (fkl(u))
4
   

 kurt(fkl) = E4(fkl)/ E2(fkl) – 3   

and we aim to optimise the projection vector a
kl
 by maximising 

kurt(fkl). 

Finally, a third optimisation idea is to look for projection 
vectors for which the Kullback-Leibler distance [26] of the 
distributions of the values of the target function f and of the 
values of fkl is minimal, i.e. projection vectors for which the 
two value distributions are similar. In principle, similar value 
distributions may indicate similar level of discrimination 
between values corresponding to different function arguments, 
thus the projection function may help to construct a good 
approximation of the target function over the projection space. 
Formally, 

 kl(v) = (1/|U|) |{u | |v – fkl(u)| ≤ }|   

 f(v) = (1/n) |{x
i
 | |v – f(x

i
)| ≤ }|   

 Dkl = – v f(v)  ln(kl(v)/ f(v))   



for a set of appropriate v values and an appropriately chosen 

small  > 0, such that if |v – f(x
i
)| ≤  and |v’ – f(x

i
)| ≤  then this 

implies that v = v’, and the same is true in the context of fkl(u). 

Again,  = 0 would be the best choice in principle, but in 
practice may not work well. Then we aim for projection 
vectors for which Dkl is minimal. 

Unfortunately, none of the above ideas about optimising 
the projection vectors yields a straightforward way for the 
optimisation process, i.e. the optimized quantity is not a 
sufficiently direct function of the projection vector to allow the 
effective optimisation of the projection vector. Consequently 
the practical application of these methods relies on searching 
for the best vectors among a set of randomly generated vectors. 
We note that in principle various heuristic optimisation 
methods (e.g. particle swarm optimisation [27]) may be used 
for more efficient search, however, all these come with 
considerably increased computational costs and for this reason 
such methods are not considered here. 

IV. APPLICATION EXAMPLES 

To test the proposed random linear projection neural 
network approximation of functions defined over high-
dimensional data we used a set of functions reported for similar 
purposes in earlier papers [6,9,23]. We built neural networks 
with 20 hidden neurons, each with a Gaussian activation 
function. The neural network architecture was the same for 
both high-dimensional and low-dimensional approximations.  

We generated the high-dimensional data by mapping 5-
dimensional random vectors into a 60-dimensional space, 
following previous papers [6,9,23]. The mapping used a 
deformed multiple Swiss roll manifold to calculate the 60-
dimensional vectors. The relationship between the 5-
dimensional z vectors and 60-dimensional x vectors is given by 
the following equations:  

 x3(j–1) (10–j)+6(i–j–1)+1=3(j–1) (10–j)+6(i–j–1)+1zjcos(zj) 

 x3(j–1) (10–j)+6(i–j–1)+2=3(j–1) (10–j)+6(i–j–1)+2zi 

 x3(j–1) (10–j)+6(i–j–1)+3=3(j–1) (10–j)+6(i–j–1)+3zjsin(zj) 

 x3(j–1) (10–j)+6(i–j–1)+4=3(j–1) (10–j)+6(i–j–1)+4zicos(zi) 

 x3(j–1) (10–j)+6(i–j–1)+5=3(j–1) (10–j)+6(i–j–1)+5zj 

 x3(j–1) (10–j)+6(i–j–1)+6=3(j–1) (10–j)+6(i–j–1)+6zisin(zi) 

where j<i, j=1,5, and i=j+1,5,   

 =(5||z||)
-1

(2(1+exp(-||z||
2
)
-1

-1) 

and j = 10 for j = 1,...,5, j = 0.1 for j = 6,...,10 and j = 1 for j 
> 10. 

In practice this means that, for any two components zi, zj of the 
5-dimensional vector, with j<i, we have six components of the 
x vector using the deformed Swiss roll equations (18). There 
are ten such combinations of two components zi, zj of the 5-
dimensional vector, with j<i, so in total we get a 60-
dimensional x vector. The indices of the components of the 
vector x corresponding to the pair of components zi, zj of the 5-

dimensional vector are 3(j–1)(10–j)+6(i–j–1)+t, where t goes 
from 1 to 6. 

The ten functions that we used for the purpose of functions 
approximation are adopted from previous papers [6,9,23] with 
minor variations. The functions are: 

1) Squared modulus: 

 f1(x(z))=||z||
2
 

2) Second degree polynomial: 

 f2(x(z))=(1/500) j=1,4zj
2zj+1 

3) Exponential square sum: 

 f3(x(z))= (1/5) j=1,5 exp(zj
2
/50) 

4) Exponential-sinusoid sum: 

f4(x(z))=(1/5) (j=1,4 exp(zj
2
/50)sin(zj+1) + 

exp(z5
2
/50)sin(z1))  

5) Polynomial-sinusoid sum: 

 f5(x(z))=(1/50) j=1,5zj
2cos(jzj) 

6) Inverse exponential square sum: 

 f6(x(z))= 100 (j=1,5 exp(zj
2
/25))

-1
 

7) Sigmoidal: 

 f7(x(z))= 10 (1+exp(-j=1,5 zj/5))
-1
 

8) Gaussian: 

 f8(x(z))= 10 exp(-j=1,5 zj
2
/100) 

9) Linear: 

 f9(x(z))= j=1,5  jzj 

 



10) Constant: 

 f10(x(z))=1 

To evaluate the neural network approximations we 
generated 20 different data sets for each function. We also 
generated 20 additional data sets to assess the effectiveness of 
the considered projection vector optimisation methods. Each 
data set consisted of 5000 randomly chosen training data points 
and 400 randomly chosen test data points. The 5-dimensional 
vectors for the training and testing sets were selected using 
uniform sampling of [–10,10]

5
. The 60-dimensional data 

vectors were generated as described above. 

First, we compared neural networks trained using high-
dimensional data with ensembles of 20 neural networks trained 
with low-dimensional data using 20 different random linear 
projection matrices and with neural networks trained with low-
dimensional data generated by a single random linear 
projection matrix. For the comparison we calculated the 
average squared error for the approximations and then 
averaged these errors over the 20 different data sets. The 
approximation performance evaluation results are presented in 
Table I.  

The results show that the performance of the neural 
networks trained with low-dimensional data is statistically 
significantly (p-value < 0.05 calculated for a t-test for the 
comparison of mean values) better than the performance of the 
neural networks trained with high-dimensional data for eight 
functions (f1, f2, f3, f6, f7, f8, f9, f10) and comparable (not 
statistically significantly different) to the performance of the 
neural networks trained with high-dimensional data for the 
remaining two functions (f4, f5). This applies both to a single 
neural network trained over the projection space and to an 
ensemble of neural networks trained over the projection spaces. 

These results confirm our expectations and theoretical 
reasoning in the previous section about the benefits of 
projecting the high-dimensional data into an appropriate lower 
dimension. Interestingly, these results also show that improved 
approximation performance can be achieved for the majority of 
the considered functions through a simple random projection of 
the high-dimensional data into the low-dimensional projection 
space. We note that the performance improvement is achieved 
for all functions if the projection is performed using a mapping 
that preserves the topological structure of the data manifold, as 
reported in earlier papers [9,23]. This means that topology 
preservation may be important for some, sufficiently 
complicated, functions, but in many cases of less complicated 
functions simple randomly chosen linear projections may work 
sufficiently well to achieve significant improvement of the 
neural network approximation performance. 

The results on the comparison of single linear projection 
based neural network approximation and the approximations 
with the ensemble of neural networks based on a set of random 
linear projections (20 projections in our case) show that the 
ensemble version achieved statistically significantly better 
performance only in two cases (f5, f10) and almost statistically 
significantly better performance in another two cases (f2, f8). In 
two cases (f7, f9) the ensemble performed statistically 

TABLE I.  PERFORMANCE COMPARISON OF NEURAL 

NETWORKS TRAINED WITH HIGH-DIMENSIONAL AND LOW-
DIMENSIONAL DATA 

Performance measure: mean squared errors over 20 data sets 

Function 

High-dim 

Data – 

average, 

(standard 

deviation) 

Low-dim 

Data, 1 

projection 

– average, 

(standard 

deviation)

, high-low 

p-value 

for t-test 

Low-dim 

Data, 20 

projections – 

average, 

(standard 

deviation), 

high-low p-

value for t-

test,  [1–20 

p-value for t-

test], {1–20 

p-value for 

F-test} 

 

Squared modulus (f1) 
28787 

(33245) 

5385 

(1477) 
0.0053 

5639 

(1693) 

0.0053 
[0.9154] 

{0.7555} 

Second degree polynomial (f2) 
33.64 

(25.61) 

10.81 

(5.356) 

8.41E-4 

8.339 
(1.185) 

2.98E-4 

[0.0584] 
{7.92E-9} 

Exponential square sum (f3) 
5.585 

(5.569) 

0.6355 
(0.167) 

8.13E-4 

0.6347 

(0.1188) 
8.05E-4 

[0.9142] 

{0.0798} 

Exponential-sinusoid sum (f4) 
0.9921 

(0.1927) 

1.1387 

(0.4438) 

0.1871 

1.151 
(0.2741) 

0.091 

[0.7574] 
{0.0028} 

Polynomial-sinusoid sum (f5) 
2.434 

(0.7923) 

2.689 
(0.7931) 

0.3158 

2.251 

(0.3505) 
0.2975 

[0.0244] 

{2.62E-4} 

Inverse exponential square sum 

(f6) 

50.79 

(53.75) 

11.17 

(2.571) 
0.0038 

10.66 

(2.008) 

0.0033 
[0.3216] 

{0.2877} 

Sigmoidal (f7) 
138.9 

(251.4) 

8.432 

(0.8278) 

0.0315 

23.47 
(2.293) 

0.0526 

[1.93E-10] 
{2.52E-11} 

Gaussian (f8) 
11.78 

(13.51) 

2.87 
(0.853) 

0.0082 

2.449 

(0.2945) 
0.006 

[0.0529] 

{5.41E-4} 

Linear (f9) 
20765 

(31258) 

1869 

(416.4) 

0.014 

2565 

(500.3) 

0.017 

[2.84E-4] 

{0.2661} 

Constant (f10) 
0.7191 

(0.7634) 

4.25E-5 
(5.12E-5) 

4.72E-4 

1.41E-5 

(6.68E-6) 
4.72E-4 

[0.0442] 
{1.04E-6} 

 

significantly less well then the selected single projection based 
neural network. With one exception (f7) the standard deviations 



of the ensemble approach are significantly smaller (p < 0.05 
calculated for the F-test for the comparison of standard 
deviations) or comparable to the standard deviations of the 
single projection based neural networks. This indicates that the 
ensemble approach can reduce the performance variance, but it 
does not make the approximation performance better on 
average. This implies that the benefits of averaging over a 
number of neural network approximations calculated with a set 
of random linear projections are limited and in most cases a 
single random projection can achieve as much as the ensemble 
approach in terms of improvement of the average squared 
approximation error. 

Next, we considered the three approaches to optimise the 
choice of the projection vector components of the projection 
matrices. We had 20 different runs for each approach (variance 
maximisation, kurtosis maximisation, Kullback-Leibler 
distance minimisation), selecting the best combination of 5 
projection vectors from 2000 randomly generated projection 
vectors. For the performance comparison we calculated the 
average squared error for each run and then averaged these 
over the 20 runs. The results of approximation performances 
for optimized projection matrices are presented in Table II. The 
corresponding approximation performance data for the 
randomly picked projection matrix case are shown in Table I. 

The results show that in most cases the average 
performances of the neural networks working with low-
dimensional data generated using optimized matrices is 
numerically better than the performance of neural networks 
using data projected with a randomly selected projection 
matrix (an exception is function f7, for which only one of the 
three optimized projections leads to a better approximation 
performance), however the differences in most cases are not 
statistically significant. The most significantly better than 
random projection based performances are found for the 
projection matrices optimized for maximum standard deviation 
(in the case of functions f5, f7, f8, f9, f10) – there is only one other 
case, for projection matrices optimized for maximal kurtosis 
for function f8. 

The results imply that picking projection vectors that 
maximize the standard deviation of the projection function 
values may give better projection matrices than the ones that 
can be picked randomly. However, the other two optimization 
approaches (kurtosis maximisation and Kullback-Leibler 
distance minimisation) seem to be less effective in improving 
the performance of the neural network approximations using 
projected low-dimensional data. 

V. CONCLUSIONS 

In this paper we introduced the use of random linear 
projections in combination with neural network approximation 
for improved approximation of functions defined over high-
dimensional data. We assumed that the data resides on a lower 
dimensional manifold and then projected it using a random 
linear matrix into a low-dimensional space that matches the 
dimensionality of the data manifold. We have shown that such 
linear projections work well and in most of the cases of the 
considered function examples the neural networks using the  

TABLE II.  PERFORMANCE COMPARISON OF NEURAL NETWORKS 

TRAINED WITH LOW-DIMENSIONAL DATA FOLLOWING RANDOM PROJECTION 

AND  PROJECTION WITH OPTIMIZED PROJECTION MATRICES – „+‟ MARKS 

LARGER MEAN AND STANDARD DEVIATION VALUES FOR OPTIMIZED 

PROJECTIONS 

Performance measure: mean squared errors over 20 data sets 

Function 

Low-dim 

Data, max 

variance 

projection – 

average, 

(standard 

deviation), 

[random-

optimized p-

value for t-

test], 

{random-

optimized p-

value for F-

test} 

Low-dim 

Data, max 

kurtosis 

projection – 

average, 

(standard 

deviation), 

[random-

optimized p-

value for t-

test], 

{random-

optimized p-

value for F-

test} 

Low-dim 

Data, min 

KL distance 

projection – 

average, 

(standard 

deviation), 

[random-

optimized p-

value for t-

test], 

{random-

optimized p-

value for F-

test} 

 

Squared modulus (f1) 

5150 

(1578+) 
[0.6303] 

{0.7768} 

4878 

(967.1) 
[0.208] 

{0.0722} 

5065 

(1669+) 
[0.5252] 

{0.5998} 

Second degree polynomial 
(f2) 

9 

(2.986) 
[0.1965] 

{0.0143} 

9.405 

(2.615) 
[0.3005] 

{0.003} 

8.523 

(2.799) 
[0.1012] 

{0.0068} 

Exponential square sum 

(f3) 

0.5529 
(0.1051) 

[0.0704] 

{0.0502} 

0.5804 
(0.0936) 

[0.2076] 

{0.0153} 

0.6154 
(0.1445) 

[0.6857] 

{0.5345} 

Exponential-sinusoid sum 

(f4) 

0.9227 

(0.1093) 

[0.0465] 
{9.46E-8} 

1.1364 

(0.3232) 

[0.985] 
{0.1759} 

0.9977 

(0.1445) 

[0.1898] 
{9.37E-6} 

Polynomial-sinusoid sum 
(f5) 

2.228 

(0.3366) 
[0.0244] 

{4.76E-4} 

2.4292 

(0.7054) 
[0.2802] 

{0.6148} 

2.503 

(0.3607) 
[0.3478] 

{0.0012} 

Inverse exponential square 

sum (f6) 

11.61+ 
(5.397+) 

[0.7421] 

{0.0022} 

10.04 
(1.79) 

[0.1175] 

{0.1233} 

10.48 
(3.36+) 

[0.4756] 

{0.2522} 

Sigmoidal (f7) 

4.469 

(1.471+) 

[1.51E-11] 
{0.0158} 

9.584+ 

(2.004+) 

[0.0253] 
{3.25E-4} 

11.13+ 

(3.676+) 

[0.0043] 
{2.02E-8} 

Gaussian (f8) 

2.298 

(0.3896) 

[0.0111] 
{0.0012} 

2.348 

(0.3676) 

[0.0185] 
{5.85E-4} 

2.479 

(0.677) 

[0.1168] 
{0.3222} 

Linear (f9) 

1185 

(384.4) 
[3.91E-6] 

{0.7308} 

1762 

(215) 
[0.3135] 

{0.0059} 

1877+ 

(764.8+) 
[0.9691] 

{0.011} 

Constant (f10) 

7.3E-6 
(5.39E-6) 

[0.0064] 

{2.07E-14} 

3.43E-5 
(6.28E-5+) 

[0.6556] 

{0.3808} 

2.26E-5 
(2.51E-5) 

[0.1299] 

{0.003} 

 

projected data led to better approximation performance then 
neural networks that were trained with high-dimensional data. 

 Somewhat surprisingly we found that single projection 
matrices worked similarly well as ensembles of projection 
matrices with their corresponding combination of neural 
network approximations. We assessed three heuristics for 



optimizing the projection matrices and we found that the 
maximisation of the variance of the values of projection 
functions corresponding to projection vectors (components of 
projection matrices) lead in some of the cases to improved 
performance compared to random picking of the projection 
matrix. 

The results reported here are important since they show that 
computationally inexpensive, linear projections of the high-
dimensional data space into a low-dimensional space work 
often comparably well as computationally expensive projection 
methods (e.g. self-organising maps [7], local linear embedding 
[8]) for neural network approximation of functions defined 
over high-dimensional data. This opens up an interesting 
research avenue on exploring the use of random linear 
projections into low-dimensional spaces of high-dimensional 
data for a variety of data analytics tasks, including function 
approximation. 

Future work will include the more theoretical analysis of 
the approximation error for the proposed linear projection 
based neural network function approximation methodology. 
Better understanding of the nature of and contributions to the 
approximation error may unveil more efficient ways of 
computationally inexpensive optimisation of projection 
matrices. 
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