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Abstract. We investigate axially symmetric localized bulging of an incompressible hyperelastic

circular solid cylinder or tube that is rotating about its axis of symmetry with angular velocity

ω. For such a solid cylinder, the homogeneous primary deformation is completely determined by

the axial stretch λz, and it is shown that the bifurcation condition is simply given by dω/dλz =

0 if the resultant axial force F is fixed. For a tube that is shrink-fitted to a rigid circular

cylindrical spindle, the azimuthal stretch λa on the inner surface of the tube is specified and the

deformation is again completely determined by the axial stretch λz although the deformation is

now inhomogeneous. For this case it is shown that with F fixed the bifurcation condition is also

given by dω/dλz = 0. When the spindle is absent (the case of unconstrained rotation), we also

allow for the possibility that the tube is additionally subjected to an internal pressure P . It is

shown that with P fixed, and ω and F both viewed as functions of λa and λz, the bifurcation

condition for localized bulging is that the Jacobian of ω and F should vanish. Alternatively, the

same bifurcation condition can be derived by fixing ω and setting the Jacobian of P and F to

zero. Illustrative numerical results are presented using the Ogden and Gent material models.

1. Introduction

In a series of classic papers by Haughton and Ogden (1979a, b; 1980a, b, c) on the periodic

buckling of hyperelastic circular solid cylinders or cylindrical tubes described by a general strain-

energy function, two types of loading were considered separately. The first type consists of

an internal pressure and an end thrust, and the second type consists of rotation about the

axis of symmetry and an end thrust. The first situation has recently been reexamined with a

view to characterizing axially symmetric localized bulging, motivated by the fact that in some

loading regimes localized bulging is usually observed first but had previously not been fully

understood. The second situation is now reexamined in the current paper, motivated by similar

considerations.

Deformation of a rotating hyperelastic cylinder or tube is one of the first problems solved

using the continuum mechanics theory (Green and Zerna 1968) with results used to test the

validity of constitutive assumptions. For instance, when the neo-Hookean material model is

used, the resulting axial stretch λz in a solid cylinder rotating with angular velocity ω is given

by

ρω2 =
4µ

A2
(1− λ3

z), (1-1)
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where µ, ρ, and A are the ground state shear modulus, material density and undeformed radius,

respectively. The above result predicts that when ρω2 approaches the finite value 4µ/A2, the

stretch tends to zero, which is clearly un-physical, thus showing the inadequacy of the neo-

Hookean material model in the large deformation regime. The question of the existence of a

unique homogeneous (shape-preserving) solution valid for all values of ω was then examined

by Chadwick et al (1977) using the newly proposed Ogden material model at that time. In a

parallel study, the question of an axisymmetric bifurcation for a rotating cylinder was studied

by Patterson and Hill (1977) using the neo-Hookean material model. They showed that such a

bifurcation would take place before ω reaches the value corresponding to λ = 0. The bifurca-

tion condition has an explicit expression and was derived in a similar manner to that used by

Wilkes (1955) for studying the buckling of a cylinder or tube under end thrust. A significant

generalization was subsequently made by Haughton and Ogden (1980a, b, c) who considered

all the possible periodic buckling modes (prismatic, axisymmetric or asymmetric) for a rotating

cylinder or tube without restricting the material model in their general formulation although

numerical results were presented only for the Ogden material model. In the last three studies,

it was observed that the rotation speed, when viewed as a function of a stretch measure, may

reach a maximum beyond which the primary deformation no longer exists. This is similar to

the so-called limiting point instability which was receiving a lot of attention around the same

period; see, e.g., Kanner and Horgan (2007) and the references therein. However, in both sit-

uations the connection between the limiting point instability and localized bulging bifurcation

was not fully understood at that time. It is shown in the present paper that under a certain

loading condition the existence of such an angular speed maximum is closely associated with

axisymmetric bulging localized in the axial direction, a phenomenon rather similar to localized

bulging in circular cylindrical tubes that are inflated by an internal pressure.

We follow the same strategy as in Fu et al (2016). After formulating the problem and sum-

marizing the expressions for the angular speed ω, the internal pressure P and the resultant axial

force F associated with the primary shape-preserving deformation in the next section, we first

derive the bifurcation condition in Section 3, and then conjecture and verify that the bifurcation

condition in each case can be written simply in terms of the derivatives of ω, F and/or P with

respect to the stretches as stated in the Abstract. In Section 4 the bifurcation condition is solved

and numerical results are presented when both the Gent and Ogden material models are used.

The paper is concluded in Section 5 with a summary of our main results and a discussion of

whether localized bulging under rotation could be observed experimentally.

2. Primary deformation

We first write down the solution for the primary shape-preserving deformation associated

with an incompressible circular cylindrical tube that is rotating about its axis of symmetry

with angular velocity ω. The corresponding results for a solid cylinder will be obtained by

specialization. The tube is assumed to have inner radius A and outer radius B in the undeformed

configuration, and these dimensions take the values a and b in the deformed configuration. The

outer surface of the tube is traction-free, but its inner surface may in general be subjected to a
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hydrostatic pressure P or shrink-fitted to a rigid circular cylindrical spindle with a radius larger

than A. It is also assumed that each plane end-face of the tube is subject to a resultant axial

force F (e.g. F = 0 in which case the end faces are traction-free). In terms of cylindrical polar

coordinates, the primary shape-preserving deformation is given by

r =

√

λ−1
z (R2 −A2) + a2, θ = Θ+ ωt, z = λzZ, (2-1)

where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates in the undeformed and de-

formed configurations, respectively, t denotes time, and λz is a constant. The associated princi-

pal stretches are

λ1 =
r

R
≡ λ, λ2 = λz, λ3 =

dr

dR
= 1/(λλz). (2-2)

We assume that the constitutive behavior of the tube is described by a strain-energy function

W (λ1, λ2, λ3). By integrating the only equilibrium equation in the r-direction, it can be shown

that various quantities can be expressed in terms of the reduced strain-energy function w, and

its derivatives w1 and w2, defined by

w(λ, λz) = W (λ, λz, λ
−1λ−1

z ), w1 = ∂w/∂λ, w2 = ∂w/∂λz ; (2-3)

see Haughton and Ogden (1980c). For instance, the normal stress on the inner surface is given

by

σ33(a) =
1

2
ρω2λ−1

z (B2 −A2)−

∫ λa

λb

w1

λ2λz − 1
dλ, (2-4)

where ρ is the material density, the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
,

and are related to each other, through incompressibility, by

λ2
aλz − 1 =

B2

A2
(λ2

bλz − 1). (2-5)

We observe that with λb eliminated using the above relation, the deformation is completely

determined by the two stretches λa and λz.

The expression (2-4) suggests the introduction of a non-dimensional quantity Γ defined by

Γ = ρω2B2/µ, (2-6)

where µ denotes the ground-state shear modulus. In the rest of this paper, we shall assume that

the strain-energy function, stress components and pressure have all been scaled by µ, forces by

µB2, and the radii A, a, b by B. As a result of non-dimensionalization, equation (2-4) is now

replaced by

σ33(a) =
1

2
Γλ−1

z (1−A2)−

∫ λa

λb

w1

λ2λz − 1
dλ, (2-7)

and the resultant of σ22 at any cross section is given by

F̃0(λa, λz,Γ) ≡ 2π

∫ b

a
σ22rdr =

1

4
πΓλ−2

z (1−A2)2 + πa2
∫ λa

λb

w1

λ2λz − 1
dλ
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+πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2-8)

where the first equation serves to define the function F̃0. Finally, the normal stress component

σ33 in the r-direction is given by

σ33(r) =
1

2
Γ(b2 − r2)−

∫ λ

λb

w1

λ2λz − 1
dλ. (2-9)

This expression recovers (2-7) on evaluation at r = a followed by the use of the identity (b2 −

a2)λz = B2 − A2. We can now specialize the above formulae to three different loading and

geometry conditions.

Firstly, consider a tube under the combined action of an internal pressure, rotation and an

end thrust (referred to hereafter as the unconstrained case). Denoting the internal pressure by

P , we have σ33(a) = −P , and (2-7) then becomes

P = P̃ (λa, λz) ≡ −
1

2
Γλ−1

z (1−A2) +

∫ λa

λb

w1

λ2λz − 1
dλ, (2-10)

or equivalently,

Γ = Γ̃(λa, λz) ≡
2λz

1−A2

∫ λa

λb

w1

λ2λz − 1
dλ−

2λzP

1−A2
, (2-11)

where the second expression in each equation defines the functions P̃ and Γ̃, respectively. To

simplify notation, we have not shown explicitly the dependence of P̃ on Γ or Γ̃ on P .

The resultant axial force at any cross section, that is to be balanced by the net force F applied

at each plane end-face, is given by

F = F̃ (λa, λz) ≡ 2π

∫ b

a
σ22rdr − πa2P

=
1

4
πΓλ−1

z (a2 + b2)(1−A2) + πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2-12)

where the second equation defines the function F̃ which should be compared with the F̃0 defined

by (2-8). We note that the Γ in the expression for F̃ could be eliminated in favour of P with

the use of (2-11). Thus, whenever F̃ is partially differentiated, it can be either Γ or P that is

fixed. This will always be indicated explicitly.

Once the geometry of the tube is specified, either P or Γ can be assumed to take a dominant

role together with F . If, for instance, P is specified and is assumed to take a passive role (by

being sufficiently small), then Γ and F can be viewed as functions of the two stretches λa and λz,

and we expect the following Jacobian to play a role in the characterization of localized bulging:

Ωu(λa, λz) ≡ J(Γ̃, F̃ ) =
∂Γ̃

∂λa

∂F̃

∂λz
−

∂Γ̃

∂λz

∂F̃

∂λa
, (2-13)

where the first equation defines the function Ωu(λa, λz) with the subscript u signifying “uncon-

strained”. Similarly, if Γ is assumed to take a passive role, then the Jacobian J(P̃ , F̃ ) can be

defined. However, it can be shown that this Jacobian is a non-zero multiple of J(Γ̃, F̃ ) when

the connection (2-10) is used.
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The case previously studied by Fu et al (2016) can now be viewed a special case, corresponding

to Γ ≡ 0, of the current more general formulation. The observations made in the latter paper

about J(P̃ , F̃ ) can be extended to the case when Γ is non-zero but is held fixed. In particular,

it can be shown that when F and Γ are both fixed, the pressure will reach a maximum precisely

when J(P̃ , F̃ ) = 0. In a similar manner, we note that if both P and F are held fixed when Γ is

increased gradually, F̃ (λa, λz) = F would define λz as a function of λa, and we then have

∂F̃

∂λa
+

∂F̃

∂λz

dλz

dλa
= 0,

and

dΓ̃

dλa
=

∂Γ̃

∂λa
+

∂Γ̃

∂λz

dλz

dλa
= (

∂F̃

∂λz
)−1J(Γ̃, F̃ ).

Thus, Γ reaches a maximum when the Jacobian J(Γ̃, F̃ ) vanishes. We emphasize that this

correspondence is lost when, for instance, it is the λz that is held fixed in rotating the tube.

Drawing upon the results of Fu et al (2016), we may then further conjecture that when the inner

surface is traction-free or subjected to a hydrostatic pressure P the bifurcation condition for

localized bulging is simply J(Γ̃, F̃ ) = 0, whether it is the F or λz that is fixed in rotating the

tube. We shall verify in the next section that this is indeed the case.

Next, consider the case when a tube is mounted on a rigid circular cylindrical spindle with a

radius larger than A, which is the shrink-fit case discussed in Chadwick et al (1977). We assume

that the contact is smooth so that at the inner surface the stretch λa is specified and the shear

stress components are negligible. When such a tube is rotated, the expression (2-4) can be used

to compute the contact pressure, and the resultant F̃0(λa, λz,Γ) of σ22 given by (2-8) is now a

function of the only variable stretch λz. It will be shown in the next section that the bifurcation

condition for localized bulging is simply

Ωc(λa, λz,Γ) ≡
∂F̃0

∂λz
= 0, (2-14)

where the first equation defines the function Ωc(λa, λz,Γ) with the subscript c signifying “con-

strained”. Suppose that the equation F̃0(λa, λz,Γ) = F , with F̃0 given by (2-8), is solved for

Γ and the result is denoted by Γ = Γ̃0(λa, λz, F ). Then it can also be shown that the above

bifurcation condition is equivalent to ∂Γ̃0/∂λz = 0.

Finally, in the special case of a solid cylinder (A=a=0), the three principal stretches given by

(2-2) reduce to

λ1 = λ−1/2
z , λ2 = λz, λ3 = λ−1/2

z , (2-15)

which are all independent of r. Then in terms of the reduced strain-energy function ŵ defined

by

ŵ(λz) = W (λ−1/2
z , λz, λ

−1/2
z ), (2-16)

the principal stretch λz is determined by

Γ = 4λ2
z(
F

π
− ŵ′), (2-17)
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where the prime denotes differentiation with respect to the argument λz. If F is fixed, then

setting dΓ/λz = 0 would yield, after F has been eliminated with the use of (2-17), the condition

Ωs(λz) ≡ 2λ3
zŵ

′′ − Γ = 0, (2-18)

where the first relation defines the function Ωs(λz) with the subscript s signifying “solid”. On the

other hand, if Γ is fixed instead, then setting dF/λz = 0 would again yield the same condition

(2-18). It will be shown in the next section that this is in fact the bifurcation condition for

localized bulging.

3. Bifurcation conditions for localized bulging

To investigate the axisymmetric localized bulging of the finitely deformed configurations de-

termined in the previous section, we consider an incremental displacement field ẋ given by

ẋ = u(r, z)er + v(r, z)ez, (3-1)

where u(r, z) and v(r, z) are the incremental displacements in the r- and z-directions, respec-

tively. The incremental equation of motion takes the form

div χ
T = −Γuer, (3-2)

where the incremental stress tensor χ is defined by the following components relative to the

orthonormal basis {eθ,ez,er}:

χij = Bjilkηkl + p̄ηji − p∗δji. (3-3)

In the above expression, the Bjilk’s are the incremental elastic moduli whose expression in terms

of the principal stretches can be found in Haughton and Ogden (1979a), p̄ and p∗ are, respectively,

the primary and incremental pressures associated with the constraint of incompressibility, and

the tensor η is given by

η =







u
r 0 0

0 vz vr

0 uz ur






, with vz ≡

∂v

∂z
, vr ≡

∂v

∂r
etc. (3-4)

The equation of motion is to be supplemented by the incompressibility condition

trη = ur + vz +
u

r
= 0, (3-5)

and is to be solved subject to appropriate boundary conditions on r = a, b. On the outer

boundary r = b, we impose the traction-free boundary condition

χn = 0 on r = b (3-6)

for all the three cases under consideration, where n denotes the unit normal to the surface. For

a solid cylinder, this boundary condition is supplemented by the condition that the solution

must be bounded at r = 0. For the case when a tube is subjected to an internal (hydrostatic)

pressure P , the boundary condition on r = a is given by

χn = Pη
T
n on r = a. (3-7)
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Finally, for the shrink-fit case, the boundary condition on r = a is given by

χ23 = 0, u = 0 on r = a. (3-8)

As explained in Fu et al (2016), the bifurcation condition can be derived by first looking for a

solution of the form

u = f(r)eαz, v = g(r)eαz , p∗ = h(r)eαz . (3-9)

On substituting these expressions into the incremental equilibrium equations and then eliminat-

ing g(r) and h(r) in favor of f(r), we find that f(r) satisfies the single fourth-order ordinary

differential equation

r4
{

r−1[r−1B3232(r
2f ′′ + rf ′ − f)]′

}

′

+ α2r2
{

r[r(B2222 + B3333 − 2B2233 − 2B3223)f
′]′

+(r2σ′′

33 − r2B′′

3232 + rB′

2222 + rB′

1133 − rB′

1122 − rB′

2233 − rB′

3223

+2B1122 + 2B3223 − B1111 − B2222 + r2Γ)f
}

+ α4r4B2323f = 0. (3-10)

This corresponds to Haughton and Ogden (1980c)’s equation (49) with α replaced by iα. In a

similar manner, the two boundary conditions (3-6) and (3-7) yield

r2f ′′ + rf ′ − (α2r2 + 1)f = 0 on r = a, b, (3-11)

and

r2[r−1B3232(r
2f ′′ + rf ′ − f)]′ + α2r3(B2222 + B3333 − 2B2233 − 2B3223 + B3232)f

′

−α2r2(rσ′

33 − rB′

3232 + B2222 + B1133 − B1122 − B2233 − B3223)f = 0 on r = a, b. (3-12)

The last boundary condition (3-12) on r = a corresponds to (3-7) applied in the normal direction.

For the shrink-fitting case, this is replaced by

f(a) = 0, (3-13)

and as a result the boundary condition (3-11), which corresponds to χ23 = 0, reduces to

af ′′(a) + f ′(a) = 0. (3-14)

Because of the translational invariance in terms of z, α = 0 is always an eigenvalue of the above

eigenvalue problem. For sufficiently small values of Γ, P and F , none of the other eigenvalues

can be pure imaginary since such eigenvalues give rise to bifurcation modes that are sinusoidal in

the z-direction, and we only expect such modes to appear for sufficiently large values of Γ, P and

F . We note that Haughton and Ogden (1980a, b, c)’s analysis is concerned with the conditions

under which such bifurcation modes would appear. Since our current analysis is concerned with

a bifurcation mode that is localized in the axial direction, as a first attempt we may assume that

the tube or solid cylinder is infinitely long so that boundary conditions at the two end-faces need

not to be considered. This is essentially the “perfect” bifurcation case (i.e. bifurcation in the

absence of any imperfections). Effects of finite length as well as material inhomogeneity and/or

non-uniform wall thickness can all be considered as imperfections. Since localized bulging is in

general a sub-critical bifurcation, it is expected that in the presence of imperfections, the critical

value of angular speed will be significantly lower than the value determined in the current paper.

For an illustration of the effect of imperfections, we refer to Fu and Xie (2012).
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For the problem under consideration, there exist two real eigenvalues of the form α = ±α1

that are closest to α = 0 when Γ, P and F are sufficiently small. These two eigenvalues would

move along the real axis towards the origin as Γ and/or P is increased gradually. According

to the dynamical systems theory, a necessary condition for a localized bulging bifurcation to

take place is when α1 vanishes, making zero a triple eigenvalue; see, e.g., Kirchgässner (1982) or

Haragus and Iooss (2011). This necessary condition is now derived for the three different cases

defined earlier.

3A. Solid cylinder. For the case of a solid cylinder, all the elastic moduli are constants and the

reduced eigenvalue problem can be solved analytically. Adapting Haughton and Ogden (1980a)

results slightly, we obtain the following equation satisfied by all the eigenvalues of α:

K1 −K2 = 0, (3-15)

where K1 and K2 are defined by

νβ(ν
2
β + 1)I1(νβαb)Kβ = αb(ν2βB1212 + B2121)I0(νβαb)− νβ(2B1313 + Γb2)I1(νβαb), (3-16)

with ν1, ν2 denoting the two positive roots of the bi-quadratic equation

ν4B1212 − ν2(B1111 + B2222 − 2B1122 − 2B1221) + B2121 = 0. (3-17)

The condition for zero to become a triple eigenvalue can be obtained by expanding (3-15) in

terms of α and then setting the leading term to zero. The result is

(2B1313 − 2B1212 + Γb2)ν21ν
2
2 − 2B2121(ν

2
1 + ν22)− 2B2121 = 0,

which, on using (3-17), can be reduced to

Γb2 − 2B1111 + 4B1122 − 4B1212 + 4B1221 + 2B1313 − 2B2222 = 0. (3-18)

With the use of the expressions for the elastic moduli given by Haughton and Ogden (1979a),

we have verified that (3-18) can be reduced to (2-18). Thus, we conclude that for a rotating

solid cylinder, a localized bulge will initiate when the rotation speed ω or the axial force given

by (2-17) reaches a maximum.

3B. Unconstrained tube. We next consider the case of an unconstrained tube that is sub-

jected to the combined action of rotation, internal inflation and an axial force. An inspection

of the associated eigenvalue problem governed by (3-10), (3-11) and (3-12) shows that it can be

obtained from the case with Γ = 0 by the simple substitution

B1111 → B1111 − Γr2. (3-19)

As a result, the exact bifurcation condition can be derived following the same procedure as in

Fu et al (2016). Guided by the results in the latter paper, we may further conjecture that with

the above substitution, the new bifurcation condition should be equivalent to Ωu(λa, λz) = 0,

where Ωu(λa, λz) is defined by (2-13). We have checked to verify that this is indeed the case.

Furthermore, in the thin-wall limit, with the aid of an expansion procedure adapted from Fu et

al (2016), we find that the exact bifurcation condition to leading order reduces to

λm(w1 − λzw12)
2 + λ2

zw22(w1 − λ1w11) + λ3
mΓ2 + 2λ2

m(λzw12 − w1)Γ = 0, (3-20)
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where λm denotes the azimuthal stretch in the mid-surface, and all the partial derivatives are

now evaluated at λ = λm. The associated leading-order expressions for Γ and F take the form

Γ = w1/λm − λzP0, F = π(2w2 − P0λ
2
m), (3-21)

where P0 = P/ǫ, ǫ being the wall thickness scaled by the averaged radius. If (3-21)1 is used to

eliminate Γ in (3-20), we obtain the alternative bifurcation condition

λm(w11w22 − w2
12)− w1w22 + P0λ

2
m(2w12 − λmP0) = 0, (3-22)

which is valid if P0 is held fixed in rotating the tube. As a useful check, this leading-order

bifurcation condition can also be obtained from J(Γ, F ) = 0 when the leading-order expressions

(3-21) are used.

As expected, when Γ = 0, (3-20) reduces to its counterpart for the pure inflation case given in

Fu et al (2008), and it is known that this reduced bifurcation condition has a solution that defines

λz as a function of λm for most of the commonly used strain-energy functions. In contrast, if

we set P0 = 0 in (3-22), the existence of solution of the reduced bifurcation condition depends

very much on the material model used: it again has a solution when the Ogden material model

is used, but it does not have a solution when the Gent material model is used. This difference

carries over even when finite wall thickness is considered, which will be discussed further in

the next section. We also observe that equation (3-22) with P0 = 0 is the same as Haughton

and Ogden’s (1980c) equation (63) which emerged as the limit of the condition of bifurcation

into axially symmetric periodic modes in an infinitely long tube. This equation reappeared as

equation (71) in the same paper where it was observed as characterizing the turning point of ω

when the axial force F is held fixed.

3C. Constrained tube. Finally, we consider the shrink-fit case for which the applicable bound-

ary conditions at r = a, b are (3-13) and (3-14), and (3-11) and (3-12), respectively. Again, the

bifurcation condition is the condition under which zero becomes a triple eigenvalue. To derive

this condition, we expand the stretches as

λa = λ(0)
a + α2λ(1)

a + · · · , λz = λ(0)
z + α2λ(1)

z + · · · , (3-23)

and look for a regular perturbation solution of the form

f(r) = f (0)(r) + α2f (1)(r) + · · · , (3-24)

where the constants λ
(i)
a , λ

(i)
z (i = 0, 1, · · · ) and functions f (i)(r) (i = 0, 1, · · · ) are to be deter-

mined. We are basically assuming that there is a small real eigenvalue α and then determining

the required values of the stretches that support such a small eigenvalue. If such a non-trivial

solution can be found, then the leading order values λ
(0)
a and λ

(0)
z are the stretch values at which

zero becomes a triple eigenvalue.

On substituting (3-24) into (3-10) and equating the coefficients of α0 and α2, we obtain a

homogeneous equation for f (0)(r) and an inhomogeneous equation for f (1)(r). These equations

are the same as their counterparts derived in Fu et al (2016) except for the substitution (3-19).
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We thus have

f (0)(r) = c1r + c2
1

r
+ c3κ1(r) + c4κ2(r), (3-25)

and

f (1)(r) = d1r + d2
1

r
+ d3κ1(r) + d4κ2(r) + c1κ3(r) + c2κ4(r) + c3κ5(r) + c4κ6(r), (3-26)

where ci and di (i = 1, 2, 3, 4) are constants and the expressions for κi(r) (i=1, . . . , 6) are not

written out here for the sake of brevity. We observe that the last four terms in (3-26) are simply

particular integrals. The boundary conditions can similarly be expanded. On substituting (3-24)

together with (3-25) and (3-26) into the leading- and second-order boundary conditions, we find

that c3 = c4 = 0, c2 = −ac1, d2 = −ad1, and that the three constants c1, d3, d4 satisfy three

homogeneous linear equations. For a non-trivial solution, we set the determinant of its coefficient

matrix to zero, thus obtaining the condition

Ω(λ(0)
a , λ(0)

z ) = 0, (3-27)

where

Ω(λa, λz) = (a2b2 − b4)F1 + (a2b4 − a4b2)F2 + 2b2F3 − 2a2b2F4 + (a4 − b4)σ3(b)

+b4(B1122(b)− B1133(b)− 2B2222(b) + 3B2233(b) + 2B3223(b)− 2B3232(b)− B3333(b))

+a2b2(2B1133(b) + 2B2222(b) + 2B3232(b)− 2B1122(b)− 2B2233(b)− 2B3223(b))

+b(a2 − b2)2(B′

3223(b) + p̄′(b)) + a4(B1122(b)− B1133(b)− B2233(b) + B3333(b)).

In the last expression, the constants F1, . . . , F4 are given by

F1 =

∫ b

a
ω1(t)dt, F3 =

∫ b

a
t

(
∫ t

a
ω1(s)ds

)

dt,

F2 =

∫ b

a
ω2(t)dt, F4 =

∫ b

a
t

(
∫ t

a
ω2(s)ds

)

dt.

ω1(r) = B′

1122 − B′

1133 + 3B′

2233 − 2B′

2222 − B′

3333 + 3B′

3223 + r(B′′

3223 + p̄′′)

+
1

r
(B1111 − Γr2 − 2B1122 + 2B2233 − B3333),

ω2(r) =
1

r
(B′′

3223 + p̄′′) +
1

r2
(B′

1122 − B′

1133 − B′

2233 − B′

3333 −B′

3223)

+
1

r3
(B1111 − Γr2 − 2B1122 + 2B2233 − B3333).

We may conjecture that the bifurcation condition (3-27) is equivalent to (2-14). This is verified

numerically to be indeed the case.
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4. Numerical results

We present some representative numerical results by considering two commonly used material

models for rubber-like materials, the Ogden and Gent material models; see Ogden (1972) and

Gent (1996). The associated strain-energy function is given by

W = µ

3
∑

r=1

µ∗

r(λ
αr

1 + λαr

2 + λαr

3 − 3)/αr , (4-1)

and

W = −
µ

2
Jm ln(1−

J1
Jm

), J1 = λ2
1 + λ2

2 + λ2
3 − 3, (4-2)

respectively, where µ is the ground state shear modulus,

α1 = 1.3, α2 = 5.0, α3 = −2.0, µ∗

1 = 1.491, µ∗

2 = 0.003, µ∗

3 = −0.023,

and Jm is a material constant which we shall take to be 97.2 following Gent (1996). All our

numerical computations were carried out using Mathematica version 10.2.0.0 (1991).

4A. Solid cylinder. We assume that a net axial force F is specified and we wish to determine

the value of Γ at which localized bulging may take place. In Figure 1, we have shown the relation

between Γ and F when the bifurcation condition (2-18) is satisfied. The relation is obtained by

varying λz continuously from 0.2 to 1.2 and computing the associated Γ and F using (2-17) and

(3-15). It is seen that both curves contain a cusp point, corresponding to the fact that the Γ

given by Γ = 2λ3
zŵ

′′, defined by the bifurcation condition (2-18), attains a minimum at λz = 0.39

for the Gent material, and λz = 0.20 for the Ogden material; see Figure 2(a). In Figure 2(b) is

shown the dependence of F on λz when localized bulging occurs. It is seen that there is a major

difference between the predictions between the two material models: whereas the Ogden model

predicts that localized bulging may take place when F = 0 and the associated critical value of

Γ = 3.81 is attained at λz = 0.15, the Gent material model predicts that localized bulging can

never take place when F = 0.

4B. Unconstrained tube. We first consider the simplest case when P = 0, and we determine

the critical value of Γ at which localized bulging may occur. We have in mind two possible

types of end conditions: either F or λz is fixed when Γ is increased. We note, however, that

the solution of the bifurcation condition Ωu(λa, λz) = 0 is independent of the end conditions. It

is found that when the Gent material model is used, this bifurcation condition does not have a

solution, and so localized bulging can never occur however large the rotation speed is. This fact

was already noted in the previous section in the thin-wall limit. In contrast, when the Ogden

material model is used, Ωu(λa, λz) = 0 has a solution giving λz as a function of λa; see the solid

line in Figure 3(a) where we have also shown a typical loading curve defined by F̃ (λa, λz) = 0.

As Γ is increased gradually from zero, loading starts from the point where (λa, λz) = (1, 1) and

traces down the loading curve F̃ (λa, λz) = 0. Localized bulging would occur when this curve

intersects the bifurcation curve Ωu(λa, λz) = 0 at

(λa, λz) = (2.313, 0.683),
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(a) Gent material (b) Ogden material

Figure 1. Relation between Γ and F when localized bulging takes place. The

solid and dashed parts on each curve corresponds to λz < 1 and λz > 1, respec-

tively.

(a) (b)

Figure 2. Dependence of Γ and F on λz when localized bulging takes place.

Solid and dashed lines correspond to the Gent and Ogden material models, re-

spectively.

with the associated value of Γ equal to 0.885.

As a comparison, we have also shown in Figure 3(a) the loading paths associated with F = 0.5

and −0.7, respectively. It is seen that as F is increased from zero, the loading path is shifted

upwards, whereas as F is decreased from zero, the loading paths is shifted downwards, eventually

losing the intersections with the bifurcation curve when F is approximately equal to −0.7. This

means that when P = 0, localized bulging is always possible when a stretching force is applied

axially in addition to the rotation, but becomes impossible when a compressive force exceeding

0.7 in magnitude is applied.

To offer a different perspective on the bifurcation, we have shown in Figure 3(b) the critical

value of λz as a function of Γ. This curve is obtained as follows. For each value of λz, the

bifurcation condition Ωu(λa, λz) = 0 is solved to find the corresponding values of λa (there are
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(a) (b)

Figure 3. Solution of the bifurcation condition Ωu(λa, λz) = 0, when the Ogden

material is used, for a rotating tube with A = 0.8 and P = 0 in terms of (λa, λz)

(left figure) and (Γ, λz) (right figure), respectively. The dashed lines represent

the loading paths with F = 0, 0.5,−0.7, respectively.

(a) Gent material (b) Ogden material

Figure 4. Solution of the bifurcation condition J(P̃ , F̃ ) = 0 for the different

values of Γ indicated. The solid, dotted and dashed lines correspond to Γ = 0, 0.2

and 0.5, respectively.

zero, one or two such values, as can be seen from Figure 3(a)), and hence the values of Γ. This

alterative plot of the bifurcation condition is particularly useful when it is the axial stretch that

is fixed as the rotation speed is increased gradually. For each such axial stretch, λz0 say, the

corresponding critical value of Γ can simply be obtained from the leftmost intersection of the
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horizontal line λz = λz0 in this plot with the bifurcation curve. For instance, when λz is fixed

at unity so that the tube is not allowed to contract axially as the rotation speed is increased,

the associated critical value of Γ is equal to 0.997. It is seen that the critical value of Γ is an

increasing function of λz.

We have also carried out calculations to find out how the results in Figure 3 depend on A.

It is found that as A decreases (so that the wall thickness increases), the curve corresponding

to F = 0 would shift downwards relative to the curve of Ωu(λa, λz) = 0. When A reaches

0.428 approximately, the two curves would no longer intersect, implying that localized bulging

becomes impossible below this threshold value. In Table 1, we have listed the critical values

of Γ for a selection of values of A. Since the wall thickness is a decreasing function of A/B, it

can be seen that the larger the wall thickness, the larger the critical value of Γ. The numbers

in brackets in the last row are the corresponding results based on the thin-wall approximation

(3-21) and (3-22), and is seen to provide a good approximation, with a relative error of less than

5%, for values of A as small as 0.5.

Table 1: Critical values of ω in free rotation (F = 0)

A/B 0.43 0.5 0.6 0.7 0.8 0.9 0.99

λa 3.4779 2.9635 2.6486 2.4518 2.3128 2.2085 2.1346

λz 0.6291 0.6591 0.6729 0.6797 0.6834 0.6851 0.6956

Γ 1.4446 1.2984 1.1304 0.9958 0.8855 0.7935 0.7230

Γ ≈ (1.3641) (1.2397) (1.0896) (0.9907) (0.8837) (0.7931) (0.7230)

We next consider the effect of allowing for a non-zero internal pressure. There are now two

subcases. The first subcase is when the unconstrained tube is mainly subjected to the action of

internal inflation and an axial force, with rotation being small and playing a minor role. This

subcase covers the case of zero rotation which has previously been investigated in Fu et al (2016).

In Figure 4 we have shown the solution of the bifurcation condition Ωu(λa, λz) = 0 for three

representative values of Γ and the common value of A = 0.8. We note that when Γ is non-zero,

the solution again has two branches when the Ogden material model is used. We shall focus our

discussion on the parameter regime near λa = λz = 1. It is seen that adding a rotation to the

tube delays the onset of localized bulging when the Gent material is used, but when the Ogden

material is used the rotation has a delaying effect when the rotation speed is small, but has an

opposite effect when the rotation speed is large enough.

Finally, we assume that the internal pressure P is zero or small, and it is the rotation and axial

force F that play a dominant role. In Figure 5 we have shown the solution of Ωu(λa, λz) = 0

for three representative values of P . There is here a big difference between the predictions of

the two material models. When P = 0 and the Gent material model is used, the condition

Ωu(λa, λz) = 0 does not have a solution at all, which means that localized bulging is impossible

now matter how large the rotation speed is. Localized bulging first becomes possible when P is

increased to the value of 0.051. In contrast, according to the Ogden material model, localized

bulging is possible even if P is zero. The dotted line in each figure represents the loading path,

the solution of F̃ (λa, λz) = 0, when P = 0.06 and the net axial force is zero.



BULGING OF ROTATING CYLINDERS AND TUBES 15

(a) Gent material (b) Ogden material

Figure 5. Solution of the bifurcation condition Ωu(λa, λz) = 0 for the three

different values of P indicated. The dashed line corresponds to the solution of

F̃ (λa, λz) = 0 when P = 0.06, and is the loading path when there is no net

axial force applied at the plane end-faces. Its intersection with the solid curve

associated with P = 0.06 gives the values of the two stretches when localized

bulging takes place.

4C. The shrink-fit case. In this case the stretches must satisfy F̃0(λa, λz,Γ) = F . This

equation may also be solved to express Γ in terms of F . The bifurcation condition (2-14) then

depends on F as well as λa and λz. For each specified F , this condition defines a curve in

the (λa, λz) plane. A typical solution with F = 2 is shown in Figure 6 where the solution of

σ33(a) = 0 is also shown in a dashed line. It is seen that although localized bulging is possible,

the contact force at r = a must necessarily be tensile. This means that no matter how tight

the initial fitting is, localized bulging will not occur before the tube loses contact with the rigid

spindle. It is also found that as F is gradually reduced, the closed curve shrinks in size and

eventually disappear at F = 1.29 when the Gent material model is used and at F = 1.66 when

the Ogden material model is used. Thus, in particular, when the plane ends of the tube are

traction-free, localized bulging will not occur no matter how large λa or Γ is.

5. Conclusion

In this paper we have studied the bifurcation condition for localized bulging of a circular solid

cylinder or cylindrical tube which is rotated about its axis of symmetry. Additional external

forces may include a non-zero net axial force and/or internal pressure. In each case, the bi-

furcation condition is derived with the aid of the dynamical systems theory and found to have

simple interpretations in terms of physical quantities such as the rotation speed, axial force

and internal pressure. For instance, when the axial force and internal pressure are both fixed,

the bifurcation condition simply corresponds to the angular velocity reaching a maximum when
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(a) Gent material (b) Ogden material

Figure 6. Solution of the bifurcation condition (2-14). The result corresponds

to F = 2 and is shown in solid line. The dashed line in each plot represents the

solution of σ33(a) = 0.

viewed as a function of λa for a tube or λz for a solid cylinder. However, this correspondence

is lost when for instance it is the axial stretch λz that is fixed in rotating the tube. Although

we have only presented numerical results for A = 0.8 and two typical strain-energy functions,

our simple representation of the bifurcation condition can be used to evaluate the effects of wall

thickness and dependence on the material model in a straightforward manner if required.

The simplest case is perhaps the case of free rotation when both F and P are zero. Our

illustrative calculations show that the Ogden material model would predict that localized bulging

may occur but the Gent material model would predict that localized bulging can never occur.

According to the Gent material model, localized bulging could occur only if a sufficiently large

internal pressure is added. Also, according to both models, localized bulging will not occur in

the shrink-fit case before contact with the rigid spindle is lost.

It would be of interest to ask whether the localized bulging discussed in the current study

could be realized for realistic material parameters and angular speeds in free rotation. As a

rough estimate, we take

ρ = 0.91kg/m3, µ = 667kPa,

which are typical values for natural rubber. If B = 0.1 m, the critical value of Γ = 3.81 predicted

by the Ogden model for a solid cylinder would correspond to an angular velocity ω = 528/s,

which translates to a rotation frequency of 5046 rpm (revolutions per minute). For a cylindrical

tube with B = 0.1 m, A/B = 0.8, the critical value of Γ = 0.885 predicted by the Ogden model

for an unconstrained tube corresponds to an angular velocity ω = 270/s, which is about 2582

rpm. This is within the achievable rotor speed of 3000 rpm. The required speed for the solid

cylinder is higher, but it can be brought down by choosing a softer material since the rotation

frequency is proportional to the square root of µ. For instance, for a typical Gelatin, the shear
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modulus can be as small as 30 kPa (Markidou et al 2005) for which the critical rotation frequency

would be 1070 rpm. Thus, we may conclude that localized bulging should be easily observable

in soft materials.

In the current study, we have assumed that the solid cylinder or tube is made of an isotropic

elastic material. Our study can be easily extended to the case when the tube is helically rein-

forced by two families of identical fibres. The symmetry of the fibres ensures that axi-symmetric

deformations are again possible, and as far as such deformations are concerned the tube would

behave effectively like an isotropic material. However, as demonstrated in a recent study for

the pure inflation case (Wang and Fu 2017), it is expected that the fibres will have a drastic

effect on localised bulging. To be more precise, using fibre-reinforcement can be a very effective

method to construct anti-bulging tubes.

Finally, we remark that the bifurcation condition derived in the present paper is only a

necessary condition for localized bulging to occur. Strictly speaking, whether localized bulging

can actually take place at the critical value of rotation can only be established by a weakly

nonlinear analysis. However, from our experience with the pure inflation case for which both

analytical and experimental results are available, we expect that the existence of localized bulging

configurations should be the norm rather than the exception.
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