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Abstract

Let L/K be a finite separable extension of fields whose Galois closure E/K
has Galois group G. Greither and Pareigis use Galois descent to show that
a Hopf algebra giving a Hopf-Galois structure on L/K has the form E[N ]G

for some group N of order [L : K]. We formulate criteria for two such
Hopf algebras to be isomorphic as Hopf algebras, and provide a variety of
examples. In the case that the Hopf algebras in question are commutative, we
also determine criteria for them to be isomorphic as K-algebras. By applying
our results, we complete a detailed analysis of the distinct Hopf algebras and
K-algebras that appear in the classification of Hopf-Galois structures on a
cyclic extension of degree pn, for p an odd prime number.
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1. Introduction

Let L/K be a finite extension of fields and H a K-Hopf algebra. We
say that L is an H-Galois extension of K, or that H gives a Hopf-Galois
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structure on L/K, if L is an H-module algebra and the obvious K-linear
map L ⊗K H → EndK(L) is bijective. For example, if L/K is a Galois
extension with Galois group G then the group algebra K[G], with action
induced from the usual action of G on L, gives a Hopf-Galois structure on
L/K. It is possible for two distinct Hopf-Galois structures on L/K to have
underlying Hopf algebras which are isomorphic as K-Hopf algebras or as
K-algebras; equivalently, one might view this as multiple actions of a single
K-Hopf algebra or K-algebra on L. In this paper we study these phenomena.

If L/K is purely inseparable, it is known that a single Hopf algebra can
act in an infinite number of ways: see e.g. [11]. We shall therefore suppose
that L/K is separable. In this case Greither and Pareigis [10] have classified
the Hopf-Galois structures admitted by L/K. In order to state this clas-
sification we require some notation. Let E be the Galois closure of L/K,
G = Gal(E/K), and GL = Gal(E/L). Let X denote the left coset space
G/GL, and define a homomorphism λ : G → Perm(X) by λ(σ)(τ) = στ ,
where τ denotes the coset τGL ∈ X. The theorem of Greither and Pareigis
asserts that there is a bijection between Hopf-Galois structures on L/K and
subgroups N of Perm(X) which are regular (that is, having the same size
as X and acting transitively on X) and normalized by λ(G) (that is, stable
under the action of G on Perm(X) defined by σ ∗ η = λ(σ)ηλ(σ)−1). The
enumeration of the Hopf-Galois structures admitted by L/K is therefore
equivalent to the enumeration of subgroups of Perm(X) with these proper-
ties. If |X| is large then this is a difficult problem, but in [2] Byott proved
a “translation theorem”, which provides a useful simplification. Loosely, for
each abstract group N of order |X|, Byott’s theorem relates the number
of G-stable regular subgroups of Perm(X) that are isomorphic to N to the
number of subgroups of the holomorph of N that are isomorphic to G. Since
Hol(N) ∼= N o Aut(N), this group is much smaller than Perm(X). We give
a more precise statement of Byott’s theorem in subsection 2.2 below.

The theorem of Greither and Pareigis also asserts that the Hopf algebra
appearing in the Hopf-Galois structure corresponding to the G-stable regu-
lar subgroup N of Perm(X) is E[N ]G, the fixed points of the group algebra
E[N ] under the simultaneous action of G on E as Galois automorphisms and
on N by the action ∗. We will refer to the isomorphism class of N as the type
of Hopf-Galois structure given by E[N ]G. Now suppose that N1, N2 are G-
stable regular subgroups of Perm(X), so that H1 = E[N1]G and H2 = E[N2]G
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are two Hopf algebras giving Hopf-Galois structures on L/K. It is well known
(see, for example, [7] and [9]) that H1

∼= H2 as K-Hopf algebras if and only
if there is an isomorphism N1

∼−→ N2 that respects the action of G on each
of these groups. In section 2 we state a slightly more general version of this
result (Theorem 2.2), and provide a variety of examples. We show that it
is possible to detect K-Hopf algebra isomorphisms by studying properties of
their associated holomorphs (Theorem 2.11), and also determine a criterion
for F ⊗K H1 and F ⊗K H2 to be isomorphic as F -Hopf algebras, for F some
extension of K contained in E.

In section 3 we assume that K has characteristic zero and that H1 and
H2 are commutative (equivalently, that N1, N2 are abelian groups). We de-

termine a criterion, in terms of the dual groups N̂1 and N̂2, for H1
∼= H2

as K-algebras (Theorem 3.1). If N1
∼= N2, we show that it is also possible

to detect such isomorphisms by studying properties of their associated holo-
morphs (Theorem 3.5). We show that these results have a particularly simple
form in the case that N1 and N2 are both cyclic (Corollary 3.6). Finally, in
section 4 we apply the results of the preceding sections to give a detailed
analysis of the Hopf-Galois structures admitted by a cyclic extension L/K
of odd prime power degree. We show that the Hopf algebras that appear are
pairwise nonisomorphic as Hopf algebras (Theorem 4.1), and determine the
K-algebra isomorphism classes (Theorem 4.10).

The authors would like to thank Prof. Griff Elder (University of Nebraska
at Omaha) for organizing the annual conference “Hopf algebras and Galois
module theory”, which enabled this collaboration to take place; as well as the
University of Nebraska at Omaha for its hospitality. We are also grateful to
the referee for his/her comments on this paper, and for the suggestion that
we investigate possible generalizations of Corollary 3.6, which led to Example
4.12.

2. Hopf Algebra Isomorphisms

In this section we address the question of when two Hopf algebras giving
Hopf-Galois structures on a finite separable extension of fields are isomorphic
as Hopf algebras. Rather than focusing specifically on this situation, we make
our definitions in more general terms:

3



Definition 2.1. Let G be a group and let (N1, ∗1), (N2, ∗2) be G-sets (where,
for i = 1, 2, ∗i denotes the action of G on Ni). We say that (N1, ∗1), (N2, ∗2)
(or just N1, N2) are isomorphic as G-sets if there is a G-equivariant bijection
f : N1 → N2. We say that a G-set N is a G-group if it is a group on which
G acts via automorphisms, and that two G-groups N1, N2 are isomorphic as
G-groups if there is a G-equivariant group isomorphism f : N1

∼−→ N2.

Our main tool in this section will be the following well known theorem.
We include a proof for the reader’s convenience.

Theorem 2.2. Let E/K be a Galois extension of fields, let G be a subgroup
of Gal(E/K), and let F = EG. Let (N1, ∗1) and (N2, ∗2) be G-groups and,
for i = 1, 2, let G act on E[Ni] by acting on E as Galois automorphisms
and on Ni via ∗i. Then E[N1]G ∼= E[N2]G as F -Hopf algebras if and only if
N1
∼= N2 as G-groups.

Proof. For i = 1, 2 let
(
E[Ni]

G
)∗

denote the F -linear dual of E[Ni]
G. We

show that
(
E[N1]G

)∗ ∼= (E[N2]G
)∗

as F -Hopf algebras if and only if there is

a G-equivariant isomorphism N1
∼−→ N2. For each i,

(
E[Ni]

G
)∗

is a separable
Hopf algebra, and therefore represents a finite étale group scheme Ni, which
corresponds to a finite group on which Γ = Gal(F sep/F ) acts continuously
[15, 6.3]. Explicitly, the corresponding group is

Ni(F sep) = HomF−alg
((
E[Ni]

G
)∗
, F sep

)
∼= HomF sep−alg

(
F sep ⊗F

(
E[Ni]

G
)∗
, F sep

)
∼= HomF sep−alg(F

sep[Ni]
∗, F sep),

with Γ acting via its action on F sep. This group is isomorphic to Ni, and
the action of Γ factors through the original action of G on Ni. Therefore(
E[N1]G

)∗ ∼= (
E[N2]G

)∗
as F -Hopf algebras if and only if there is a G-

equivariant isomorphism N1
∼−→ N2.

Now recall the notation established in section 1 to describe the theorem
of Greither and Pareigis: L/K is a finite separable extension of fields with
Galois closure E, G = Gal(E/K), GL = Gal(E/L), X = G/GL. A Hopf
algebra giving a Hopf-Galois structure on L/K then has the form E[N ]G

for some regular subgroup N of Perm(X) stable under the action of G on
Perm(X) by σ ∗ η = λ(σ)ηλ(σ)−1. We have:
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Corollary 2.3. Let E[N1]G and E[N2]G give Hopf-Galois structures on L/K.
Then E[N1]G ∼= E[N2]G as K-Hopf algebras if and only if N1

∼= N2 as G-
groups.

We illustrate the applicability of the theory with a variety of examples.

Example 2.4. (The classical and canonical nonclassical Hopf-Galois
structures) If L/K is a Galois extension then in the notation of the theorem
of Greither and Pareigis we have E = L, GL = {1}, and X = G, and the
homomorphism λ : G → Perm(G) is in fact the left regular embedding of
G. In this case examples of G-stable regular subgroups of Perm(G) are λ(G)
itself and ρ(G), the image of G under the right regular embedding (these
subgroups coincide if and only if G is abelian). The elements of ρ(G) com-
mute with those of λ(G), so the action of G on ρ(G) is trivial, and therefore
the Hopf algebra appearing in the Hopf-Galois structure corresponding to
ρ(G) is L[ρ(G)]G = LG[ρ(G)] = K[ρ(G)], which is isomorphic to the Hopf
algebra K[G]. We call this the classical Hopf-Galois structure on L/K. If G
is nonabelian then the subgroup λ(G) corresponds to a different Hopf-Galois
structure on L/K, which we call the canonical nonclassical Hopf-Galois struc-
ture. The Hopf algebra appearing in this structure is Hλ := L[λ(G)]G. Since
G is nonabelian the action of G on λ(G) is not trivial (the orbits are the
conjugacy classes in λ(G)), and so ρ(G) 6∼= λ(G) as G-groups in this case.
Therefore, by Corollary 2.3, K[G] 6∼= Hλ as K-Hopf algebras.

Example 2.5. (Elementary abelian extensions of degree p2) Let p > 2
be prime, and let L/K be a Galois extension of fields of degree p2 with
elementary abelian Galois group G. In [2, Corollary to Theorem 1, part
(iii)] it is shown that L/K admits p2 Hopf-Galois structures. By applying
Corollary 2.3 we can determine which of these Hopf-Galois structures involve
isomorphic Hopf algebras. In [3, Theorem 2.5] the regular subgroups of
Perm(G) that yield the Hopf-Galois structures are determined as follows: let
T be a subgroup of G of order p, and fix elements s, t ∈ G such that

T = 〈t〉, sp = 1G, G = 〈s, t〉.

Let d ∈ {0, 1, . . . , p−1}, and define α, β ∈ Perm(G) in terms of their actions
on a typical element sktl ∈ G:

α[sktl] = sktl−1

β[sktl] = sk−1tl+(k−1)d.
(1)
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It is easily verified that αp = βp = 1 and αβ = βα, whence NT,d = 〈α, β〉 ∼=
G. Moreover, one can show that NT,d is a regular subgroup of Perm(G), and
that

s ∗ α = α, t ∗ α = α, s ∗ β = αdβ, t ∗ β = β. (2)

Thus NT,d is G-stable, and therefore corresponds to a Hopf-Galois structure
on L/K with Hopf algebra HT,d = L[NT,d]

G. If d = 0 then NT,d = ρ(G)
regardless of the choice of T , and so we obtain the classical Hopf-Galois
structure. Taking 1 ≤ d ≤ p − 1 and letting T vary through the subgroups
of G of order p, we obtain p2− 1 distinct groups NT,d 6= ρ(G), giving in total
p2 Hopf-Galois structures on L/K. These are all the Hopf-Galois structures
on L/K.

We claim that two Hopf algebras H1 = HT1,d1 and H2 = HT2,d2 are iso-
morphic as Hopf algebras if and only if d1 = d2 = 0 or d1d2 6= 0 and T1 = T2.
Let

N1 = NT1,d1 = 〈α1, β1〉
N2 = NT2,d2 = 〈α2, β2〉,

where α1, β1 and α2, β2 are defined as α, β are in Equations (1), using d1, d2

as appropriate. We have seen that if d1 = d2 = 0 then H1 = H2. If d1d2 6= 0
and T1 = T2 then there exists c ∈ {1, . . . , p− 1} such that cd2 ≡ d1 (mod p).
Using this, define a homomorphism ϕ : N1 → N2 by

ϕ(α1) = α2, ϕ(β1) = βc2.

It is clear that ϕ is an isomorphism, and we claim that it is G-equivariant.
We have:

ϕ(s ∗ α1) = ϕ(α1) = α2 = s ∗ α2 = s ∗ ϕ(α1),
ϕ(t ∗ α1) = ϕ(α1) = α2 = t ∗ α2 = t ∗ ϕ(α1),

ϕ(s ∗ β1) = ϕ(αd11 β1) = αd12 β
c
2 = αd2c2 βc2 = s ∗ βc2 = s ∗ ϕ(β1),

ϕ(t ∗ β1) = ϕ(β1) = βc2 = t ∗ βc2 = t ∗ ϕ(β1).

Thus ϕ is a G-equivariant isomorphism of N1 onto N2, and so H1
∼= H2 as

Hopf algebras by Corollary 2.3.

For the converse, note that if T is a subgroup of G of order p and d 6= 0
then by (2) the kernel of the action of G on NT,d is precisely T . Therefore,
if d1d2 6= 0 and N1

∼= N2 as G-groups then we must have T1 = T2.
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Thus, the p2 Hopf-Galois structures admitted by L/K involve exactly p+ 2
nonisomorphic Hopf algebras: the group algebra K[G] with its usual action
on L and, for each of the p+ 1 subgroups T of G of order p, a Hopf algebra
HT = HT,1, acting in p− 1 different ways.

Example 2.6. (Fixed point free endomorphisms) If L/K is a finite
Galois extension of fields with nonabelian Galois group G then, as described
above, L/K admits a canonical nonclassical Hopf-Galois structure with Hopf
algebra Hλ = L[λ(G)]G. In [7], Childs shows how certain endomorphisms of
G can yield further Hopf-Galois structures on L/K, whose Hopf algebras
are isomorphic to Hλ. Specifically, let ψ be an endomorphism of G which
is abelian (meaning ψ(gh) = ψ(hg) for all g, h ∈ G) and fixed point free
(meaning ψ(g) = g if and only if g = 1G). From ψ we may construct a
homomorphism αψ : G→ Perm(G) defined by

αψ(g) = λ(g)ρ(ψ(g)).

One can show that αψ(G) is a G-stable regular subgroup of Perm(G), which
therefore corresponds to a Hopf-Galois structure on L/K. It is shown in [7,
Theorem 5] that the Hopf algebras appearing in the Hopf-Galois structures
produced by this construction are all isomorphic to Hλ as Hopf algebras. A
similar approach appears in [8]; in particular [8, Corollary 8.3] calculates the
precise number of Hopf-Galois actions of Hλ on a Galois extension whose
Galois group is a semidirect product of certain cyclic groups. We can rein-
terpret these ideas via Corollary 2.3: λ(G) and αψ(G) are both regular sub-
groups of Perm(G) normalized by λ(G), and it is easy to verify that the map
ϕ : λ(G)→ αψ(G) defined by

ϕ(λ(g)) = αψ(g) = λ(g)ρ(ψ(g)).

is a G-equivariant isomorphism of groups. Therefore L[αψ(G)]G ∼= L[λ(G)]G

as Hopf algebras.

Example 2.7. (Conjugating regular subgroups by elements of ρ(G))
Let L/K be a Galois extension of fields with nonabelian Galois group G, and
let L[N ]G give a Hopf-Galois structure on L/K. Since G is nonabelian, we
have λ(G) 6= ρ(G) and so, although N is normalized by λ(G), it may not be
normalized by ρ(G). For g ∈ G, let Ng = ρ(g)Nρ(g)−1 6= N . Then Ng is a
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regular subgroup of Perm(G) since N is regular, and the group isomorphism
ϕ : N → Ng defined by

ϕ(η) = ρ(g)ηρ(g)−1

is easily shown to be G-equivariant. Therefore Ng is G-stable, and so cor-
responds to a Hopf-Galois structure on L/K, with Hopf algebra L[Ng]

G.
Moreover, by Corollary 2.3 we have L[Ng]

G ∼= L[N ]G as Hopf algebras.

Example 2.8. (A specific example of conjugating by elements of
ρ(G))
Let p, q be primes with p ≡ 1 (mod q), and let L/K be a Galois extension
of fields with group isomorphic to the metacyclic group of order pq:

G = 〈σ, τ | σp = τ q = 1, τσ = σgτ〉,

where g is a fixed positive integer whose order modulo p is q. By [4, Theorem
6.2], L/K admits precisely 2 + p(2q − 3) Hopf-Galois structures, of which
precisely p have cyclic type. We can use Example 2.7 to show that the
Hopf algebras appearing in the Hopf-Galois structures of cyclic type are
all isomorphic as Hopf algebras. The corresponding regular subgroups Nc

(c = 0, . . . , p − 1) of Perm(G) are described explicitly in [4, Lemma 4.1],
each in terms of two generators. Using these descriptions, we can verify that
Nc = 〈ηc〉, where

ηc = λ(σ)ρ(σ−cτ)−1.

Using the fact that λ(G) and ρ(G) commute inside Perm(G) we have in
particular

ρ(σi)η0ρ(σ−i) = ηi(g−1),

where the subscript should be interpreted modulo p. Since g has order q
modulo p we certainly have g− 1 6= 0 (mod p) and so, given c = 0, . . . , p− 1
there exists i such that

ρ(σi)η0ρ(σ−i) = ηc.

Therefore the groups Nc are all isomorphic as G-groups, and so the Hopf
algebras Hc are all isomorphic as K-Hopf algebras.

In the case that q = 2 (so that G ∼= Dp, the dihedral group of order
2p), this result is established in [12, Section 4, Proposition 3], by methods
different to those employed above.
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2.1. Hopf algebra isomorphisms after base change

We return to the situation addressed by the theorem of Greither and
Pareigis, as described in section 1. Suppose that E[N1]G and E[N2]G are two
Hopf algebras giving Hopf-Galois structure on L/K, and that N1

∼= N2. Then
E⊗KE[Ni]

G = E[Ni] for each i, so certainly E⊗KE[N1]G ∼= E⊗KE[N2]G as
E-Hopf algebras. However, there may exist intermediate fields K ′ such that
K ′ ⊗K E[N1]G ∼= K ′ ⊗K E[N2]G as K ′-Hopf algebras. We may use Theorem
2.2 to detect Galois extensions K ′ of K with this property. In this case, let
G′ = Gal(E/K ′); then for i = 1, 2 we have

E[Ni]
G =

(
E[Ni]

G′
)G/G′

and

K ′ ⊗K
(
E[Ni]

G′
)G/G′

= E[Ni]
G′ .

Therefore
K ′ ⊗K E[Ni]

G = E[Ni]
G′

for i = 1, 2, and so K ′ ⊗K E[N1]G ∼= K ′ ⊗K E[N2]G as K ′-Hopf algebras if
and only if E[N1]G

′ ∼= E[N2]G
′

as K ′-Hopf algebras. By Theorem 2.2 this
occurs if and only if (N1, ∗) ∼= (N2, ∗) as G′-groups.

Example 2.9. (The smallest extension of scalars giving a group alge-
bra) Let E[N ]G be a Hopf algebra giving a Hopf-Galois structure on L/K,
and let G′ denote the kernel of the action of G on N . Then E[N ]G

′
=

EG′ [N ] = K ′[N ], a group algebra with coefficients drawn from the field
EG′ = K ′. Therefore we have K ′ ⊗K E[N ]G = K ′[N ]. In fact K ′ is minimal
amongst the subfields F of E such that F ⊗K E[N ]G is isomorphic as a Hopf
algebra to a group algebra (see [10, Corollary 3.2]).

Example 2.10. (Elementary abelian extensions of degree p2 revis-
ited) Let p be an odd prime, and let L/K be an elementary abelian extension
of degree p2 with group G. In Example 2.5 we determined which of the Hopf
algebras appearing in the classification of Hopf-Galois structures on L/K
are isomorphic as K-Hopf algebras. Here we can show that, given any two
Hopf algebras H1, H2 giving nonclassical Hopf-Galois structures on the ex-
tension, there exists a subfield K ′ of L/K of degree p over K such that
K ′ ⊗K H1

∼= K ′ ⊗K H2 as K ′-Hopf algebras. Recall from Example 2.5 that
for i = 1, 2 the Hopf algebra Hi corresponds to a choice of subgroup Ti of
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degree p and an integer di ∈ {1, . . . , p− 1} (the possibility di = 0 is excluded
since the Hopf algebras give nonclassical structures). Specifically, we have
Hi = L[Ni]

G, where Ni is generated by two permutations αi, βi as described
in Equations (1) and the action of G on Ni is as described in Equation (2).
From this last equation, we see that the kernel of the action of G on each
Ni is precisely Ti, which we now write as 〈ti〉. Let g′ = t1t2, G′ = 〈g′〉, and
K ′ = LG

′
. For each i we have g′ ∗ αi = αi for each i. The action of g′ on the

βi is:

g′ ∗ β1 = t1t2 ∗ β1 = t2 ∗ β1 = αu11 β1 for some u1 ∈ {1, . . . , p− 1}

and

g′ ∗ β2 = t1t2 ∗ β2 = t1 ∗ β2 = αu22 β2 for some u2 ∈ {1, . . . , p− 1}.

Let c be an integer such that cu2 ≡ u1 (mod p); then the map ϕ : N1 → N2

defined by
ϕ(α1) = α2, ϕ(β1) = βc2

is clearly an isomorphism, and is easily shown to be G′-equivariant. Therefore
we have

K ′ ⊗K H1
∼= K ′ ⊗K H2 as K ′-Hopf algebras.

2.2. Hopf algebra isomorphisms via the holomorph

We retain the notation of subsection 2.1, but now view N1, N2 as images
of a single abstract group N under embeddings α1, α2 : N ↪→ Perm(X).
Byott’s translation theorem [2, Proposition 1] relates such embeddings to
certain embeddings of G into the holomorph of N , denoted Hol(N), which
is normalizer of λ(N) inside Perm(N). More precisely, there is a bijection
between the sets

{α : N ↪→ Perm(X) | α(N) is G-stable and regular}

and
{β : G ↪→ Hol(N) | β(GL) is the stabilizer of eN}.

Of course, different embeddings α can have the same image (and so cor-
respond to the same Hopf-Galois structure), but this can be detected by
studying the corresponding β: we have α1(N) = α2(N) if and only if there
exists µ ∈ Aut(N) such that β2(g) = µβ1(g)µ−1 for all g ∈ G. In fact, we
can also detect when the Hopf-Galois structures corresponding to different
embeddings α1, α2 involve isomorphic Hopf algebras by studying properties
of the corresponding β1, β2:
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Theorem 2.11. Let α1, α2 be embeddings of N into Perm(X) whose images
are regular and normalized by λ(G), and let β1, β2 be the corresponding em-
beddings of G into Hol(N). Viewing Hol(N) as ρ(N) o Aut(N), let β1, β2

denote the compositions of β1, β2 with the projection onto the automorphism
component. Then

E[α1(N)]G ∼= E[α2(N)]G as Hopf algebras

if and only if there exists µ ∈ Aut(N) such that

β2(g) = µβ1(g)µ−1 for all g ∈ G.
Proof. By Theorem 2.2, we have E[α1(N)]G ∼= E[α2(N)]G as Hopf algebras
if and only if (α1(N), ∗) ∼= (α2(N), ∗) as G-groups. For i = 1, 2 define an
action ∗i of G on N by g ∗i η = βi(g)[η]; then by [5, (7.7) Proposition] we
have that (αi(N), ∗) ∼= (N, ∗i) as G-groups, and so (α1(N), ∗) ∼= (α2(N), ∗)
as G-groups if and only if (N, ∗1) ∼= (N, ∗2) as G-groups. This occurs if and
only if there exists µ ∈ Aut(N) such that

µ(g ∗1 η) = g ∗2 µ(η) for all g ∈ G, η ∈ N,
that is, if and only if

µβ1(g) = β2(g)µ for all g ∈ G.

As a special case, we have

Corollary 2.12. If Aut(N) is abelian (in particular, if N is cyclic), then
E[α1(N)]G ∼= E[α2(N)]G as Hopf algebras if and only if β1(g) = β2(g) for all
g ∈ G.

Example 2.13. (The classical and canonical nonclassical Hopf-Galois
structures revisited) Recall Example 2.4, and assume thatG is nonabelian.
In the notation of this subsection, we may take N = G and view λ and ρ
as embeddings of the abstract group G into Perm(G) whose images are G-
stable and regular. By following the details of the proof of Byott’s translation
theorem, we find that the embedding G ↪→ Hol(G) corresponding to ρ is ρ
itself, and similarly for λ. When we view Hol(G) as ρ(G) o Aut(G), we
have ρ(G) = {(ρ(g), 1) | g ∈ G}, whereas λ(G) = {(ρ(g−1), c(g)) | g ∈ G},
where c(g) is the inner automorphism of G arising from conjugation by g.
Therefore ρ(G) and λ(G) have different orders, and so there cannot exist an
automorphism µ ∈ Aut(G) with the properties required by Theorem 2.11.
Hence we recover the fact that K[G] 6∼= Hλ as K-Hopf algebras.
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3. Algebra Isomorphisms for Commutative Structures

Let E/K be a Galois extension of fields with Galois group G, and let
(N1, ∗1) and (N2, ∗2) be G-groups. In this section, we consider the question
of when the Hopf algebras E[N1]G and E[N2]G are isomorphic as K-algebras.
We shall assume that E[N1]G and E[N2]G are commutative algebras; this is
equivalent to assuming that the underlying groups N1, N2 are abelian. Note,
however, that we do not assume that these groups are isomorphic, nor that
G is abelian. We shall also assume that K has characteristic zero; a con-
sequence of this is that each E[Ni]

G is a separable K-algebra and is thus
isomorphic as a K-algebra to a product of extension fields of K.

Let Ksep denote a separable closure of K, and let Γ = Gal(Ksep/K). For
i = 1, 2 let Γ act on Ksep[Ni] by acting on Ksep as Galois automorphisms and
on Ni by factoring through G. Then Ksep[Ni]

Γ = E[Ni]
G. The action of Γ on

Ni induces an action of Γ on the dual group N̂i by (γ ∗i χ)[η] = γ(χ[γ−1 ∗i η])
for all η ∈ Ni.

Theorem 3.1. We have E[N1]G ∼= E[N2]G as K-algebras if and only if

N̂1
∼= N̂2 as Γ-sets.

Proof. We show thatKsep[N1]Γ ∼= Ksep[N2]Γ asK-algebras if and only if N̂1
∼=

N̂2 as Γ-sets, using the correspondence between separable K-algebras and
finite sets on which Γ acts continuously [15, 6.3]. As in the proof of Theorem
2.2, for i = 1, 2, let Ni be the finite étale group scheme represented by H∗i ,
with corresponding Γ-group Ni. Then the Cartier dual ND

i is represented by
Hi, and the corresponding Γ-set is

ND
i (Ksep) = HomKsep−grp(Ni,Ksep ,Gm,Ksep),

which corresponds naturally to the set of grouplike elements of Ksep ⊗K H∗i .
Since Ni is abelian we have

Ksep ⊗K H∗i = Ksep[Ni]
∗ = Ksep[N̂i],

and soND
i (Ksep) = N̂i, with Γ acting as described above. Therefore H1

∼= H2

as K-algebras if and only if N̂1
∼= N̂2 as Γ-sets.

The following corollary is the principal application of Theorem 3.1.
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Corollary 3.2. Let E[N1]G and E[N2]G be commutative Hopf algebras giving
Hopf-Galois structures on a finite separable extension of fields L/K. Then

E[N1]G ∼= E[N2]G as K-algebras if and only if N̂1
∼= N̂2 as Γ-sets.

Example 3.3. (Elementary abelian extensions of degree p2 revisited)
Let p be an odd prime and let L/K be an elementary abelian extension of
degree p2 with group G. In Example 2.5 we determined criteria for two Hopf
algebras H1, H2 giving Hopf-Galois structures on L/K to be isomorphic as
K-Hopf algebras. Under the additional hypotheses that K has characteristic
zero and contains a primitive pth root of unity ζ, we now apply Corollary
3.2 to determine criteria for them to be isomorphic as K-algebras. In fact,
we show that in this case H1

∼= H2 as K-algebras if and only if H1
∼= H2 as

K-Hopf algebras.

Recall from Example 2.5 a Hopf algebra H giving a Hopf-Galois structures
on L/K determined by a choice of subgroup T of degree p and an integer
d ∈ {0, . . . , p− 1}; the Hopf algebra is then L[N ]G, where N is the subgroup
of Perm(G) generated by two permutations α, β as described in Equations
(1), and the action of G on N is as described in Equation (2). The dual

group N̂ is therefore generated by two characters χ, ψ, defined as follows:

χ(α) = ζ, χ(β) = 1, ψ(α) = 1, ψ(β) = ζ.

Since L/K is a Galois extension the action of G on N described in Equation

(2) translates into an action of G on N̂ by

s ∗ χ = χψ−d, t ∗ χ = χ, s ∗ ψ = ψ, t ∗ ψ = ψ, (3)

where −d is to be interpreted modulo p. Now let H1, H2 be two such Hopf al-
gebras giving distinct Hopf-Galois structures on L/K, with underlying groups
N1, N2 as in Example 2.5. We claim that H1

∼= H2 as K-algebras if and only
if d1 = d2 = 0 or d1d2 6= 0 and T1 = T2; these are identical to the condi-
tions we derived in Example 2.5 for H1

∼= H2 as K-Hopf algebras. If these
conditions are satisfied then H1

∼= H2 as K-Hopf algebras, so certainly as
K-algebras. For the converse, note that by (3) if di = 0 then G acts trivially

on N̂i, whereas if T is a subgroup of G of order p and d 6= 0 then the kernel
of the action of G on NT,d is precisely T . Therefore if N̂1

∼= N̂2 as G-sets
then we must have d1 = d2 = 0 or d1d2 6= 0 and T1 = T2.

13



We remark that Hi
∼= Kp ×

(
LTi
)p−1

as K-algebras: see [14, Proposition
3.4].

3.1. Algebra isomorphisms via the holomorph

Hitherto in this section we have not assumed that N1, N2 are isomorphic
as groups; we now impose this assumption. We can therefore view N1, N2

as the images of a single abstract abelian group N under two embeddings
α1, α2 : N ↪→ Perm(X), as in subsection 2.2. We recall from that subsec-
tion that By Byott’s translation theorem these embeddings correspond to
embeddings β1, β2 : G ↪→ Hol(N) = ρ(N) o Aut(N), and we write β1, β2

for the compositions of β1, β2 with the projection onto the Aut(N) com-
ponent. We have seen in Theorem 2.11 that it is possible to detect when
E[α1(N)]G ∼= E[α2(N)]G as K-Hopf algebras by studying properties of β1, β2.
We shall show that in our situation these maps also allow us to detect K-
algebra isomorphisms.

As in the proof of Theorem 2.11, for i = 1, 2 define an action ∗i of G on
N by g ∗i η = βi(g)[η]; then by [5, (7.7)] we have that (αi(N), ∗) ∼= (N, ∗i)
as G-groups. We may extend these to actions of Γ by factoring through G,
obtaining (αi(N), ∗) ∼= (N, ∗i) as Γ-groups. Each of the actions of Γ on N

yields a dual action of Γ on N̂ , which we also denote by ∗i. Similarly, the

action of Γ on each αi(N) yields a dual action ∗ of Γ on each α̂i(N).

Lemma 3.4. For i = 1, 2 we have (α̂i(N), ∗) ∼= (N̂ , ∗i) as Γ-groups.

Proof. For each i = 1, 2, the map αi : (N, ∗i)→ (αi(N), ∗) is a Γ-equivariant

isomorphism. It is routine to verify that for each χ ∈ N̂ the function ψχ :
αi(N) → Ksep defined by ψχ[αi(η)] = χ[η] for all η ∈ N is a character

of αi(N), and that the map ψ : N̂ → α̂i(N) defined by ψ(χ) = ψχ is a
Γ-equivariant isomorphism.

Theorem 3.5. We have E[α1(N)]G ∼= E[α2(N)]G as K-algebras if and only

if (N̂ , ∗1) ∼= (N̂ , ∗2) as Γ-sets.

Proof. By Theorem 3.1 we have E[α1(N)]Γ ∼= E[α2(N)]Γ as K-algebras if

and only if (α̂1(N), ∗) ∼= (α̂2(N), ∗) as Γ-sets, and by Lemma 3.4 this occurs

if and only if (N̂ , ∗1) ∼= (N̂ , ∗2) as Γ-sets.
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The following corollary shows that in certain cases we can detect K-
algebra isomorphisms by working directly with N , rather than N̂ . We shall
exploit this in section 4, as part of our analysis of the Hopf algebras giving
Hopf-Galois structures on a cyclic extension of odd prime power degree.

Corollary 3.6. Suppose that N is cyclic and that K contains a primitive
|N |th root of unity ζ. Then the following are equivalent:

1. E[α1(N)]G ∼= E[α2(N)]G as K-algebras;

2. (α̂1(N), ∗) ∼= (α̂2(N), ∗) as Γ-sets;

3. (N̂ , ∗1) ∼= (N̂ , ∗2) as Γ-sets;
4. (α1(N), ∗) ∼= (α2(N), ∗) as Γ-sets;
5. (N, ∗1) ∼= (N, ∗2) as Γ-sets.

Proof. (1), (2), and (3) are equivalent by Theorem 3.1 and Theorem 3.5, and
(4) and (5) are equivalent since for each i we have (αi(N), ∗) ∼= (N, ∗i) as
Γ-groups. We show that (3) is equivalent to (5).

Let η be a generator of N , and define χ : N → K by χ(η) = ζ; then χ

is a generator of N̂ . We claim that for i = 1, 2, the isomorphism f : N → N̂
defined by f(η) = χ has the property that

γ ∗i f(η) = f(γ−1 ∗i η).

To see this, note that each γ ∈ Γ acts as an automorphism of N , so there
exists an integer e = e(i, γ) (coprime to |N |) such that γ ∗i η = ηe. Now
using the assumption that ζ ∈ K, for all ν ∈ N we have:

(γ ∗i f(η))[ν] = χ[γ−1 ∗i ν] = χ[νe
−1

] = χe
−1

[ν] = f(γ−1 ∗i η)[ν],

where e−1 is computed modulo |N |. It follows that the isomorphism f has
the desired property. We therefore obtain a diagram:

(N, ∗1)

f

��

π // (N, ∗2)

f

��

(N̂ , ∗1) π̂ // (N̂ , ∗2)

If π is a Γ-equivariant bijection, then f ◦ π ◦ f−1 is a Γ equivariant bijection,
and if π̂ is a Γ-equivariant bijection, then f−1 ◦ π̂ ◦ f is a Γ-equivariant
bijection.
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We remark that parts (3) and (5) of Corollary 3.6 are not equivalent if
K does not contain a primitive |N |th root of unity: see Example 4.12.

4. Cyclic Extensions of Prime Power Degree

Let p be an odd prime number and L/K a cyclic extension of degree pn.
By a result of Kohl [13, Theorem 3.3] (see also [5, (9.1)]), there are precisely
pn−1 Hopf-Galois structures on L/K, and they all have cyclic type. Explicit
K-algebra generators for the Hopf algebras appearing in these Hopf-Galois
structures were determined in [6, §6.3], requiring intricate manipulations. In
this section we apply to results of section 2 and 3 to determine which of the
Hopf algebras appearing in these Hopf-Galois structures are isomorphic as
K-Hopf algebras or K-algebras, and (in the case that K has characteristic
zero and contains a primitive pn-th root of unity) explicitly determine their
Wedderburn-Artin decompositions.

Since the Hopf-Galois structures admitted by L/K all have cyclic type, we
can view the corresponding regular subgroups of Perm(G) as images of a
single abstract cyclic group N = 〈η〉 of order pn under pn−1 different embed-
dings αs : N ↪→ Perm(G). By Byott’s translation, each such αs corresponds
to an embedding βs : G → Hol(N), and these are described in [5, (8.6) and
(9.1)]: let G = 〈σ〉, and let δ be the (p − 1)st power of some generator of
the cyclic group Aut(N). Then the embeddings we seek are of the form
βs : G ↪→ Hol(N) with

βs(σ) = (ρ(η), δs), 0 ≤ s < pn−1.

For each s, let αs : N ↪→ Perm(G) denote the embedding corresponding to
βs, and let Hs = L[αs(N)]G denote the corresponding Hopf algebra.

Theorem 4.1. Let 0 < r, s ≤ pn−1. Then Hr
∼= Hs as K-Hopf algebras if

and only if r = s.

Proof. Since N is cyclic, Aut(N) is abelian, and so by Corollary 2.12 we have
Hr
∼= Hs as K-Hopf algebras if and only if βr(g) = βs(g) for all g ∈ G. Since

in this case G is generated by σ, this occurs if and only if βr(σ) = βs(σ); that
is, if and only if δr = δs. Hence Hr

∼= Hs as K-Hopf algebras if and only if
r = s.
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Therefore the Hopf algebras giving the Hopf-Galois structures on L/K are
pairwise nonisomorphic. We can determine which of them become isomorphic
under various base changes. Let

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L

be the maximal tower of field extensions, and for each i = 0, . . . , n let Gi =
〈σpi〉 = Gal(L/Ki).

Theorem 4.2. For 0 < r, s ≤ pn−1 and 0 ≤ i ≤ n− 1, we have Ki⊗K Hr
∼=

Ki ⊗K Hs as Ki-Hopf algebras if and only if r ≡ s (mod pn−1−i).

Proof. By Theorem 2.2, we have Ki ⊗K Hr
∼= Ki ⊗K Hs as Ki-Hopf alge-

bras if and only if (αr(N), ∗) ∼= (αs(N), ∗) as Gi-groups. By [5, (7.7)], this
is equivalent to (N, ∗r) ∼= (N, ∗s) as Gi-groups, so we must show that this
occurs if and only if r ≡ s (mod pn−1−i).

Recall that δ ∈ Aut(N) has order pn−1, so there exists an element d ∈
(Z/pnZ)× of order pn−1 such that δ(η) = ηd. It follows that for 0 ≤ j ≤ pn−1
we have

σj ∗r η = βr(σ)j[η] = δrjη = ηd
rj

,

and similarly σj ∗s η = ηd
sj

. Now let θ be an automorphism of N , and write
θ(η) = ηt for some integer t coprime to p. Then for 0 ≤ i ≤ n we have:

θ
(
σp

i ∗r η
)

= θ
(
ηd

rpi
)

= ηtd
rpi

and σp
i ∗s θ (η) = σp

i ∗s ηt = ηtd
spi

,

so θ is Gi-equivariant if and only if drp
i ≡ dsp

i
(mod pn). Since d has order

pn−1 in (Z/pnZ)×, this occurs if and only if rpi ≡ spi (mod pn−1), that is, if
and only if r ≡ s (mod pn−1−i).

Corollary 4.3. Let 0 ≤ i ≤ n− 1. Then:

1. The collection {Ki ⊗K H1, . . . , Ki ⊗K Hpn−1} can be partitioned into
pn−1−i Hopf algebra isomorphism classes;

2. Each class contains pi Hopf algebras;

3. {Ki ⊗ H1, . . . , Ki ⊗K Hpn−1−i} is a complete set of representatives for
the classes;
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4. For 0 < j ≤ pn−1, the class containing Ki ⊗K Hj is

{Ki ⊗K Hj+pn−im | 0 ≤ m < pi}.

Corollary 4.4. Let 0 < r ≤ pn−1 and 0 ≤ i ≤ n−1. Then Ki⊗KHr
∼= Ki[N ]

as Ki-Hopf algebras if and only if r ≡ 0 (mod n− 1− i)

We now impose the additional assumptions that K has characteristic
zero and contains a primitive pn-th root of unity ζ; in this case we can use
Corollary 3.6 to determine which of the K-Hopf algebras appearing in the
classification of Hopf-Galois structures on L/K are isomorphic as K-algebras.

Theorem 4.5. For 0 < r, s ≤ pn−1, we have Hr
∼= Hs as K-algebras if and

only if vp(r) = vp(s), where vp denotes the p-adic valuation function.

Proof. By Corollary 3.6, we have Hr
∼= Hs if and only if (N, ∗r) ∼= (N, ∗s) as

G-sets, so we must show that this occurs if and only if vp(r) = vp(s).

Suppose first that vp(r) = vp(s). Then since Aut(N) is cyclic we must
have 〈δr〉 = 〈δs〉, and we have βr(G) = βs(G). Therefore for each µ ∈ N ,
the orbits of µ with respect to ∗r and ∗s coincide, and so the stabilizers
Stabr(µ), Stabs(µ) of µ with respect to ∗r, ∗s have the same order. Since G
is cyclic, this implies that they are equal.

Now let η1, . . . , ηk be representatives for the orbits of (N, ∗r), and define
π : N → N by setting π(ηi) = ηi for each i, and insisting that π(g ∗r µ) =
g ∗s π(µ) for all µ ∈ N . It is routine to verify that π is well defined and
injective, and so it is a G-equivariant bijection from (N, ∗r) to (N, ∗s).

Conversely, suppose that vp(r) 6= vp(s), and assume without loss of general-
ity that vp(r) < vp(s). Then since Aut(N) is cyclic we have βs(G) ( βr(G),
and so (for example) the orbit of η with respect to ∗s is strictly contained
in the orbit of η with respect to ∗r. Therefore (N, ∗r) and (N, ∗s) cannot be
isomorphic G-sets in this case.

Corollary 4.6. Precisely n non-isomorphic K-algebras appear in the clas-
sification of Hopf-Galois structures on L/K. For each 0 ≤ v ≤ n − 1, the
K-algebra Hpv has ϕ(pn−1−v) distinct Hopf-Galois actions on L/K.
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We now explicitly compute the Wedderburn-Artin decompositions of these
algebras. Using a result of Bley and Boltje [1, Lemma 2.5], for 0 < r ≤ pn−1

we have

Hr = L[αr(N)]G ∼=
t∏

m=1

LSm as K-algebras,

where the Sm are the stabilizers of a set of representatives of the orbits of G

in α̂r(N). By Corollary 3.6, these stabilizers coincide with those of a set of
representatives of the orbits of G in N , with G acting by

σi ∗r ηj = βr(σ
i)[ηj] = δir[ηj] = ηjd

ir

.

Since N is cyclic, we may translate this to an action of the additive group
Z/pnZ on itself via

i ·r j = jdir,

and study the orbits and stabilizers of this action.

Lemma 4.7. Let j ∈ Z/pnZ and m = max{n− 1− vp(j)− vp(r), 0}. Then

O(j) = {jdir : 0 ≤ i < pm}, and Stab(j) = 〈pm〉.

Proof. Note i ·r j = j if and only if

jdir ≡ j (mod pn)

i.e.,
dir ≡ 1 (mod pn−vp(j)),

which holds if and only if

ir ≡ 0 (mod pn−vp(j)−1).

Now if m = 0 then vp(r) = n− 1− vp(j), hence pn−1−vp(j) | r and the result
is clear. Otherwise, the above congruence holds if and only if

i ≡ 0 (mod pn−1−vp(j)−vp(r)).

Thus, Stab(j) = 〈pn−1−vp(j)−vp(r)〉. The orbit computation follows immedi-
ately.

The following allows us to count orbit classes in the cases m > 0.
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Lemma 4.8. Pick, if possible, 0 < m ≤ n − 1 − vp(r). Then Z/pnZ has
pvp(r)(p− 1) distinct orbits whose stabilizer is 〈pm〉.

Proof. There are ϕ(pm+vp(r)+1) = pm+vp(r)(p−1) elements of order pm+vp(r)+1

in Z/pnZ. Clearly, j has order pm+vp(r)+1 if and only if vp(j) = n − m −
vp(r)− 1. Thus, there are pm+vp(r)(p− 1) choices of j for which m = n− 1−
vp(j)− vp(r). By Lemma 4.7 there are pm choices for j in each orbit. Thus,
the number of orbits whose stabilizer is 〈pm〉 is

pm+vp(r)(p− 1)

pm
= pvp(r)(p− 1).

For m = 0 we have

Lemma 4.9. Suppose vp(j) ≥ n− 1− vp(r). Then

O(j) = {j} and Stab(j) = Z/pnZ.

Proof. Immediate from Lemma 4.7 since m = 0. Note additionally that there
are p1+vp(r) such j since

{j : vp(j) ≥ n− 1− vp(r)} = {j′pn−1−vp(r) : 0 ≤ j′ < p1+vp(r)}.

Having computed orbits and stabilizers, we are now able to give Wedderburn-
Artin decompositions.

Theorem 4.10. There is an isomorphism of K-algebras

Hr
∼= Kp1+vp(r) ×

n−1−vp(r)∏
m=1

(Km)p
vp(r)(p−1) .

Finally, we use the results of this section to justify our earlier remark that
parts (3) and (5) of Corollary 3.6 are not equivalent if the ground field does
not contain an appropriate root of unity. We require the following general
lemma.
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Lemma 4.11. Let p be an odd prime number, C = 〈c〉 a cyclic group of order
pn, and A a group with two different actions ∗1, ∗2 on C via automorphisms.
Let d be a primitive root modulo pn, and suppose that there exists π ∈ A such
that π ∗i c = cd for i = 1, 2. Then (C, ∗1) ∼= (C, ∗2) as A-groups if and only
if (C, ∗1) ∼= (C, ∗2) as A-sets.

Proof. Obviously if (C, ∗1) ∼= (C, ∗2) as A-groups then (C, ∗1) ∼= (C, ∗2) as
A-sets; we must prove the converse. Suppose that f : C → C is an A-
equivariant bijection. Then in particular f(π ∗1 c) = π ∗2 f(c), so f(cd) =
f(c)d, and so f(cd

r
) = f(c)d

r
for all r ∈ Z. Since d is a primitive root

modulo pn, this implies that f(ck) = f(c)k for all k coprime to pn. Since f is
a bijection, it also implies that the order of f(c) is at least ϕ(pn) = pn−1(p−1),
and therefore exactly pn. Therefore the homomorphism g : C → C defined
by g(c) = f(c) is an isomorphism. We claim that it is A-equivariant. It is
sufficient to show that g(α ∗1 c) = α ∗2 g(c) for all α ∈ A. Since C is cyclic,
there exists e ∈ Z, coprime to pn, such that α ∗1 c = ce. Now we have:

α ∗2 g(c) = α ∗2 f(c)

= f(α ∗1 c)

= f(ce)

= f(c)e (since e is coprime to pn)

= g(c)e

= g(ce) (g is a homomorphism)

= g(α ∗1 c).

Thus g is A-equivariant, and so (C, ∗1) ∼= (C, ∗2) as A-groups.

Now we construct an example of a cyclic extension L/K for which K
does not contain a primitive |N |th root of unity, (N, ∗1) ∼= (N, ∗2) as Γ-

sets, but (N̂ , ∗1) 6∼= (N̂ , ∗2) as Γ-sets. We remark that this implies that
the corresponding Hopf algebras are isomorphic as coalgebras, but not as
algebras.

Example 4.12. Let L = Q(ζ19 + ζ−1
19 ), the maximal real subfield of Q(ζ19).

Then L/Q is cyclic of degree 9; write G = 〈σ〉 for its Galois group and let
Γ = Gal(Qsep/Q). There are precisely three Hopf-Galois structures on L/Q,
and they all have cyclic type. LetN = 〈η〉 be an abstract cyclic group of order
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9. Then the embeddings of G into Hol(N) = ρ(N) o Aut(N) corresponding
to the Hopf-Galois structures on L/K are

βs(σ) = (ρ(η), δs), 0 ≤ s < 3,

where δ(η) = η4. Each of these embeddings yields an action of G on N
by automorphisms: σ ∗s η = δs(η). In particular, we have σ ∗1 η = η4 and
σ ∗2 η = η7. It is easily verified that the bijection N → N defined by

f(1) = 1 f(η) = η f(η2) = η2

f(η3) = η3 f(η4) = η7 f(η5) = η8

f(η6) = η6 f(η7) = η4 f(η8) = η5

is G-equivariant, so (N, ∗1) ∼= (N, ∗2) as G-sets, and hence as Γ-sets, since
the action of Γ on N factors through G. Note, however, that there is no
Γ-equivariant automorphism of N , since by Theorem 4.2 the Hopf algebras
giving the Hopf-Galois structures corresponding to β1, β2 are not isomorphic
as Hopf algebras.

Now we consider N̂ . Let χ : N → Qsep be defined by χ(η) = ζ9; then

N̂ = 〈χ〉. The two actions of Γ on N̂ (corresponding to the actions ∗1, ∗2

of Γ on N) both factor through Gal(LQ(ζ9)/Q), which is isomorphic to
G × Gal(Q(ζ9)/Q) since L and Q(ζ9) are linearly disjoint over Q. Let π
be the generator of Gal(Q(ζ9)/Q) defined by π(ζ9) = ζ2

9 . It is easy to verify

that π ∗i χ = χ2 for each i, and so N̂ satisfies the hypotheses of Lemma
4.11. Therefore, if we had (N̂ , ∗1) ∼= (N̂ , ∗2) as Γ-sets then we would have

(N̂ , ∗1) ∼= (N̂ , ∗2) as Γ-groups, and so (N, ∗1) ∼= (N, ∗2) as Γ-groups. But we
noted above that this is impossible. Therefore we have (N, ∗1) ∼= (N, ∗2) as

Γ-sets, but (N̂ , ∗1) 6∼= (N̂ , ∗2) as Γ-sets.
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