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Abstract. The 3D problem in linear elasticity for a layer lying on a half-space is subject to a
two-parametric asymptotic treatment using the small parameters corresponding to the relative
thickness of the layer and stiffness of the foundation. General scaling for the displacements and
stresses is inspired by the analysis of the exact solution of the toy plane strain problem for a vertical
sinusoidal load. The direct asymptotic procedure widely used in mechanics of thin structures is
adapted for the layer. It is demonstrated that the Kirchhoff theory for thin plates is only applicable
for sufficiently high contrast of the coating and half-space stiffnesses. In the scenario, in which the
Kirchhoff theory fails, alternative approximate formulations are introduced, reducing the original
problem for a coated solid to problems for a homogeneous half-space with Neumann, mixed or
effective boundary conditions along its surface.

Keywords. Stiff thin coating, Asymptotic, Kirchhoff plate, Contrast, Substrate.

1. Introduction

The problem of elastostatics for a stiff layer lying on a half-space is of long term interest for numerous
engineering applications. In particular, a variety of problems in structural mechanics are modeled by
a thin Kirchhoff plate resting on an elastic substrate, e.g. see [11, 17, 18, 19, 20, 25]. In addition, we
cite an influential paper [7] and also a useful servey of mathematical techniques for treating plates
on a linear elastic foundation in [26]. At the same time, the range of validity of this approximate
formulation, restricted only to thin and sufficiently stiff layers, has not always been fully appreciated.
Only very few papers, e.g. [8], explicitly take into account the limitation associated with a specific
asymptotic ratio of plate and substrate stiffnesses. The effect of high contrast in stiffness was briefly
addressed in [3], studying a contact problem for a coated half-space, without relating it to the relative
thickness of the coating. In addition, we refer to [4], appreciating the importance of high contrast limit.
Among modern considerations on the subject we also mention [5] inspired by modelling of advance
resonant devices, and [6, 9, 12, 14, 15, 27] tackling a variety of vibration and stability phenomena.
In the recent paper [24] a 3D problem in linear elasticity for a soft layer attached to a substrate was
treated for a broad range of ratios between relative stiffnesses and wavelengths, resulting, in particular,
in the justification and refinement of Winkler–Fuss hypothesis.

In this paper, we extend the methodology in [24] to a complementary scenario of a stiff layer. We
operate with two small parameters, corresponding to the relatively small stiffness of the substrate and
thickness of the layer, adapting the asymptotic procedure traditional to thin elastic structures, e.g. see
[2, 10, 13, 16]. Initially, it was developed for Neumann boundary value problems for plates and shells
assuming prescribed stresses along the faces. Later on, the procedure was extended to Dirichlet and
various mixed boundary value problems, enabling modeling of clamped faces, characteristic of thin
coatings. For both setups, the displacements and stresses are expanded into series in the thickness
variable, resulting in the 3D to 2D dimension reduction. The peculiarity of the studied configuration
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is that the contact with the substrate results in asymptotic consideration of a pretty sophisticated
boundary value problem for the thin layer.

The limiting forms of the original elasticity equations for various ratios between these two pa-
rameters are derived. First, we establish the asymptotic behaviour of the displacement and stress
components for a toy plane strain problem for a vertical sinusoidal load. Next, we adapt the initial
settings coming from the toy problem to the general 3D setup. In particular, we confirm the scaling
in [8] corresponding to a coupled problem for a Kirchhoff plate resting on an elastic half-space. As
might be expected, for a softer substrate we arrive at leading order at an uncoupled problem for plate
bending. At the same time, for a stiffer substrate, which is still much softer than the layer, any plate
bending theory fails. In the latter case, however, we formulate a set of boundary value problems for a
homogeneous half-space. Among them, in particular, there are effective boundary conditions originally
derived in [28] and later justified in [10]. The validity of all the shortened approximate formulations
is justified by comparison with the exact solution of the aforementioned plane strain problem.

2. Problem statement

As in [24], we consider a coated elastic half-space, subject to action of a vertical load P = P (x1, x2)
at the upper face of the layer, see Figure 1.

Figure 1. Problem statement.

We assume that the thickness of the layer h is small compared to a typical length scale a related
to variation of the load along the coordinates x1, x2. Therefore, we introduce a small geometrical
parameter

ε =
h

a
� 1. (1)

We also suppose that the layer is much stiffer than the half-space, leading to a small material parameter

µ =
µ+

µ−
� 1, (2)

where µ± are shear moduli, with ”−” and ”+” corresponding to the layer and the half-space, respec-
tively. The small parameters above can be related to each other as

µ = εα, (3)

with α ≥ 0, meaning that the limiting case α = 0, associated with a non-contrast setup, is also
incorporated.

Using the assumptions above, we establish a two-parametric asymptotic approach in order to
investigate the validity of the theory of thin plates. Indeed, it is suggested by physical intuition that in
case of a hard thin coating resting on a soft substrate, the model of a thin elastic plate is a reasonable
approximation. In this paper, we aim at justification of this model depending on the range of parameter
α. According to the theory, the deflection of a plate is governed by a bi-harmonic equation

D∆2W = P + Pr, (4)
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where W is the deflection of the layer, ∆2 =
∂4

∂x41
+ 2

∂4

∂x21∂x
2
2

+
∂4

∂x42
is a bi-harmonic operator, Pr

is reaction of the substrate, D =
Eh3

12(1− ν2)
is flexural rigidity, with E and ν denoting the Young’s

modulus and Poisson’s ratio, respectively.

Let us introduce the dimensionless scaling

ξk =
xk
a
, ξ−3 =

x3
h
, 0 ≤ x3 ≤ h, ξ+3 =

x3 − h
a

, x3 ≥ h. (5)

Then, the governing relations for the layer and the half-space are

σ−i1,1 + σ−i2,2 +
a

h
σ−i3,3 = 0,

σ−kk =
λ− + 2µ−

a
u−k,k +

λ−

a
u−l,l +

λ−

h
u−3,3,

σ−33 =
λ−

a
u−1,1 +

λ−

a
u−2,2 +

λ− + 2µ−

h
u−3,3,

σ−12 =
µ−

a
(u−1,2 + u−2,1),

σ−k3 =
µ−

h
(u−k,3 +

h

a
u−3,k),

(6)

and

σ+
i1,1 + σ+

i2,2 + σ+
i3,3 = 0,

σ+
kk =

1

a
((λ+ + 2µ+)u+k,k + λ+u+l,l + λ+u+3,3),

σ+
33 =

1

a
(λ+u+1,1 + λ+u+2,2 + (λ+ + 2µ+)u+3,3),

σ+
12 =

µ+

a
(u+1,2 + u+2,1),

σ+
k3 =

µ+

a
(u+k,3 + u+3,k),

(7)

see e.g. [1], where u±i are displacements, σij are stresses, δij is Kronecker’s delta, λ± are Lamé moduli,
and comma indicates differentiation. Here and below, i, j = 1, 2, 3, l, k = 1, 2; l 6= k.

The boundary conditions, modeling vertical force at the surface of the layer, and continuity
conditions at the interface are

σ−33 = −P, σ−k3 = 0, ξ−3 = 0,
u−i = u+i , σ−i3 = σ+

i3, ξ−3 = 1.
(8)

The decay conditions of the displacements u+i → 0 as ξ−3 →∞ are also assumed.

3. Toy plane strain problem

We start with investigation of a plane strain problem for a vertical harmonic force

P = Aµ− cos ξ1, (9)

where A is constant amplitude, see Figure 2.

The governing equations follow from (6) and (7), with u±2 = 0 and
∂

∂ξ2
= 0, i.e.

(λ− + 2µ−)ε2u−1,11 + (λ− + µ−)εu−3,13 + µ−u−1,33 = 0,

µ−ε2u−3,11 + (λ− + µ−)εu−1,13 + (λ− + 2µ−)u−3,33 = 0,

(λ+ + 2µ+)u+1,11 + (λ+ + µ+)u+3,13 + µ+u+1,33 = 0,

µ+u+3,11 + (λ+ + µ+)u+1,13 + (λ+ + 2µ+)u+3,33 = 0.

(10)
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Figure 2. Toy plain strain problem.

The boundary and continuity conditions (8) become

σ−33 = −Aµ− cos ξ1, σ−13 = 0, ξ−3 = 0,
u−n = u+n , σ−13 = σ+

13, ξ−3 = 1,
(11)

where n = 1, 3, with the decay conditions u+n → 0 as x3 →∞.

The solution of the stated problem is given in Appendix 1, see (78) with (80)–(84) for the
displacements, whereas the stresses are obtained by substituting the latter into (6) and (7). Using the
results together with (2), (3), the leading order asymptotic behaviour of the displacement and stress
components is derived, see Table 1.

u−1 u−3 σ−13 σ−33 σ−11 u+1 u+3 σ+
13 σ+

33 σ+
11

α ≥ 3 ε−3 ε−4 ε−1 1 ε−2 ε−4 ε−4 εα−3 εα−3 εα−3

2 ≤ α ≤ 3 ε−α ε−α−1 ε2−α 1 ε1−α ε−α−1 ε−α−1 1 1 1

1 ≤ α ≤ 2 ε−2 ε−α−1 1 1 ε−1 ε−α−1 ε−α−1 1 1 1

0 ≤ α ≤ 1 ε−α−1 ε−α−1 ε1−α 1 ε−α ε−α−1 ε−α−1 1 1 1

Table 1. Asymptotic behaviour of displacement and stress components.

In more detail, considering only the leading order relation between vertical displacement u−3 and
prescribed load (9) at the upper face of the layer ξ−3 = 0, we have

k =
P

u−3
=



µ−(γ− − 1)ε4

hγ−
, α > 3,

µ−(γ− − 1− γ+ + 7γ−γ+)ε4

3hγ−(1 + γ+)
, α = 3,

2µ−γ+εα+1

h(1 + γ+)
, 1 < α < 3,

µ−(γ−(6γ+ − 2)− 4γ+)ε2

h(γ−(2 + 3γ+)− 2(1 + γ+))
, α = 1,

2µ−(γ+ − 1)εα+1

hγ+
, α < 1,

(12)

where γ± =
λ± + 2µ±

µ±
.

As a result, the case α > 3 clearly stands out, when the coefficient k is independent of the
parameters of substrate. This indicates that the equation of plate bending may be expected at leading
order as a relation involving vertical displacement u−3 and the applied load P .
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4. Asymptotic analysis

In this section we develop an asymptotic scheme based on the method of direct asymptotic integration
of equations of 3D elasticity, see [10, 13]. Note that the scaling required for this procedure follows from
the orders of displacements and stresses in Table 1.

4.1. Case α ≥ 3
(
µ . ε3

)
First, we scale the displacements and stresses for the layer using the data in the first line of Table 1.
Therefore, we have

u−k = hε−3u∗−k , σ−kk = µ−ε−2σ∗−kk , σ−12 = σ−21 = µ−ε−2σ∗−12 , P = µ−p∗,
u−3 = hε−4u∗−3 , σ−33 = µ−σ∗−33 , σ−k3 = σ−3k = µ−ε−1σ∗−k3 .

(13)

Here and below, we assume all quantities with the asterisk to be of the same asymptotic order. In
view of (13), governing equations (6) become

σ∗−i1,1 + σ∗−i2,2 + σ∗−i3,3 = 0,

ε2σ∗−kk = ε2γ−u∗−k,k + ε2(γ− − 2)u∗−l,l + (γ− − 2)u∗−3,3,

ε4σ∗−33 = ε2(γ− − 2)u∗−1,1 + ε2(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−k3 = u∗−k,3 + u∗−3,k.

(14)

Eliminating the term u∗−3,3 from (14)2 and (14)3, we deduce

σ∗−kk γ
− − ε2(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−k,k + 2(γ− − 2)u∗−l,l . (15)

Using the scaling for the half-space given by

u+i = hε−4u∗+i , σ+
ij = σ+

ji = µ−εα−3σ∗+ij , (16)

equations (7) may be rewritten as

σ∗+i1,1 + σ∗+i2,2 + σ∗+i3,3 = 0,

σ∗+kk = γ+u∗+k,k + (γ+ − 2)(u∗+l,l + u∗+3,3),

σ∗+33 = γ+u∗+3,3 + (γ+ − 2)(u∗+1,1 + u∗+2,2),

σ∗+12 = u∗+1,2 + u∗+2,1,

σ∗+k3 = u∗+k,3 + u∗+3,k.

(17)

Boundary and continuity conditions (8) take the form

σ∗−33 = −p∗, σ∗−k3 = 0 (18)

at ξ−3 = 0, and

εu∗−k = u∗+k , u∗−3 = u∗+3 , σ∗−k3 = εα−2σ∗+k3 , σ∗−33 = εα−3σ∗+33 . (19)

at ξ− = 1.

In (19), σ∗−33 � σ∗+33 at α > 3 whereas σ∗−33 ∼ σ
∗+
33 at α = 3, therefore we consider these subcases

separately.

4.1.1. Subcase α > 3
(
µ� ε3

)
. Expand the displacements and stresses of the layer in asymptotic

series (
u∗−i
σ∗−ij

)
=

(
u
−(0)
i

σ
−(0)
ij

)
+ ... (20)
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Hence, at leading order, we get from (14)

σ
−(0)
i1,1 + σ

−(0)
i2,2 + σ

−(0)
i3,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
k,3 + u

−(0)
3,k = 0,

σ
−(0)
kk = κu

−(0)
k,k + (κ− 2)u

−(0)
l,l ,

(21)

where

κ = 4

(
1− 1

γ−

)
, (22)

subject to the boundary conditions at ξ−3 = 0

σ
−(0)
33 = −p∗, σ

−(0)
k3 = 0, (23)

and the continuity conditions at ξ−3 = 1

u
+(0)
k = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = 0. (24)

First, (21)2 implies

u
−(0)
3 = w, (25)

where w is an arbitrary function of variables ξ1 and ξ2 representing the deflection of the layer. Then,
on integrating (21)4, we deduce

u
−(0)
k = −ξ−3

∂w

∂ξk
+ F1, (26)

where F1 = F1(ξ1, ξ2) is an arbitrary function of ξ1 and ξ2. Substituting the latter into (21)3, (21)5,
using (21)1 and satisfying conditions (23)2 and (24)3, we infer

F1 =
1

2

∂w

∂ξk
. (27)

Therefore,

u
−(0)
k =

∂w

∂ξk

(
1

2
− ξ−3

)
, (28)

and

σ
−(0)
kk =

(
1

2
− ξ−3

)(
κ
∂2w

∂ξ2k
+ (κ− 2)

∂2w

∂ξ2l

)
,

σ
−(0)
12 = (1− 2ξ−3 )

∂2w

∂ξ1∂ξ2
,

σ
−(0)
k3 =

κ

2
ξ−3 (ξ−3 − 1)

(
∂3w

∂ξ3k
+

∂3w

∂ξk∂ξ2l

)
.

(29)

Finally, from (29)3 and (21)1, and satisfying the continuity condition (24)3, we obtain for the vertical
stress

σ
−(0)
33 = − κ

12
((ξ−3 )2(2ξ−3 − 3) + 1)∆2

∗w, (30)

where ∆2
∗ =

∂4

∂ξ41
+ 2

∂4

∂ξ21∂ξ
2
2

+
∂4

∂ξ42
.

Using the condition (23)1 at ξ−3 = 0, we have

κ

12
∆2
∗w = p∗, (31)

which in dimensional form coincides with the equation (4) of plate bending with Pr = 0.
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4.1.2. Subcase α = 3
(
µ ∼ ε3

)
. Here, we begin with same leading order governing equations for the

layer (21) and boundary conditions (23), while continuity conditions at ξ−3 = 1 take the form

u
+(0)
k = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
k3 = 0, σ

−(0)
33 = σ

+(0)
33 . (32)

Following a similar procedure, the quantities u
−(0)
3 , u

−(0)
k are found as (25), (28), respectively,

and σ
−(0)
kk , σ

−(0)
12 σ

−(0)
k3 as (29). Then, from (21)1, we obtain

σ
−(0)
33 = − κ

12
(ξ−3 )2(2ξ−3 − 3)∆2

∗w + F2, (33)

where F2 is an arbitrary function of ξ1 and ξ2. The vertical stress at the interface is given by

σ
−(0)
33

∣∣∣
ξ−3 =1

=
κ

12
∆2
∗w + F2. (34)

Due to continuity condition (32)4 at ξ−3 = 1 we get

F2 = σ
+(0)
33

∣∣∣
ξ−3 =1

− κ

12
∆2
∗w. (35)

Therefore,

σ
−(0)
33 = − κ

12
((ξ−3 )2(2ξ−3 − 3) + 1)∆2

∗w + σ
+(0)
33

∣∣∣
ξ−3 =1

, (36)

which, on satisfying (23)1 at ξ−3 = 0, implies

κ

12
∆2
∗w = p∗ + σ

+(0)
33

∣∣∣
ξ−3 =1

. (37)

The equation above demonstrates that at α = 3 the plate bending theory is still valid, but in contrast
to the subcase α > 3, the half-space reaction Pr is now a nonzero value.

4.2. Case 2 ≤ α < 3
(
ε3 . µ� ε2

)
The scaling for the layer is now given by (see line 2 in Table 1)

u−k = hε−αu∗−k , σ−kk = µ−ε1−ασ∗−kk , σ−12 = σ−21 = µ−ε1−ασ∗−12 , P = µ−p∗,
u−3 = hε−α−1u∗−3 , σ−33 = µ−σ∗−33 , σ−k3 = σ−3k = µ−ε2−ασ∗−k3 .

(38)

Hence, due to (38), equations (6) become

σ∗−k1,1 + σ∗−k2,2 + σ∗−k3,3 = 0,

ε3−α(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

ε2σ∗−kk = ε2γ−u∗−k,k + ε2(γ− − 2)u∗−l,l + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = ε2(γ− − 2)u∗−1,1 + ε2(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−k3 = u∗−k,3 + u∗−3,k.

(39)

Similarly to the previous Subsection 4.1, we deduce from (39)3 and (39)4

σ∗−kk γ
− − εα−1(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−k,k + 2(γ− − 2)u∗−l,l . (40)

The scaling for the half-space here and below takes the form

u+i = hε−α−1u∗+i , σ+
ij = σ+

ji = µ−σ∗+ij , (41)

leading to equations (17).
Boundary conditions are once again represented as (18) and the continuity conditions are

εu∗−k = u∗+k , u∗−3 = u∗+3 , σ∗−k3 = εα−2σ∗+k3 , σ∗−33 = σ∗+33 . (42)

Below, we deal with the subcases 2 < α < 3 and α = 2 separately.
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4.2.1. Subcase 2 < α < 3
(
ε3 � µ� ε2

)
. The leading order governing equations are

σ
−(0)
k1,1 + σ

−(0)
k2,2 + σ

−(0)
k3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
k,3 + u

−(0)
3,k = 0,

σ
−(0)
kk = κu

−(0)
k,k + (κ− 2)u

−(0)
l,l ,

(43)

subject to boundary conditions (23), and the following continuity conditions at ξ−3 = 1

u
+(0)
k = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
k3 = 0, σ

−(0)
33 = σ

+(0)
33 . (44)

As in Subsection 4.1, the quantities u
−(0)
3 , u

−(0)
k are found in the form (25), (28), respectively,

and σ
−(0)
kk , σ

−(0)
12 σ

−(0)
k3 are obtained as (29). Then, integrating (43)2 with respect to ξ−3 and satisfying

(23)1, we obtain

σ
−(0)
33 = −p∗. (45)

It is clear from (45) that in this case the applied load p∗ is transmitted to the interface and is no longer
connected with the layer deflection directly. Thus, the value of the deflection and, subsequently, the
rest of the stresses and displacements, strongly depend on the value of the interfacial displacement

u
+(0)
3 , due to (44)2, which indicates violation of the plate bending theory.

4.2.2. Subcase α = 2
(
µ ∼ ε2

)
. The leading order equations are again given by (43) with boundary

conditions (23), and the continuity conditions at ξ−3 = 1 are written as

u
+(0)
k = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = σ

+(0)
i3 , (46)

leading to vertical displacement u
−(0)
3 and stress σ

−(0)
33 expressed as (25) and (45), respectively. Using

(43)5, we deduce

u
−(0)
1 = −ξ−3

∂w

∂ξ1
+ F3,

u
−(0)
2 = −ξ−3

∂w

∂ξ2
+ F4,

(47)

where F3 and F4 are arbitrary functions of ξ1 and ξ2. Therefore, (43)6 implies

σ
−(0)
11 = −κξ−3

∂2w

∂ξ21
+ κ

∂F3

∂ξ1
− (κ− 2)ξ−3

∂2w

∂ξ22
+ (κ− 2)

∂F4

∂ξ2
,

σ
−(0)
22 = −(κ− 2)ξ−3

∂2w

∂ξ21
+ (κ− 2)

∂F3

∂ξ1
− κξ−3

∂2w

∂ξ22
+ κ

∂F4

∂ξ2
,

(48)

and (43)4 yields

σ
−(0)
12 = −2ξ−3

∂2w

∂ξ1ξ2
+
∂F3

∂ξ2
+
∂F4

∂ξ1
. (49)

From (43)1, taking into account (48) and (49), and satisfying (23)2, we arrive at

σ
−(0)
13 =

κ

2
(ξ−3 )2

∂3w

∂ξ31
− κξ−3

∂2F3

∂ξ21
+
κ

2
(ξ−3 )2

∂3w

∂ξ1∂ξ22
− (κ− 1)ξ−3

∂2F4

∂ξ1∂ξ2
− ξ−3

∂2F3

∂ξ22
,

σ
−(0)
23 =

κ

2
(ξ−3 )2

∂3w

∂ξ21∂ξ2
− (κ− 1)ξ−3

∂2F3

∂ξ1∂ξ2
+
κ

2
(ξ−3 )2

∂3w

∂ξ32
− κξ−3

∂2F4

∂ξ22
− ξ−3

∂2F4

∂ξ21
,

(50)

where functions F3 and F4 can be found from solving the problem for the half-space and using
continuity conditions (46)3.



Elastic contact of a stiff thin layer and a half-space 9

4.3. Case 1 ≤ α < 2
(
ε2 . µ� ε

)
The scaling for the layer is taken as

u−3 = hε−α−1u∗−3 , u−k = hε−2u∗−k , σ−12 = σ−21 = µ−ε−1σ∗−12 ,
P = µ−p∗, σ−kk = µ−ε−1σ∗−kk , σ−i3 = σ−3i = µ−σ∗−k3 .

(51)

Substituting the latter into governing equations (6), we have

σ∗−k1,1 + σ∗−k2,2 + σ∗−k3,3 = 0,

ε(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

εασ∗−kk = εαγ−u∗−k,k + εα(γ− − 2)u∗−l,l + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = εα(γ− − 2)u∗−1,1 + εα(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−k3 = u∗−k,3 + ε2−αu∗−3,k,

(52)

with the following additional equation obtained from (52)3 and (52)4

σ∗−kk γ
− − ε(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−k,k + 2(γ− − 2)u∗−l,l , (53)

this being similar to (15) and (40).
The boundary conditions are taken as (18), whereas the continuity conditions at ξ−3 = 1 are

εα−1u∗−k = u∗+k , u∗−3 = u∗+3 , σ∗−i3 = σ∗+i3 . (54)

We again treat subcases 1 < α < 2 and α = 1 separately.

4.3.1. Subcase 1 < α < 2
(
ε2 � µ� ε

)
. Leading order equations are

σ
−(0)
k1,1 + σ

−(0)
k2,2 + σ

−(0)
k3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
k,3 = 0,

σ
−(0)
kk = κu

−(0)
k,k + (κ− 2)u

−(0)
l,l ,

(55)

subject to boundary conditions (23) and the continuity conditions at ξ−3 = 1

u
+(0)
k = 0, u

−(0)
3 = u

+(0)
3 , σ

−(0)
i3 = σ

+(0)
i3 . (56)

As before, u
−(0)
3 and σ

−(0)
33 are expressed as (25) and (45). It follows from (55)5 and (61)1 that

u
−(0)
1 = F5,

u
−(0)
2 = F6,

(57)

resulting in

σ
−(0)
11 = κ

∂F5

∂ξ1
+ (κ− 2)

∂F6

∂ξ2
,

σ
−(0)
22 = κ

∂F6

∂ξ2
+ (κ− 2)

∂F5

∂ξ1
,

(58)

and

σ
−(0)
12 =

∂F5

∂ξ2
+
∂F6

∂ξ1
, (59)

where F5 and F6 are arbitrary functions of ξ1 and ξ2. Finally, from (55)1, satisfying (23)2, we infer

σ
−(0)
13 = −ξ−3

(
κ
∂2F5

∂ξ21
+ (κ− 1)

∂2F6

∂ξ1∂ξ2
+
∂2F5

∂ξ22

)
,

σ
−(0)
23 = −ξ−3

(
κ
∂2F6

∂ξ22
+ (κ− 1)

∂2F5

∂ξ1∂ξ2
+
∂2F6

∂ξ21

)
.

(60)

Here, functions F5 and F6 can again be derived from the continuity conditions (56)3.
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4.3.2. Subcase α = 1 (µ ∼ ε). Now the leading order governing equations and the boundary conditions
are taken as (55) and (23), respectively, and the continuity conditions at ξ−3 = 1 are

u
−(0)
i = u

+(0)
i , σ

−(0)
i3 = σ

+(0)
i3 . (61)

As above, u
−(0)
3 and σ

−(0)
33 are given by (25) and (45), respectively, whereas (55)5 and (61)1 imply

u
−(0)
k = u

+(0)
k

∣∣∣
ξ−3 =1

. (62)

Hence,

σ
−(0)
kk =

(
κ
∂u

+(0)
k

∂ξk
+ (κ− 2)

∂u
+(0)
l

∂ξl

)∣∣∣∣∣
ξ−3 =1

,

σ
−(0)
12 =

(
∂u

+(0)
1

∂ξ2
+
∂u

+(0)
2

∂ξ1

)∣∣∣∣∣
ξ−3 =1

.

(63)

Thus, from (55)1, and satisfying (23)2, we infer

σ
−(0)
k3 = −ξ−3

(
κ
∂2u

+(0)
k

∂ξ2k
+ (κ− 1)

∂2u
+(0)
l

∂ξ1∂ξ2
+
∂2u

+(0)
k

∂ξ2l

)∣∣∣∣∣
ξ−3 =1

. (64)

4.4. Case 0 ≤ α < 1 (ε . µ� 1)

The scaling for the layer is

u−i = hε−α−1u∗−i , σ−33 = µ−σ∗−33 , σ−12 = σ−21 = µ−ε−ασ∗−12
σ−kk = µ−ε−ασ∗−kk , P = µ−p∗, σ−k3 = σ−3k = µ−ε1−ασ∗−k3 .

(65)

As a result, the governing equations (6) become

σ∗−k1,1 + σ∗−k2,2 + σ∗−k3,3 = 0,

ε2−α(σ∗−13,1 + σ∗−23,2) + σ∗−33,3 = 0,

εσ∗−kk = εγ−u∗−k,k + ε(γ− − 2)u∗−l,l + (γ− − 2)u∗−3,3,

εα+1σ∗−33 = ε(γ− − 2)u∗−1,1 + ε(γ− − 2)u∗−2,2 + γ−u∗−3,3,

σ∗−12 = u∗−1,2 + u∗−2,1,

ε2σ∗−k3 = u∗−k,3 + εu∗−3,k,

(66)

together with the equation

σ∗−kk γ
− − εα(γ− − 2)σ∗−33 = 4(γ− − 1)u∗−k,k + 2(γ− − 2)u∗−l,l , (67)

subject to boundary conditions (18) and the continuity conditions at ξ−3 = 1

u∗−i = u∗+i , σ∗−k3 = εα−1σ∗+k3 , σ∗−33 = σ∗+33 . (68)

At leading order the governing equations are

σ
−(0)
k1,1 + σ

−(0)
k2,2 + σ

−(0)
k3,3 = 0,

σ
−(0)
33,3 = 0,

u
−(0)
3,3 = 0,

σ
−(0)
12 = u

−(0)
1,2 + u

−(0)
2,1 ,

u
−(0)
k,3 = 0,

σ
−(0)
kk − εακ− 2

2
σ
−(0)
33 = κu

−(0)
k,k + (κ− 2)u

−(0)
l,l ,

(69)

where term σ
−(0)
33 can be neglected at 0 < α < 1, with boundary conditions (23) and the continuity

conditions at ξ−3 = 1

u
−(0)
i = u

+(0)
i , σ

+(0)
k3 = 0, σ

−(0)
33 = σ

+(0)
33 . (70)
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The stated problem leads to the results for the displacements and vertical stress given by (25), (62)
and (45).

4.5. Approximate formulations for a half-space

The consideration above demonstrates that the plate bending theory is applicable only for a rather
high contrast setup (α ≥ 3). At the same time, at α ≤ 3, it is not possible to treat the layer and the
half-space separately. We can, however, formulate boundary conditions at the surface of the half-space
instead of solving the full original problem for a layered solid.

At α = 3, using continuity conditions (32) along with equation (37), the sought for effective
boundary conditions at ξ+3 = 0 for the half-space take the form

u
+(0)
k = 0, σ

+(0)
33 =

κ

12
∆2
∗u

+(0)
3 |ξ+3 =0 − p

∗. (71)

Thus, the normal stress is expressed through the vertical displacement at the surface; in doing so, the
operator in the right hand side of (71) corresponds to the Kirchhoff plate theory.

At 0 ≤ α < 3, the vertical force applied at the upper face of the layer can be transmitted to the
interface, see (45). Therefore, at 1 < α < 3, using continuity conditions (44), (46) and (56), we arrive
at the following mixed boundary conditions along the surface of the half-space ξ+3 = 0

u
+(0)
k = 0, σ

+(0)
33 = −p∗. (72)

At α = 1, taking into account expression (64) for shear stresses and continuity conditions (61),
the effective boundary conditions at ξ+3 = 0 become

σ
+(0)
33 = −p∗, σ

+(0)
k3 = −

(
κ
∂2u

+(0)
k

∂ξ2k
+ (κ− 1)

∂2u
+(0)
l

∂ξ1∂ξ2
+
∂2u

+(0)
k

∂ξ2l

)∣∣∣∣∣
ξ+3 =0

. (73)

Here, the shear stresses are expressed through the horisontal displacements at the surface. These
conditions were previously studied in [10] and [28] for a non-contrast case.

Finally, at 0 ≤ α < 1, due to continuity conditions (70), we get at ξ+3 = 0

σ
+(0)
33 = −p∗, σ

+(0)
k3 = 0. (74)

Solutions of plane strain problems for a half-space subject to the boundary conditions above are
presented in Appendix 2 with a harmonic load P = Aµ− cos ξ1.

5. Validation of asymptotic results

In this section we justify the derived asymptotic results by numerical comparison with the exact
solution for a harmonic load.

We reiterate that analysis of the relation between the applied force p∗ and the deflection of the
layer w indicates that the classical equation of plate bending arises only at a relatively high contrast
(α ≥ 3 or µ . ε3), see (31) and (37).

In case of α < 3, the plate theory is not valid. Nevertheless, transverse displacement u
−(0)
3 is

always uniform at leading order across the thickness of the layer, i.e. u
−(0)
3 = w , see (25). Thus, due

to continuity conditions, we have

w = u
+(0)
3 |ξ+3 =0. (75)

In this case, the effective boundary conditions for a homogeneous half-space, modeling the presence
of the layer, are discussed in Subsection 4.5 for different values of parameter α. As a result, we obtain
from (75) the deflection of the layer.

Let us now compare asymptotic results with the exact solution of the plane problem for harmonic
load P = Aµ− cos ξ1 applied at the surface of a layered half-space x3 = 0. Using relation (31) for α > 3
and the solutions of the plane problems in Appendix 2 for 0 ≤ α ≤ 3, the expression for the coefficient
k coincides with leading order exact solution (12).
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Figure 3. Approximate and exact solutions for harmonic load for 0 ≤ α ≤ 1.5.
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Figure 4. Approximate and exact solutions for harmonic load for 2.5 ≤ α ≤ 5.5.

As an illustration, in Figures 3 and 4 we present numerical results, where α = logε µ and also
ν− = 0.25, ν+ = 0.3, and ε = h/a = 0.1, for dimensionless coefficient k∗ expressed as

k∗ =
h

µ−
k (76)

and

k∗ =
Ah

c1 + c2
(77)

for the asymptotic and exact solution, respectively, where constants c1 and c2 are given by (81), see
Appendix 1.

The exact solution is plotted with solid line, while the graphs corresponding to the developed
asymptotic approximations are displayed by dashed and dot-dashed lines. The asymptotic results for
limiting cases α = 1 and α = 3 are displayed by red dots in Figures 3 and 4, respectively. The region
1.5 < α < 2.5 is not shown in the Figures since the difference between the associated asymptotic
approximation and the exact solution is virtually indistinguishable.
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6. Conclusion

In addition to [24] dealing with a soft thin layer covering a half-space, a full two-parametric analysis
of the related 3D problem in linear elasticity for a stiff coating is developed. It is confirmed that the
Kirchhoff plate theory is only valid for a sufficiently high contrast in the layer and substrate stiffnesses
(α ≥ 3 or µ . ε3). Nevertheless, several approximate formulations for a homogeneous half-space are
derived at α < 3, see boundary conditions (71)–(74). The obtained asymptotic results are compared
numerically with the exact solution for a vertical sinusoidal load applied to the upper face of the layer,
see Figures 3 and 4.

The considerations in the paper are of interest for a range of problems for coated bodies including
modeling of contact interaction. The proposed methodology may be easily extended to anisotropic
solids, shell-like coatings, as well as to the case of more sophisticated interfacial conditions. At the
same time, incorporating dynamic and nonlinear phenomena in the proposed two-parametric scheme
seems to be less straightforward, e.g. see aforementioned papers [6, 14] and also [21, 22, 23] dealing
with high-frequency thickness vibration.

Appendix 1

The displacements for a stated plane strain problem in Section 3 may be found as

u±1 = f±1 (ξ±3 ) sin ξ1, u±3 = f±3 (ξ±3 ) cos ξ1. (78)

Then, substituting (78) into (10), we get

µ−f−1
′′
(ξ−3 )− (λ− + 2µ−)ε2f−1 (ξ−3 )− (λ− + µ−)εf−3

′
(ξ−3 ) = 0,

(λ− + 2µ−)f−3
′′
(ξ−3 ) + (λ− + µ−)εf−1

′
(ξ−3 )− µ−ε2f−3 (ξ−3 ) = 0,

µ+f+1
′′
(ξ+3 )− (λ+ + 2µ+)f+1 (ξ+3 )− (λ+ + µ+)f+3

′
(ξ+3 ) = 0,

(λ+ + 2µ+)f+3
′′
(ξ+3 ) + (λ+ + µ+)f+1

′
(ξ+3 )− µ+f+3 (ξ+3 ) = 0.

(79)

Therefore, using the latter together with boundary and continuity conditions (11), the solution de-
caying at infinity is given by

f−1 (ξ−3 ) = e−εξ
−
3 [c2 + c4(ξ−3 − c

−
0 )]− eεξ

−
3 [c1 + c3(ξ−3 + c−0 )],

f−3 (ξ−3 ) = (c1 + c3ξ
−
3 )eεξ

−
3 + (c2 + c4ξ

−
3 )e−εξ

−
3 ,

f+1 (ξ+3 ) = e−ξ
+
3 [c5 + c6(ξ+3 − εc

+
0 )],

f+3 (ξ+3 ) = (c5 + c6ξ
+
3 )e−ξ

+
3 .

(80)

The values of c±0 and cq, q = 1, ..., 6 are

c±0 =
1

ε

(
1 +

2µ±

λ± + µ±

)
, cq =

AhNq
D

, q = 1, ..., 6, (81)

where

N1 = 2e2εε2B7B12 + (γ−)2[B+
2 B
−
13(µ−)2 + 2(γ+ − 2e2εεB+

3 )µ−µ+ −B+
1 B

+
13(µ+)2]

+γ−[B+
1 B
−
14(µ+)2 + 2(2e2εεB+

4 − 1)−B+
2 B

+
14(µ−)2],

N2 = −e2ε(2ε2B7B12 + γ−[B+
2 B
−
10(µ−)2 − 2(e2ε + 2B−4 ε)µ

−µ+ −B+
1 B

+
10(µ+)2]− (γ−)2

[B+
2 (B−9 − 2ε2)(µ−)2 + 2(e2εγ+ − 2B−3 ε)µ

−µ+ +B+
1 (B−4 + e2ε + 2ε2)(µ+)2]),

N3 = −εB−1 B7[B−1 B
+
2 (e2εB+

4 − 1)µ− +B+
1 (B−2 + e2εB−1 B

+
4 )µ+],

N4 = εe2εB−1 B12[B−1 B
−
9 µ
− + (B−1 B

−
4 + e2εB−2 )µ+],

N5 = 2eεγ−µ−[B−1 B
+
2 (e2εB+

3 −B
−
3 )µ− + (e2εB+

11 −B
−
11)µ+],

N6 = 2eεγ−B+
1 µ
−[B−1 B

−
9 µ
− + (B−1 B

−
4 + e2εB−2 )µ+],

(82)

and

D = 2ε[(B−1 )2B+
2 (B6 − 2e2εB5)(µ−)2 + 2B−1 [B−8 + e4εB+

8 + e2ε(4B−1 ε
2 − 2)]µ−µ+

+B+
1 [B−1 B

−
2 B6 + 2e2ε(B5[1 + (γ−)2]− 4γ−ε2)](µ+)2],

(83)
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with

B±1 = γ± − 1, B6 = 1 + e4ε, B±11 = B±3 ∓B
±
15,

B±2 = γ± + 1, B7 = µ− − µ+, B12 = B+
2 µ
− +B+

1 µ
+,

B±3 = 1± ε, B±8 = 1± γ−γ+, B±13 = e2ε(B+
4 + 2ε2)± 1,

B±4 = 1± 2ε, B±9 = e2ε ±B±4 , B±14 = e2ε(4ε2 ±B±4 )− 1,
B5 = 1 + 2ε2, B±10 = B±9 − 4ε2, B±15 = γ−(ε− γ+B±3 )± γ+ε.

(84)

In this case, stress components can be found, substituting displacements (78) with (80)–(84) into
the corresponding expressions in (6) and (7).

Appendix 2

Consider a homogeneous elastic half-space (ξ+3 ≥ 0) subject to the boundary conditions presented in
Table 2, where P = Aµ− cos ξ1 is a vertical harmonic load.

The equations of the formulated plane strain problem and the solution are given by (10)3, (10)4
and (78) with functions (80)3 and (80)4, where c+0 is taken as (81)1, and the values of the coefficients
c5 and c6, corresponding to the appropriate boundary conditions, are presented in Table 2, together
with the rest of the displacement and stress components at the surface ξ+3 = 0.

Case 1 Case 2 Case 3 Case 4

Boundary conditions for a homogeneous half-space

σ+
33

κµ+

12a

∂4u+3
∂ξ41

∣∣∣∣
ξ+3 =0

− P −P −P −P

u+1 0 0 – –

σ+
13 – – − κµ+

a

∂2u+1
∂ξ21

∣∣∣∣
ξ+3 =0

0

Coefficients in (80)3 and (80)4

c5µ

Aa

3γ−(γ+ + 1)

γ− − 1− γ+ + 7γ−γ+
γ+ + 1

2γ+
γ−(2 + 3γ+)− 2(1 + γ+)

2[γ−(3γ+ − 1)− 2γ+]

γ+

2(γ+ − 1)
c6µ

Aa

3γ−(γ+ − 1)

γ− − 1− γ+ + 7γ−γ+
γ+ − 1

2γ+
(3γ− − 2)(γ+ − 1)

2[γ−(3γ+ − 1)− 2γ+]

1

2

Displacement and stress components at the surface ξ+3 = 0

u+1 µ

Aa sin ξ1
– –

γ−

2(γ− + 2γ+ − 3γ−γ+)
− 1

2(γ+ − 1)
u+3 µ

Aa cos ξ1

3γ−(γ+ + 1)

γ− − 1− γ+ + 7γ−γ+
γ+ + 1

2γ+
γ−(2 + 3γ+)− 2(1 + γ+)

2[γ−(3γ+ − 1)− 2γ+]

γ+

2(γ+ − 1)
σ+
13

Aµ− sin ξ1

6γ−

1 + γ+ − γ−(1 + 7γ+)
− 1

γ+
− 2(γ− − 1)

γ−(3γ+ − 1)− 2γ+
–

σ+
33

Aµ− cos ξ1

6γ−γ+

1 + γ+ − γ−(1 + 7γ+)
– – –

Table 2. BVPs for a homogeneous half-space
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