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Abstract

N–2 repetition costs in task switching refer to slower responses to ABA sequences compared

to CBA sequences, reflecting the persisting inhibition of task A across the ABA sequence.

The magnitude of inhibition is thought to be sensitive to activation levels of interfering tasks.

This is supported by larger n–2 repetition costs when the response-cue interval (RCI) is

reduced: At short RCIs, a just-performed task is highly active when a new task is required,

triggering more inhibition. However, recent work has shown that much of the n-2 repetition

cost measures episodic interference, rather than inhibition. The current study addressed

whether RCI manipulations influence inhibition or episodic interference. N–2 repetition costs

were considerably reduced when episodic interference was controlled. Increasing the RCI led

to equivalent reductions in the n–2 repetition cost for inhibition and episodic components of

the cost, but for the former the cost was entirely absent at longer RCIs. .
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Does task activation in task switching influence inhibition or episodic interference?

Cognitive inhibition can be defined as “. . . the stopping or overriding of a mental

process, in whole or in part, with or without intention” (Gorfein & Brown, 2007). In models

of cognitive control, inhibition compliments activation processes by resolving interference

between competing representations once activated (Norman & Shallice, 1986; Sexton &

Cooper, 2017). A balance between activation of task-relevant representations and inhibition

of task-irrelevant representations seems to provide an elegant solution to the so-called

stability–flexibility dilemma (Goschke, 2000) that the cognitive system faces: In order to act

in a goal-directed manner, the system must be able to select task-relevant representations,

and maintain them in a stable manner so that task-irrelevant intrusions do not occur; at the

same time, these representations must be flexible so that they can be removed at a moment’s

notice when goals change. Inhibition can aid stability, by ensuring task-irrelevant

representations are inhibited if they interfere with the activation of task-relevant

representations; inhibition also aids flexibility, by inhibiting task representations when they

are no longer required.

The stability–flexibility dilemma has typically been studied using the task switching

paradigm (Grange & Houghton, 2014; Kiesel et al., 2010; Vandierendonck, Liefooghe, &

Verbruggen, 2010). In this paradigm, participants are required to rapidly switch between

simple tasks on multivalent stimuli. For example, participants might be presented with a

circle appearing in one of the four corners of a square grid, and be asked to mentally move

the stimulus according to one of three spatial-transformation rules (“horizontal”, “vertical”,

“diagonal”), and make a spatially-congruent response as to where the stimulus would move

to according to the rule (see Figure 1).

Inhibition is thought to aid successful task switching by inhibiting a recently-performed

task when it is no longer required (but see Altmann & Gray, 2008 for a comprehensive model

of task switching that does not require inhibition). Evidence for such an inhibitory

mechanism comes from requiring participants to switch between three tasks (arbitrarily



TASK ACTIVATION & TASK SWITCHING 4

labelled A, B, & C). Such a scenario reliably produces n–2 task repetition costs: slower

response times (and sometimes poorer accuracy) to ABA sequences than to CBA task

sequences (Koch, Gade, Schuch, & Philipp, 2010; Mayr & Keele, 2000), which is generally

accepted to reflect the persisting inhibition of task A across the ABA sequence which slows

down its reactivation on the final trial of the triplet. Inhibition has been shown to act upon

many levels of task representations, including cue/preparation-related aspects (Gade & Koch,

2014; Grange & Houghton, 2010; Houghton, Pritchard, & Grange, 2009; Scheil & Kleinsorge,

2014), stimulus-related aspects (Sdoia & Ferlazzo, 2008), and response-related aspects

(Philipp, Jolicoeur, Falkenstein, & Koch, 2007; Schuch & Koch, 2003).

Linking Inhibition to Activation

The n–2 task repetition cost appears sensitive to the degree of activation of the

competing task representations, suggesting that the amount of inhibition deployed is relative

to the amount of interference experienced by the system. Evidence for a link between

activation and subsequent inhibition comes from manipulating the response–cue interval

(RCI), the time between the response to one task and the onset of the cue for the next task.

It is a consistent finding that estimates of the n–2 task repetition cost are increased with

shorter RCIs (Gade & Koch, 2005; Grange & Houghton, 2009; Mayr & Keele, 2000). At

short RCIs, the just-performed task is still in a highly-active state; thus, when a new task

becomes activated, the high activation of the previous task generates interference, which

needs to be resolved by inhibiting the previous task (leading to large n–2 task repetition

costs). At short RCIs, however, the just-executed task’s activation has had more time to

passively decay (e.g., Altmann & Gray, 2008; but see Horoufchin, Philipp, & Koch, 2011), so

activation of the new task generates less interference, which requires less inhibition of the

previous task (leading to small n–2 task repetition costs; Gade & Koch, 2005).

This link between activation and inhibition in task switching was made explicit in a

recent computational model of task switching, whereby Sexton and Cooper (2017) extended
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the connectionist model of Gilbert and Shallice (2000) to account for n–2 task repetition

costs. In the model, stimuli are represented as a pattern of activation across input units, and

activation propagates through the network to three sets of response nodes, one for each of

the three tasks. The activation of the response nodes are biased toward the relevant task via

“task demand” units, which provide top-down activation of task-relevant response nodes, and

inhibition of task-irrelevant response nodes. Activation of task demand units carry over into

the next trial, such that when a task switches, activation of a new task demand unit will face

interference from a still-active—but task-irrelevant—task demand unit. A

conflict-monitoring layer (e.g., Botvinick, Braver, Barch, Carter, & Cohen, 2001) in the

model monitors the degree of interference between active task demand units; the degree of

interference registered is then translated proportionally into an inhibitory signal which feeds

back to the task demand units with the net effect that task-irrelevant demand units become

inhibited. This model was able to reproduce the increase in n–2 task repetition costs with

shorter RCIs as more interference is registered by the conflict monitoring units because more

activation of the previous trial’s task demand unit carries forward.

Episodic Retrieval Account of the N–2 Task Repetition Cost

The evidence discussed thus far supports an active inhibitory mechanism—as measured

by the n–2 task repetition cost—that deploys proportionally to the degree of interference

experienced, which is relative to the activation levels of task-irrelevant representations.

However, Grange, Kowalczyk, and O’Loughlin (2017)—extending the work of Mayr

(2002)—have provided evidence that much of the n–2 task repetition cost can be explained

by a non-inhibitory process: namely, episodic interference. This account suggests that

elements of a performed task—such as the cue, target characteristics, and the response

selected—become bound into a single representation and stored in episodic memory (e.g.,

Hommel, 1998, 2004; Logan, 1988). When this task is cued again, the most recent trace of

this task is automatically retrieved from episodic memory (Logan, 1988, 2002). If the current
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trial’s parameters differ to the retrieved episodic trace (e.g., a different response is required

because the presented target is different), a mismatch cost occurs relative to if the retrieved

episodic trace matches the current trial’s parameters (which will prime response selection).

By this account, the n–2 repetition cost can be explained by a mismatch cost, because trial

parameters typically differ across both instances of task A in an ABA sequence.

The contribution of episodic interference to the n–2 task repetition cost can be

examined using the paradigm introduced by Mayr (2002), a variation of which is presented

in Figure 1. Trial parameters can either match or mismatch across an ABA sequence: For

example, if the target is in the same location for Task A across an ABA sequence, the same

response will also be required (i.e., an n–2 response repetition); episodic retrieval would thus

prime response selection, leading to fast response times (and a reduced n–2 task repetition

cost). In contrast, an n–2 response switch would lead to a mismatch during episodic retrieval

(because a different response is required on the current trial to that at n–2, which is retrieved

from episodic memory), leading to slower response times (and a larger n–2 task repetition

cost).

Across three experiments, Grange et al. (2017) consistently found larger n–2 task

repetition costs for n–2 response switches (episodic mismatches) than n–2 response

repetitions (episodic matches), although some evidence remained for a “residual” n–2 task

repetition cost for episodic matches. The increased n–2 task repetition cost for n–2 response

switches suggests a large contribution of episodic interference to measures of inhibition in

task switching.

Given this, it raises the question whether experimental manipulations shown to

modulate the n–2 task repetition cost are actually influencing episodic interference rather

than inhibition. This possibility was demonstrated by Grange et al. (2017) in Experiment 2,

where they examined the effect of cue–task complexity on the n–2 task repetition cost in the

paradigm that controls for episodic interference. Previous work (Gade & Koch, 2014; Grange

& Houghton, 2010; Houghton et al., 2009) has shown that complex cue–task pairings (e.g.,
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using abstract shapes as cues) increases the n–2 task repetition cost relative to simple

cue–task pairings (e.g., words that describe the task, such as “Horizontal”). This finding has

typically been explained by complex cue–task pairings generating more interference in

working memory during switching, which requires more inhibition. However, when Grange et

al. (2017) examined this issue using the paradigm controlling for episodic interference,

complex cue–task pairings only increased the n–2 task repetition cost for n–2 response

switches (i.e., episodic mismatches); no clear effect of cue–task pairings was observed for the

residual n–2 task repetition cost (i.e., episodic matches). This data suggested that—contrary

to previous reports—cue–task complexity influences episodic interference, not inhibition.

The Current Study

The purpose of the current study was to re-examine the effect of RCI on the n–2 task

repetition cost whilst controlling for episodic interference. This will establish whether the

RCI manipulation is influencing task inhibition (Gade & Koch, 2005; Sexton & Cooper,

2017) or whether it actually influences episodic interference. This is an important question

given the proposed theoretical link between activation and inhibition in models of task

switching (Sexton & Cooper, 2017). Thus, the current work can directly address a key

theoretical assumption in models of task switching.

The study utilises the paradigm of Mayr (2002) and Grange et al. (2017), but

additionally manipulated the RCI between short (50ms) and long (1,000ms) values in

separate blocks. The choice of absolute values for the RCIs in the current study was

somewhat arbitrary. In the three studies examining the effect of RCI on the n–2 task

repetition cost, there is no consistency in absolute values used: Mayr (2002) used values of

150ms and 650ms; Gade and Koch (2005) used values of 100ms and 1400ms; and Grange and

Houghton (2009) used values of 100ms and 900ms. In Grange et al. (2017), which showed

strong effects of episodic retrieval on the n–2 task repetition cost, we used a fixed RCI of

50ms. Using values of 50ms and 1000ms are thus in line with previous (albeit arbitrary)
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choices.

There were two reasons for deciding to manipulate RCI blockwise. First, two previous

studies reporting reduced n–2 task repetition costs with longer RCIs manipulated RCI in a

block-wise manner (Grange & Houghton, 2009, Mayr (2002)). Second, trial-wise variation of

the RCI has been shown to introduce effects on performance attributable to temporal

distinctiveness of episodic memory traces (Grange & Cross, 2015; Horoufchin et al., 2011).

Whilst of potential interest to the current study’s aims (i.e., assessing episodic retrieval

effects), it is important to note that manipulating RCI block-wise ensures that temporal

distinctiveness is equated between different RCI conditions (Grange & Cross, 2015); as

previously stated, there is good evidence that the reduction of the n–2 task repetition cost

with increasing RCI has been found in conditions of block-wise manipulation of RCI (Grange

& Houghton, 2009; Mayr, 2002), and therefore temporal distinctiveness cannot be the main

explanation for this observation. As such, I wanted to remove its contribution to the data,

and therefore decided on a block-wise manipulation of RCI.

Four hypothetical outcomes on the n–2 task repetition cost are depicted in Figure 2. In

Figure 2A, RCI has no effect on the n–2 task repetition cost for both n–2 response repetitions

and switches. Despite the RCI effect appearing well-replicated (e.g., Gade & Koch, 2005;

Grange & Houghton, 2009), this remains a possibility. Figure 2B depicts a scenario where

RCI has an equal effect on the n–2 task repetition cost for response repetitions and switches.

This outcome would suggest that RCI influences both inhibition and episodic interference.

Figure 2C represents an outcome where the RCI manipulation only influences the n–2 task

repetition cost for response switches; this would suggest that RCI has no effect on inhibition,

but influences episodic interference. Figure 2D represents an outcome where RCI only

influences the n–2 task repetition cost for response repetitions; as this residual cost controls

for episodic interference, this outcome would suggest that the RCI does influence inhibition,

and not episodic interference. A final possibility (not shown) is that the RCI affects the n–2

repetition cost for both response repetitions and switches, but the effect is larger for one than
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the other, suggestive of a stronger effect of RCI for one level of response repetition.

Given the many outcomes that are possible with this manipulation, the registration of

the experimental design and analysis strategy becomes more important so that researcher

degrees of freedom (Simmons, Nelson, & Simonsohn, 2011) do not contribute to the final

result.

Method

Participants & Stopping Rule

Participants were recruited from the School of Psychology at Keele University in return

for partial course credit or cash payment (?10).

The stopping rule utilised sequential Bayes factors (Schönbrodt, Wagenmakers,

Zehetleitner, & Perugini, 2017), using the methods for Bayesian analysis of factorial designs

as outlined by J. N. Rouder, Morey, Verhagen, Swagman, and Wagenmakers (2017). The

stopping rule required data collection from a minimum of 20 usable participants.

(Participants’ data were not considered usable if their session-wise accuracy was less than

90%; see the later section Data Preparation for full detail about the data trimming and

exclusion criteria.) At this stage, Bayesian model comparison via Bayes factors was

conducted1. The data being modelled was the n–2 task repetition cost (calculated from

log-transformed data; see the later section Main Analysis Plan for rationale) as the

dependent variable, with the independent variables response–cue interval and n–2 response

repetition2.

1Due to the scheduling of the first batch of data collection, the first peek at the data did not occur until

30 subjects had been recruited.
2Note that the full design is a three-factor design with the factors Task Sequence, RCI, and Response

Repetition. However, for the stopping rule I used the two-factor design with the n–2 repetition cost as the

DV and RCI and Response Repetition as independent variables as this reduces the number of models that

are compared when using Bayes factors for factorial designs. The approach used for the stopping rule allows

the critical question of the research to be focussed upon: whether the n–2 repetition costs for n–2 response
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This analysis proceeds via a model comparison process. Each model entering the

comparison differs from the others in terms of its inclusion of main effects of factors and

their possible interaction. All models included “Participant” as a random effect. Four models

were compared: 1) A model with just a main effect of RCI; 2) A model with just a main

effect of Response Repetition; 3) A model with main effects of RCI and Response Repetition;

and 4) a model with the main effects of RCI and Response Repetition, plus their interaction

(hereafter the “full model”). For each model, a Bayes factor (BF) was calculated, which

provides a ratio of the model’s evidence—given the current data—against a “null” model

consisting of just the random effect.

As the full model is the critical test of the research question, the stopping rule

depended on the ratio of the full model’s Bayes factor in comparison to the next-best

model’s Bayes factor (or the best overall model if the full model is not the best). This

comparison produces a new Bayes factor showing the degree of support for one model

compared to the other. Thus, the critical Bayes factor, BFCritical, indicating the support of

the full interaction model is given by

BFCritical = BF Full Model

BF (Next) Best Model

This critical Bayes factor was assessed after every participant; the stopping rule was

that data collection would continue until the Bayes factor for this comparison went over 6

(indicating support for the full model) or under 1/6 (indicating support against the full

model). If the BFCritical had not reached either criterion by 75 participants, data collection

would cease.

The final sample consisted of 75 participants. Four additional participants were

removed from the final analysis: One due to experimenter error; one due to inattentiveness

throughout the study (the participant was closing their eyes for prolonged periods); and two

due to session-wise accuracy below 90%. Although an arbitrary criterion, I have used this

repetitions and n–2 response switches are differentially affected by the RCI manipulation.
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criterion in previous studies (see for example Grange et al. (2017)).

Apparatus & Stimuli

Stimuli were presented on a 17in. monitor connected to a PC running PsychoPy

(Pierce, 2007). The code for the program can be downloaded from http://bit.ly/2uwnOCg.

Responses were collected via a 1ms-precise USB keyboard. The stimulus display consisted of

a black square frame (width/height of 250 pixels) on a grey background. The target was a

black circle measuring 25 pixels in radius. Possible cues were the shapes square, triangle, and

hexagon; all had a radius of 50 pixels.

Procedure

The task required participants to mentally make a spatial transformation of the target’s

location according to the currently-relevant rule, and to make a spatially-congruent response

to the transformed location. Participants knew which rule is relevant by way of a task cue.

Each trial began with the presentation of a blank square frame for a variable period,

depending on the current RCI condition: 50ms in the “short” condition, and 1,000ms in the

“long” condition. After this time, a cue appeared in the centre of the frame for 150ms, after

which the target circle appeared in one of the four corners. The target position was 127

pixels diagonally from the centre of the frame. Target location was chosen randomly on each

trial. The cue and target remained visible until a response was recorded from the participant.

Each of the three cues were paired with one spatial transformation rule; for example,

the square might cue a “diagonal” transformation, the triangle might cue a “horizontal”

transformation, and the hexagon might cue a “vertical” transformation (see Figure 1). The

cue–rule pairings were fully counterbalanced across participants. Responses were made on

the numerical component of the response keyboard, using the keys “1”, “2”, “4”, and “5” to

indicate an lower-left, lower-right, upper-left, and upper-right response, respectively .

Participants were asked to respond as quickly and accurately as possible as soon as the

target appeared, using their right index finger; instructions also asked participants to reset

http://bit.ly/2uwnOCg
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their finger location to the centre of the four response keys after each response. Once a

response was registered, the frame went blank and the next trial began. If an error was

made, the word “Error!” appeared in red font in the centre of the screen for 1,000ms. The

cue for the next trial was selected randomly with the constraint that no rule-repetition trials

could occur; inclusion of task repetitions has been shown to reduce estimates of the n–2 task

repetition cost (Philipp & Koch, 2006).

The experiment was separated into two halves, with a single RCI being used for each

half. The order of RCI presentation was counterbalanced across participants. Each half of

the experiment consisted of 4 blocks of 120 trials, with a self-paced rest after each block.

Each half was preceded by an opportunity for participants to memorise the cue–rule pairings,

and exposure to a practice mini-block of 32 trials. If participants made more than 6 errors

(i.e., ~ 20%) the practice was repeated once.

Design

The experiment manipulated three factors in a fully-related design: Task Sequence

(n–2 task repetition) [ABA] vs. n–2 task switch [CBA]); Response Repetition (n–2 response

repetition vs. n–2 response switch); and RCI (short [50ms] vs. long [1,000ms]). Response

time in milliseconds (ms) and percentage error were recorded.

Analysis Strategy

This section provides an overview of the analysis plan. Various software packages were

used; all experimental data were prepared, analysed, and plotted using R (Version 3.4.0; R

Core Team, 2017) and the R-packages afex (Version 0.18.0; Singmann, Bolker, Westfall, &

Aust, 2017), BayesFactor (Version 0.9.12.2; R. D. Morey & Rouder, 2015), dplyr (Version

0.7.5; Wickham & Francois, 2016), ggplot2 (Version 2.2.1; Wickham, 2009), and papaja

(Version 0.1.0.9709; Aust & Barth, 2017).
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Data Preparation

For the RT and error-rate analysis, the first two trials from each block were removed as

they cannot be classified as ABA or CBA sequences. For the RT analysis, error trials and

the two trials following an error were removed. For error analysis, just the two trials

following an error were removed. RTs were trimmed by removing RTs shorter than 150ms

and longer than 2.5 standard deviations above the mean for each participant for each cell of

the experiment design.

Main Analysis Plan

Response time data and error data were analysed separately. The analysis for each DV

proceeded in three sections. In the first section, standard null-hypothesis significance testing

is presented3. Secondly, a Bayesian ANOVA (J. N. Rouder et al., 2017) was conducted with

the n–2 task repetition cost as the dependent variable, and Response Repetition and RCI as

the independent variables. The use of the n–2 task repetition cost as the DV removes one

factor (Task Sequence) from the analysis; this is advantageous because the number of models

considered in a Bayesian analysis of factorial designs increases exponentially with the

number of factors (see J. N. Rouder et al., 2017 for discussion). In a final section, Bayesian

parameter estimation of the effect of RCI on the n–2 task repetition cost for n–2 response

repetitions and response switches is presented.

Note that response times were log-transformed prior to data analysis. As the primary

measure of interest (the n–2 task repetition cost) is a difference score, one can expect larger

costs in a condition with overall longer response times without differences in the latent

psychological processes giving rise to the observed effects (Wagenmakers, Kryptos, Criss, &

Iverson, 2012). It is a consistent finding that RTs in short-RCI conditions are longer than in

3The primary focus will be on the Bayesian analysis that follows. However, as psychology is arguably

transitioning between NHST and Bayesian analysis, I report NHST too so that readers less familiar/comfortable

(or in complete disagreement) with Bayesian analysis can still engage with the analysis.
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long-RCI conditions, so we could expect larger n–2 task repetition costs in the short-RCI

condition even if the latent psychological process leading to this cost is unaffected by RCI

manipulations. Log transformation of data to some extent mitigates this issue by placing

RTs from different conditions on a similar scale.

Overview of null hypothesis significance testing. This analysis consists of a

three-way repeated measures analysis of variance with the factors Task Sequence (ABA

vs. CBA), Response Repetition (n–2 response repetition vs. n–2 response switch), and RCI

(short vs. long). The criterion for significance was set to α = .05. The effect size reported is

generalised eta squared (η2
g), the recommended effect size for repeated measures designs

(Bakeman, 2005).

Of critical interest is the presence/absence of a 3-way interaction; presence of such an

interaction would provide evidence that the effect of RCI on the n–2 task repetition cost is

different for n–2 response repetitions and n–2 response switches.

Overview of Bayes factor analysis. As stated when presenting the stopping rule,

Bayes factors (BFs) were calculated for four models, each constructed to predict the n–2 task

repetition cost (i.e., the data in Figure 2): 1) A model with just a main effect of RCI; 2) A

model with just a main effect of Response Repetition; 3) A model with main effects of RCI

and Response Repetition; and 4) a model with the main effects of RCI and Response

Repetition, plus their interaction (the “full model”). Higher BFs indicates more support for

the model. The default prior settings of J. N. Rouder et al. (2017) was used.

The main component of this analysis is a model comparison process: The ratio of the

BF for the full model against the next-best model’s BF (or the best overall model if the full

model is not the best) was calculated. This produces a new BF (BFCritical) assessing the

evidence in support (or against) the full model. Values of BFCritical above one indicate

support for the full model; values of BFCritical below one indicate support against the full

model.
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Overview of Bayesian estimation of the effect of RCI. Bayes factors are

suitable for hypothesis testing, but are not suitable to estimate the magnitude of a particular

effect. Of interest to this analysis was an estimation of the change in the n–2 task repetition

cost with increasing RCI for both n–2 response repetitions and switches. Therefore,

calculation of BFs were supplemented by Bayesian estimation of the effect of RCI on the n–2

task repetition cost for n–2 response repetitions and switches.

This was achieved by calculating a difference score representing the change in n–2 task

repetition cost from short RCIs to long RCIs; this is done separately for n–2 response

repetitions and n–2 response switches. Then, separate Bayesian one-sample t-tests are

conducted on each difference score (one for n–2 response repetitions and one for n–2 response

switches) using the BayesFactor package of Morey and Rouder (2015); a default prior on

the effect size d was used, distributed as a Cauchy distribution with scale parameter r =

0.707. One can then sample from the posterior distribution of the Bayesian t-test; the

analysis collected 100,000 samples from the posterior distributions. These were then be

presented as density functions (basically smoothed histograms), together with 95%

highest-density intervals (HDIs); the 95% HDIs span the range of parameter values with

greatest credibility, given the data and the prior distribution. This analysis thus provides

estimation of plausible parameter values for the effect of the RCI on n–2 task repetition costs

for n–2 response repetitions and response switches.

Results

Response Times

Mean response times for all factors of the design can be seen in Figure 3.

NHST. Mean response times were submitted to a 3-factor fully-related analysis of

variance with the factors Task Sequence, RCI, and Response Repetition. There was a main

effect of Task Sequence, with RTs slower to n–2 task repetitions (M = 6.80, SE = 0.05) than

to n–2 task switches (M = 6.74, SE = 0.05), F (1, 74) = 41.19, MSE = 0.00, p < .001,
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η̂2
G = .005. There was also a main effect of RCI, with slower RTs to the short RCI (M = 6.83,

SE = 0.05) compared to the long RCI (M = 6.71, SE = 0.05), F (1, 74) = 27.89, MSE = 0.08,

p < .001, η̂2
G = .053. There was a main effect of Response Repetition, with slower RTs to n–2

response switches (M = 6.77, SE = 0.05) than to n–2 response repetitions (M = 6.75, SE =

0.05), F (1, 74) = 20.38, MSE = 0.00, p < .001, η̂2
G = .002.

There was a significant interaction of Task Sequence and RCI [F (1, 74) = 32.39,

MSE = 0.00, p < .001, η̂2
G = .002]; the n–2 task repetition cost was 0.08 for the short RCI

[t(74) = 8.18, p < .001] and 0.03 for the long RCI [t(74) = 1.97, p = .053]. There was also a

significant interaction of Task Sequence and Response Repetition [F (1, 74) = 37.57,

MSE = 0.00, p < .001, η̂2
G = .004]; the n–2 task repetition cost was 0.07 for n–2 response

switches [t(74) = 12.24, p < .001], and 0.01 for n–2 response repetitions [t(74) = 0.54,

p = .587].

The three-way interaction was not statistically significant, F (1, 74) = 1.28,

MSE = 0.00, p = .262, η̂2
G = .000. The reduction of the n–2 task repetition cost with

increasing RCI was similar for n–2 response switches and for n–2 response repetitions, which

is best visualised in Figure 4 which plots the n–2 task repetition cost as the dependent

variable.

Bayes factors. The data in Figure 4 was modelled using the methods for Bayesian

analysis of factorial designs as outlined by J. N. Rouder et al. (2017). This analysis proceeds

via model comparison, where the models differ in terms of their inclusion of main effects of

factors and their interaction. All models included “Participant” as a random effect, and were

predicting the n–2 task repetition cost as the dependent variable.

The Bayes factor for the full model (main effects of RCI and Response, plus their

interaction) was BF = 1,499,526,744,685.78. The model with the highest BF was the model

including just main effects of RCI and Response (BF = 5,045,318,516,284.97). Thus, the

critical Bayes factor was BFCritical = 0.30. This suggests that the data are ~3 times more

likely under the two-main effects model compared to the full interaction model. This
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provides moderate evidence against the full interaction model and in support of the two

main effects model.

This analysis compliments the NHST analysis in that whilst the n–2 task repetition

cost decreases with RCI and is overall larger for response switches, the reduction of the n–2

task repetition cost with increasing RCI is not different for response repetitions and response

switches.

Bayesian estimation. The Bayesian estimation of the magnitude of the reduction

of n–2 task repetition cost with increasing RCI is shown in Figure 5. There appears some

overlap between the posterior distribution for response repetitions and response switches,

although there is a trend for the RCI effect for response switches to be larger than for

response repetitions. For n–2 response switches, the mean reduction in n–2 task repetition

cost from short to long RCIs was 0.05, 95% HDI [0.04, 0.07]. For n–2 response repetitions,

the mean reduction in n–2 task repetition cost from short to long RCIs was 0.03, 95% HDI

[0.01, 0.06].

Error Rates

Mean error rates for all factors of the design can be seen in Figure 6.

NHST. Mean error rates were submitted to a 3-factor fully-related analysis of

variance with the factors Task Sequence, RCI, and Response Repetition. There was no

significant main effect of Task Sequence, with similar error rates to n–2 task repetitions (M

= 2.73, SE = 0.28) and n–2 task switches (M = 2.71, SE = 0.34), F (1, 74) = 0.01,

MSE = 4.21, p = .936, η̂2
G = .000. There was a significant main effect of RCI, with higher

error rates to the short RCI condition (M = 3.05, SE = 0.33) compared to the long RCI

condition (M = 2.39, SE = 0.29), F (1, 74) = 12.21, MSE = 5.34, p = .001, η̂2
G = .015. There

was also a main effect of Response Repetition, with higher error rates to n–2 response

switches (M = 2.98, SE = 0.30) than to n–2 task repetitions (M = 2.45, SE = 0.33),

F (1, 74) = 11.57, MSE = 3.68, p = .001, η̂2
G = .010.
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There was no significant interaction of Task Sequence and RCI [F (1, 74) = 0.97,

MSE = 4.81, p = .328, η̂2
G = .001]. However, there was a significant interaction of Task

Sequence and Response Repetition [F (1, 74) = 35.81, MSE = 2.83, p < .001, η̂2
G = .023]; the

n–2 task repetition cost was 0.84% for n–2 response switches [t(74) = 5.41, p < .001], and

was a facilitatory effect of -0.81% for n–2 response repetitions [t(74) = −3.06, p = .003].

The three-way interaction was not statistically significant, F (1, 74) = 0.37,

MSE = 3.60, p = .543, η̂2
G = .000. The reduction of the n–2 task repetition cost with

increasing RCI was similar for n–2 response switches and for n–2 response repetitions, which

is best visualised in Figure 7 which plots the n–2 task repetition cost as the dependent

variable.

Bayes factors. The data in Figure 7 was modelled in the same way as for response

times.

The Bayes factor for the full model (main effects of RCI and Response, plus their

interaction) was BF = 3,909.38. The model with the highest overall BF was the model

including just the main effect of Response (BF = 80,271.40). Thus, the critical Bayes factor

was BFCritical = 0.05. This suggests that the data are ~20.53 times more likely under the

single-main effect of Response model compared to the full interaction model. This provides

strong evidence against the full interaction model, in favour of the model where just

Response influences the n–2 task repetition cost.

Bayesian estimation. The Bayesian estimation of the magnitude of the reduction

of n–2 task repetition cost with increasing RCI is shown in Figure 8. As with the RT

analysis, there appears some overlap between the posterior distribution for response

repetitions and response switches, although there is a trend for the RCI effect for response

switches to be larger than for response repetitions. For n–2 response switches, the mean

reduction in n–2 task repetition cost from short to long RCIs was 0.52%, 95% HDI [-0.07%,

1.10%]. For n–2 response repetitions, the mean reduction in n–2 task repetition cost from

short to long RCIs was 0.16%, 95% HDI [-1.00%, 1.32%].
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General Discussion

The purpose of the present study was to re-examine the effect of residual task

activation (as manipulated via the RCI) on the n–2 task repetition cost, a measure thought

to reflect inhibition. Importantly, though, the current study controlled for episodic retrieval

effects to examine whether RCI manipulations influenced inhibition or episodic retrieval.

The data showed strong effects of episodic retrieval on the n–2 task repetition cost,

replicating our earlier work (Grange et al., 2017). Specifically, the n–2 task repetition cost

was absent for n–2 response repetitions (i.e., episodic matches) in the response time data,

and turned into an n–2 task repetition benefit for accuracy data. In contrast, there were

large n–2 task repetition costs for n–2 response switches (i.e., episodic mismatches) in both

the response time and accuracy data. These data support the conclusion of Grange et al.

(2017) that much of the n–2 task repetition cost is caused by interference during episodic

retrieval, rather than purely inhibition, at least in the current paradigm.

Increasing the RCI led to smaller n–2 task repetition costs in the response time data,

replicating earlier work (Gade & Koch, 2005; Grange & Houghton, 2009; Mayr & Keele,

2000). Importantly for the current work, though, this reduction in n–2 task repetition cost

was similar for n–2 response repetitions and n–2 response switches, corroborated by both the

frequentist analysis (i.e., a lack of a three-way interaction in RT and accuracy data) and the

Bayesian analysis (the preference of the Bayes factors for a 2-main-effects model, as well as

the Bayesian estimation of the magnitude of the reduction of the n–2 task repetition cost

with increasing RCI). Thus, relating back to the hypothetical outcomes outlined in the

introduction, the current data are most consistent with Figure 2B, which suggests RCI has

an equal effect on episodic interference components of the n–2 task repetition cost (i.e., n–2

response switches) and inhibition components of the n–2 task repetition cost (i.e., n–2

response repetitions).

However, it is important to note that whilst the reduction of the cost with increasing

RCI is consistent for n–2 response repetitions and n–2 response switches, the overall
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magnitude of the cost is very different. For n–2 response repetitions in the response time

data, an increasing RCI reduces the n–2 task repetition cost from a modest cost to no cost at

all (see solid lines in Figure 4); for n–2 response switches, although the cost reduces with

increasing RCI, there is still a cost present at long RCIs (see dashed lines in Figure 4). The

same pattern is largely true also for the error data, except there is n–2 task repetition

facilitation for both short and long RCIs for n–2 response repetitions (episodic matches).

These findings have important theoretical implications, given the proposed tight link

between task activation, task interference, and subsequent deployment of task inhibition

(e.g., Gade & Koch, 2005; Sexton & Cooper, 2017). For instance, in the computational model

of Sexton and Cooper (2017), response nodes are biased toward the correct response via

top-down input from task demand units (one for each task), which themselves are activated

via the relevant task cue. The activation of task demand units carry-over from one trial to

the next; on task switches, the currently-relevant task demand unit becomes activated from

the task cue, but the recently-performed task’s demand unit retains some activity, leading to

interference. In the model, the system is sensitive to the level of interference, and deploys

inhibition proportionally. Importantly, the activation of task demand units decay passively

as a function of time when receiving no input from task cues. Therefore, if more time has

passed since task performance (i.e., at long RCIs), activation of a new task demand unit will

meet with less interference, and hence less inhibition is deployed. Thus, the model predicts

well the reduction of the n–2 task repetition cost with increasing RCI. However, given that

now sufficient evidence has been reported that a considerable portion of the n–2 task

repetition cost is driven by episodic interference, it would be important to extend the model

of Sexton and Cooper (2017) to incorporate episodic retrieval effects. This work would assist

in understanding the processes underlying the rather complex trade-off seen in the response

time and accuracy data: For n–2 response repetitions there is an n–2 task repetition cost for

the RTs (albeit small), but an n–2 task repetition benefit in the accuracy.

One possible extension is to utilise the Parallel Episodic Processing (PEP) model of
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Schmidt, DeHouwer, and Rothermund (2016). The PEP model is a connectionist model

designed to simulate behaviour (i.e., response times and accuracy) in cognitive paradigms

(e.g., the Stroop task). Importantly in this model, episodic traces are stored on every trial,

which bind together the stimulus that was presented on the current trial as well as the

response that was executed. When this stimulus is encountered again, all episodic traces

related to this stimulus are retrieved and can influence response performance on the current

trial.

The Sexton and Cooper (2017) model could be extended to incorporate this aspect of

the PEP model (Schmidt et al., 2016) by allowing an episodic trace to be stored on every

trial which captures the activation pattern across the input layer (i.e., the stimulus

presented), the task demand layer (i.e., which task is being cued) and the response layer (i.e.,

which response is activated). Upon presentation of a particular task in the future, the

episodic traces associated with this task can be retrieved and allowed to influence response

selection. Such a model will begin to address the extent to which inhibition and episodic

retrieval jointly contribute to the n–2 task repetition cost in task switching.

The current work, and that of Grange et al. (2017), sits within a broader context of

work demonstrating a role of episodic memory retrieval in explaining (or at least,

contributing to) key effects in the task switching literature. For example, work has shown a

considerable contribution of episodic (and semantic) memory retrieval to the task switch

cost—the observed slowing of RTs on task switch trials compared to task repetition

trials—in the explicitly-cued task switching paradigm (Altmann & Gray, 2008; Logan, 2003;

Schmidt & Liefooghe, 2016; Schneider & Logan, 2005). The observed reduction of the task

switch cost with inreasing RCI—once attributed to the time-based decay of task-set

activation (Meiran, Chorev, & Sapir, 2000)—has been shown to be attributable to temporal

distinctiveness effects during automatic, cue-based retrieval of task-sets from episodic

memory (Grange, 2016; Grange & Cross, 2015; Horoufchin et al., 2011). More recent work

has shown that the congruency effect in task switching—slowed responding to incongruent
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stimuli which afford more than one response (depending on task) compared to congruent

stimuli which afford just one response irrespective of task—can be explained by memory

retrieval processes (Schneider, 2014, 2015; Schneider & Logan, 2015). The current work—and

that of Grange et al. (2017)—contributes to this body of work by showing that the n–2 task

repetition cost to a large extent can also be explained by episodic memory retrieval.
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Figure 1 . Schematic of the experimental paradigm. The arrows represent the spatial

transformation required on each trial; these were not shown to participants. Time runs

from the top to bottom of figure. Note that the image is not drawn to scale. Figure

available at https://www.flickr.com/photos/150716232@N04/shares/5413G0 under CC licence

https://creativecommons.org/licenses/by/2.0/

https://www.flickr.com/photos/150716232@N04/shares/5413G0
https://creativecommons.org/licenses/by/2.0/


TASK ACTIVATION & TASK SWITCHING 30

C D

A B

Short Long Short Long

0

25

50

75

100

0

25

50

75

100

Response−Cue Interval

N
−

2 
R

ep
et

iti
on

 C
os

t (
m

s)

Response

Repetition

Switch

Figure 2 . Different predictions for the n-2 repetition cost (in milliseconds, ms) as a function of

the independent variables n–2 Response Repetition (repetition vs. switch) and Response–Cue

Interval (RCI; short vs. long). Note that the scale is arbitrary. A. Main effect of Response.

B. Main effect of Response and RCI. C. Interaction between Response and RCI. Here, RCI

affects response switches selectively. D. Interaction between Response and RCI. Here, RCI

affects response repetitions selectively.
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Figure 3 . Mean log transformed response times (in milliseconds, ms) for ABA and CBA

sequences as a function of response–cue interval (Short vs. Long) and response repetition

(repetition vs. switch). Error bars denote +/- 1 standard error around the mean.
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Figure 4 . Mean n–2 task repetition cost (log-milliseconds) as a function of response–cue

interval and response repetition. Error bars denote +/- 1 standard error around the mean.
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Figure 5 . Density functions of the Bayesian posterior distributions of the response–cue

interval (RCI) effect on the n–2 task repetition cost in log RT for n–2 response repetitions

and n–2 response switches. The RCI effect is defined as the difference in n–2 task repetition

cost for short and long RCIs. The horizontal bars denote the 95% highest density intervals

for each density function.
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Figure 6 . Mean error rates (in percentage) for ABA and CBA sequences as a function of

response–cue interval (Short vs. Long) and response repetition (repetition vs. switch). Error

bars denote +/- 1 standard error around the mean.
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Figure 7 . Mean n–2 task repetition cost (percent Error) as a function of response–cue interval

and response repetition. Error bars denote +/- 1 standard error around the mean.
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Figure 8 . Density functions of the Bayesian posterior distributions of the response–cue interval

(RCI) effect the n–2 task repetition cost in percentage error for n–2 response repetitions and

n–2 response switches. The RCI effect is defined as the difference in n–2 task repetition cost

for short and long RCIs. The horizontal bars denote the 95% highest density intervals for

each density function.
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