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Dispersion of plane harmonic waves in an elastic layer interacting with one or two-1

sided Winkler foundation is analysed. The long-wave low frequency polynomial ap-2

proximations of the full transcendental dispersion relations are derived for a relatively3

soft foundation. The validity of the conventional engineering formulation of a Kirch-4

hoff plate resting on an elastic foundation is investigated. It is shown that this5

formulation has to be refined near the cut-off frequency of bending waves. The as-6

sociated near cut-off expansion is obtained for both cases. A simple explicit formula7

demonstrating veering of bending and extensional waves is presented for a one-sided8

foundation.9
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I. INTRODUCTION10

Dispersion of elastic waves in a free layer was investigated in great detail beginning with11

the seminal contribution of Lamb (Lamb, 1917). The symmetry of the problem significantly12

simplifies analysis enabling separation of all the quantities of interest into even and odd13

parts with respect to the mid-plane. Violation of the symmetry, due to interaction with the14

environment along one of the faces, leads to more sophisticated dispersion relations which15

cannot be generally reduced to simpler ones for symmetric and antisymmetric waves. As an16

example, we mention (Kaplunov and Markushevich, 1993) investigating vibration of elastic17

layer resting on an acoustic half-space. A layer supported by a Winkler foundation is another18

important asymmetric setup.19

Bending of elastic structures on a Winkler foundation is usually treated in the framework20

of approximate engineering theories beginning with static analysis of an Euler-Bernoulli21

beam, see (Frỳba, 2013) and references therein. Associated dynamic formulations are always22

obtained just by incorporating an extra inertial term. However, such elementary trick does23

not take into consideration the peculiarities of the bending wave propagation in the vicinity24

of the cut-off frequency arising from the effect of the foundation. Formally, it corresponds25

to the absence of the leading order term in the Taylor near cut-off expansion expressed in26

terms of squared wavenumber. This phenomenon is also characteristic of formal dynamic27

generalization of the original static semi-membrane equations for a thin cylindrical shell, see28

(Kaplunov et al., 2016a; Kaplunov and Nobili, 2017b; Strozzi et al., 2014).29
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The current paper is aimed at revising the traditional 1D bending problem for a Kirchhoff30

plate on a Winkler foundation starting from the exact solution of the plane strain problem31

in linear elasticity with the main focus on a near cut-off behaviour. The fundamental32

extensional mode with a zero cut-off frequency arising in the 2D formulation, is also tackled33

in the paper.34

The studied Winkler foundation may be treated as the leading order approximation35

of the related problem for an elastic laminate subject to appropriate boundary condi-36

tions along the faces, see (Aghalovyan, 2015). It still finds numerous applications in-37

cluding modelling of transit and edge bending waves, (Brun et al., 2013), (Kaplunov et al.,38

2016b), (Kaplunov et al., 2014), see also (Kaplunov and Nobili, 2017a) using refined Paster-39

nak model. Among the publications on the subject we also mention (Elishakoff et al., 2018;40

Li et al., 2009; Ponnusamy and Selvamani, 2012).41

The paper is organized as follows. The dynamic equations in plane elasticity written in42

terms of wave potentials are presented in Section II. Along with the boundary conditions43

corresponding to the traditional ‘one-sided’ Winkler foundation, a symmetric ‘two-sided’44

foundation is also considered. Various dispersion relations are derived in Section III. As45

might be expected, the dispersion relations for symmetric and antisymmetric waves may46

be separated from each other only for a two-sided foundation. The asymptotic expansions47

corresponding to the bending cut-off frequencies are obtained for a relatively soft Winkler48

foundation. Sections IV and V deal with long wave low frequency polynomial approxima-49

tions of the transcendental dispersion relations derived in Section III for two and one-sided50

foundations, respectively. The leading order polynomial approximations of the antisymmet-51
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ric dispersion relation in Section IV appears to contain a few extra terms in comparison52

with the conventional dynamic model of a plate on a Winkler foundation. The associated53

near cut-off expansion is also presented. The leading order approximation of the symmetric54

dispersion relation appears to be valid not only for a soft foundation and corresponds to the55

longitudinal extensional wave in a plate subject to a transverse compression. Asymptotic56

considerations in the last section lead to similar conclusions as in previous section. However,57

the related leading order polynomial dispersion relation and near cut-off asymptotic expan-58

sion take a more sophisticated form due to interaction between extensional and bending59

waves. Veering of the associated dispersion curves is specially emphasized.60

II. STATEMENT OF THE PROBLEM61

Consider the plane strain problem for an elastic plate of thickness 2h either embedded in62

a Winkler elastic foundation with stiffness θ, Fig. 1(a), or supported by the latter along the63

lower face with traction free upper face, Fig. 1(b). We adapt the Lamé decomposition64

u = gradφ+ curlψ, (1)

of the two-dimensional displacement vector u = (u1, u2) through the scalar potential65

φ(x, y, t) and the only nonzero component of the vector potential ψz(x, y, t) both satis-66

fying the wave equation in two dimensions (−∞ < x <∞, −h ≤ y ≤ h)67

∆2φ−
1

c21
φ,tt = 0, (2)

and68

∆2ψz −
1

c22
ψz,tt = 0, (3)
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with longitudinal and transverse wave speeds given by

c1 =

√

λ+ 2µ

ρ
and c2 =

√

µ

ρ
,

where λ and µ are material constants, ρ is mass density, and ∆2 = ∂2/∂x2 + ∂2/∂y2 is the69

2D Laplace operator, with comma in suffix denoting partial differentiation.70
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FIG. 1. Thin elastic layer embedded in a Winkler elastic foundation

The boundary conditions along the faces of the one-sided and two-sided foundations, see71

Fig. 1, respectively, take the forms,72

σ22 = ∓θu2 and σ12 = 0, at y = ±h. (4)

and73

σ22 = 0 at y = h; σ22 = θu2 at y = −h; σ12 = 0 at y = ±h. (5)

The components of the displacement vector and stresses entering the boundary conditions74

(4) and (5) are expressed through the potentials as, e.g. see (Achenbach, 2012),75

u1 = φ,x + ψz,y, u2 = φ,y − ψz,x. (6)
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and76

σ22 = 2µ (φ,yy − ψz,xy) + λ∆2φ,

σ12 = µ (2φ,xy + ψz,yy − ψz,xx) .

(7)

The main goal of the paper is to justify and refine the well-known low frequency engi-77

neering model for bending vibration of a plate supported by a Winkler foundation. For the78

configuration in Fig 1 (b), it is given by, e.g. see (Achenbach, 2012),79

2Eh3

3(1− ν2)

∂4w

∂x4
+ 2hρ

∂2w

∂t2
+ θw = 0 (8)

where w ≈ u2(x, 0), E = 2(1 + ν)µ is Young’s modulus, and ν is Poisson’s ratio.80

Originally the Winkler model was adapted for static equilibrium of a beam (Winkler,81

1870). The inertial term was formally added at the latest stage as a D’Alembert force.82

Let us show that such approach does not seem to be always justified. On substituting the83

travelling wave solution w = exp i(kx−ωt) where ω is frequency and k is wave number, into84

equation (8), we get85

ω2 −
θ

2hρ
=

Eh2k4

3ρ(1− ν2)
. (9)

This relation may be treated as a Taylor expansion of a more general dispersion relation86

near the cut-off frequency ω = (θ/2hρ)1/2. Then, it is not very clear, why this expansion87

does not contain a term with k2, but only with k4 ! It is interesting that such issue also88

arises in the dynamic version of the semi-membrane theory for thin cylindrical shell, see89

(Kaplunov and Nobili, 2017b).90

In addition, we note that apart from aforementioned bending vibrations, the formulated91

2D plane strain problem also support extensional vibrations usually neglected in the con-92

siderations on the subject.93
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III. DISPERSION RELATIONS94

We shall look for the solutions in the form of travelling waves

φ(x, y, t) = Φ(y) exp i(kx− ωt) and ψz(x, y, t) = Ψz(y) exp i(kx− ωt).

Then, we have from (2) and (3)

Φ(η) = e1 cos (αη) + o1 sin (αη) , (10)

Ψz(η) = o2 cos (βη) + e2 sin (βη) , (11)

where η = y/h and95

α2 = χ2Ω2 −K2, β2 = Ω2 −K2, (12)

with χ = c2/c1 =
√

(1− 2ν)/2(1− ν) and96

K = kh and Ω =
ωh

c2
(13)

Consider first a two-sided foundation, see Fig. 1a. For symmetric waves when oi = 0, i = 1, 29798

in (10) and (11), we substitute the latter into boundary conditions (4) taking into account the99

formulas (7). As a result, we arrive at the dispersion relation (cf. (Graff, 1975, Eq.(8.1.54)))100

4αβK2

(β2 −K2)2
+

tan β

tanα
+G

αΩ2

(β2 −K2)2
tanβ = 0, (14)

where G = θh/µ is the dimensionless stiffness of the Winkler foundation. Numerical illus-101

tration of the dispersion curve (14) is shown in Fig. 2. Here and henceforth, if not stated102

explicitly we take G = 0.01 and ν = 0.25.103

Similarly, for antisymmetric waves (ei = 0, i = 1, 2 in equations (10) and (11)) we104

have (cf. (Graff, 1975, Eq.(8.1.59)))105

(β2 −K2)
2

4αβK2
+

tanβ

tanα
−G

Ω2

4βK2
cotα = 0. (15)
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FIG. 2. Symmetric waves governed by the dispersion relation (14) for G = 0.01 and ν = 0.25.

This dispersion relation is shown in Fig. 3. For a one-sided foundation, see Fig. 1(b),106107

symmetric and antisymmetric waves are coupled with each other, resulting in four non-108

zero constants ei and oi, i = 1, 2 in (10) and (11). Then, we insert the latter into the109

‘nonsymmetric’ boundary conditions (5) using formulae (7). The derived dispersion relation110

takes a more sophisticated form than above, and can be written as111

GΩ2

16

(

γ4 cos 2α
sin 2β

β
+K2α2 cos 2β

sin 2α

α

)

−

−
[(

γ8

4αβ
+
K4αβ

4

)

sin 2β sin 2α−
γ4K2

2
cos 2β cos 2α+

γ4K2

2

]

= 0

(16)

where γ2 = K2 − Ω2/2.112

We remark that it is similar in a sense to the dispersion relation for an elastic plate lying113

on an acoustic half-space, e.g. (Kaplunov and Markushevich, 1993).114
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FIG. 3. Antisymmetric waves governed by the dispersion relation (15) for G = 0.01 and ν = 0.25.

The cut-off frequencies (K = 0) of (16) affected by the Winkler foundation are given by115

tan 2χΩ−
Gχ

Ω
= 0 (17)

For a relatively soft foundation (G≪ 1) the lowest cut-off frequency Ω = Ω∗ is expanded as116

Ω∗ =

√

G

2

(

1−
Gχ2

3
+ · · ·

)

. (18)

As might be expected, the leading order term in (18) coincides with the value of the cut-off117

frequency (9) originated from the approximate model (8).118

Dispersion relation (16) possesses also zero cut-off frequency Ω = 0, similarly to the119

dispersion relation (14), related to symmetric waves in a plate supported by a two-sided120

foundation. In the latter case, we obtain, at G ≪ 1, from the dispersion equation for121

antisymmetric waves (15) the counterparts of the formulae (17) and (18). These take the122
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FIG. 4. Harmonic waves governed by the dispersion relation (16) for G = 0.01 and ν = 0.25.

form123

tan(χΩ)−
Gχ

Ω
= 0. (19)

and124

Ω∗ =
√
G

(

1−
Gχ2

6
+ . . .

)

. (20)

IV. LONG-WAVE LOW FREQUENCY APPROXIMATION FOR TWO-SIDED125

FOUNDATION126

A. Antisymmetric Motion127

At long wave, low frequency limit128

Ω ≪ 1 and K ≪ 1 (21)
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transcendental dispersion relation (15) under the assumption of a relatively weak Winkler129

foundation G≪ 1 has a polynomial expansion. At leading order it takes the form130

K4 −
(1 + ν)

2
K2Ω2 −

3(1− ν)

2
Ω2 −

(1− 2ν)

4
Ω4 +

3(1− ν)

2
G = 0 (22)

At K = 0, it supports two-term asymptotic formula (20) for cut-off frequency Ω∗.131

Over the vicinity of the cut-off frequency δ = Ω2−G≪ G, the polynomial equation (22)132

to within asymptotically small terms may be rewritten as133

δ =
G2(1− 2ν)

6(1− ν)
+

2

3(1− ν)
K4 −

1 + ν

3(1− ν)
K2G+ · · · . (23)

Note that at δ ≫ G2, when K ≫ G1/2, this expansion reduces to134
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FIG. 5. Antisymmetric waves governed by (16) (black, solid), (23) (red, dashed), and (24) (blue

dotted) for G = 0.01 and ν = 0.25 in the scaled variables δ∗ = δ/G2 and κ∗ = K/
√
G.

135

136

K4 −
3(1− ν)

2
Ω2 +

3(1− ν)

2
G = 0, (24)
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corresponding to the conventional engineering model of a Kirchhoff plate resting on aWinkler137

foundation, see Section II.138

It is clear that the inertial term in equation (24) may be neglected at Ω ≪ G1/2 resulting139

in quasi-static behaviour140

K4 +
3(1− ν)

2
G = 0. (25)

On the other hand, at Ω ≫ G1/2 we arrive at the dispersion relation for a free plate given141

by142

K4 −
3(1− ν)

2
Ω2 = 0. (26)

143
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FIG. 6. Antisymmetric waves governed by (16) (black, solid), (23) (red, dashed), and (24) (blue

dotted) for G = 0.01 and ν = 0.25.
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We also remark that near cut-off approximation (23) corresponds to the equation of146

motion147

2Eh3

3(1− ν2)

(

∂2

∂x2
+
θ(1 + ν)2

Eh3

)

∂2w

∂x2
+

+ 2hρ
∂2w

∂t2
+ θ

(

1−
θ(1− 2ν)(1 + ν)

3Eh(1− ν)

)

w = 0

(27)

containing extra terms in comparison with the traditional formulation (8).148

B. Symmetric Motion149

Now, we have at leading order from transcendental dispersion relation (14) over the150

domain (21)151

K2 =
(2− 2ν) +G(1− 2ν)

2 (2 +G(1− ν))
Ω2 (28)

not making yet additional assumptions on the dimensionless parameter G. At G ≪ 1, the152

latter can be expanded as153

K2

(

1 +
ν2G

2(1− ν)
+ · · ·

)

=
1− ν

2
Ω2 (29)

corresponding to the approximate model of plate transverse compression, (Kaplunov et al.,154

1998), see also Fig 1, governed by the one dimensional equation155

2Eh

1− ν2
∂2u1
∂x2

− 2ρh
∂2u1
∂t2

= −
2hν

1− ν

∂Q

∂x
(30)

where Q = ∓θu2 and u2 = ∓
νh

1 − ν

∂u1
∂x

.156

As it might be expected, at G = 0, the dispersion relation (29) coincides with that in the157

classical plane stress theory given by158

K2 =
1− ν

2
Ω2 (31)
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At G≫ 1 we have from (28), at leading order,159

K2 =
1− 2ν

2− 2ν
Ω2, (32)

which also may easily be deduced from the 2D plane strain limiting problem, see Section 2,160

with the following mixed boundary conditions along the faces161

σ12 = 0, u2 = 0 at y = ±h. (33)

162
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FIG. 7. Symmetric waves governed by the dispersion relations (16) (solid, black), (28) (red, dashed),

(31) (blue dotted), and (32) (green, dot-dashed) for G = 1 and ν = 0.25.
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V. LONG-WAVE LOW FREQUENCY APPROXIMATION FOR ONE SIDED165

FOUNDATION166

In this case, symmetric and antisymmetric plate motions are coupled with each other167

resulting in a more sophisticated polynomial shortened form of the original transcendental168

dispersion relation (16). We have at leading order, assuming (21), and also G≪ 1,169

GΩ2

32
−

G

16(1− ν)
K2 +

1

8

(

1

1− ν
+
G(7− 12ν + 4ν2)

6(1− ν)2

)

K2Ω2−

−
1

16

(

1 +
G(5− 8ν)

6(1− ν)

)

Ω4 −
G

12(1− ν)
K4 +

3− 2ν

12(1− ν)2
Ω2K4−

−
(11− 16ν + 4ν2)

48(1− ν)2
Ω4K2 −

1

12(1− ν)2
K6 +

3− 4ν

48(1− ν)
Ω6 = 0

(34)

Let us first transform this equation into two identical forms170

1

8(1− ν)

(

Ω2 −
G

2

)(

K2 −
1− ν

2
Ω2

)

= −
G (7− 12ν + 4ν2)

48(1− ν)2
K2Ω2+

+
G (5− 8ν)

96(1− ν)
Ω4 +

G

12(1− ν)
K4 −

3− 2ν

12(1− ν)2
Ω2K4+

+
4ν2 − 16ν + 11

48(1− ν)2
Ω4K2 −

3− 4ν

48(1− ν)
Ω6 +

1

12(1− ν)2
K6,

(35)

and171

1

12(1− ν)2
K2

(

K4 −
3(1− ν)

2
(Ω2 −G/2)

)

=

=
G

32
Ω2 −

1

16

(

1 +
G (5− 8ν)

6(1− ν)

)

Ω4 −
G

12(1− ν)
K4+

+
3− 2ν

12(1− ν)2
Ω2K4 −

11− 16ν + 4ν2

48(1− ν)2
Ω4K2 +

3− 4ν

48(1− ν)
Ω6.

(36)

in order to get a better idea of the studied extension and bending waves, respectively. Next,172

we obtain the two-term asymptotic expansions of the latter173

K2 =
1− ν

2
Ω2

(

1−
Gν2

3δ(1− ν)
Ω2 +

ν2

6δ(1− ν)
Ω4 + · · ·

)

, (37)
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and174

K4 =
3(1− ν)δ

2

(

1−
1

4δ3/2

√

2(1− ν)

3

(

4δG−
(

G+
4(3− 2ν)

1− ν
δ

)

Ω2 + 2Ω4

)

+ · · ·

)

(38)

where, now, δ = Ω2−G/2 . They clarify the physical meaning of long wave low frequency ap-175

proximation (34), in particular, the leading order term in (38) corresponds to the dispersion176

relation for a beam resting on an elastic foundation, see (8).177

The derived formulae (37) and (38) are valid outside the vicinity of the lowest bending178

cut-off frequency, see (18), namely at, δ ≫ G2 and δ ≫ G4/3, respectively. Instead, at179

δ ≪ G, we arrive at a near cut-off expansion of (34) given by180

δ

(

1−
4

G(1− ν)
K2 +

2δ

G

)

= −
G2(1− 2ν)

6(1− ν)
+

+
8

3G(1− ν)2

(

3− 8ν + 4ν2

16
K2 +

1

2G
K4 −

1

G2
K6

)

(39)

It is worth noting that at δ ≫ G2 it coincides at leading order with (37) and (38) provided181

that K ∼ G1/2 and K ≫ G1/2, respectively. We also remark that near the point Ω2 = G/2182

and K2 = G(1− ν)/4 both expansions (37) and (39) at leading order may reduce to183

δΩ

(

1− ν

2
δΩ − δK

)

=
ν2

32
, (40)

where184

δΩ =
Ω2 −G/2

G3/2
and δK =

K2 − (1− ν)G/4

G3/2
.

This explicit formula illustrates veering (Mace and Manconi, 2012) of the extensional and185

the bending dispersional curves first noted in Section 3.186187188189
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FIG. 8. Comparison of the dispersion curves corresponding to (34) (black solid), (37) (red, dashed),

and (38) (blue dotted), for G = 0.01 and ν = 0.25.

VI. CONCLUSIONS190

The long wave low-frequency shortened polynomial forms of the ‘exact’ transcendental191

dispersion relations for an elastic layer interacting with two and one-sided Winkler founda-192

tions are analysed. It is shown that the traditional engineering approximation within the193

framework of the classical theory of plate bending is not uniformly valid. It fails near the194

cut-off frequencies characteristic of elastically supported structures. The near cut-off asymp-195

totic expansions, see (23) and (39), are derived; in doing so, the expansion for a one-sided196

foundation takes a pretty sophisticated form, due to interaction of bending and extensional197

waves. At the same time, the simple explicit formula (40) visualising veering of two types198

of waves is obtained.199
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FIG. 9. Comparison of the dispersion curves corresponding to (34) (black solid), (39) (red, dashed),

(37) (blue, dotted), and (38) (green, dotdashed), for G = 0.01 and ν = 0.25 in the scaled variables

δ∗ = δ/G2 and κ∗ = K/
√
G.
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