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ERα PvuII and XbaI polymorphisms in
postmenopausal women with posterior
tibial tendon dysfunction: a case control
study
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Abstract

Background: Posterior tibial tendon (PTT) insufficiency is considered as the main cause of adult acquired flat foot and is
three times more frequent in females. High estrogen levels exert a positive effect on the overall collagen synthesis in
tendons. We have previously demonstrated the association between some genetic single-nucleotide polymorphism (SNP)
and tendinopathy. In the present study, we investigated the association of PvuII c454-397T>C (NCBI ID: rs2234693) and
XbaI c454-351A>G (NCBI ID: rs9340799) SNPs in estrogen receptor alfa (ER-α) gene with PPT dysfunction.

Methods: A total of 92 female subjects with PTT dysfunction, with histopathological examination of the tendon and
magnetic resonance image (MRI) evidence of tendinopathy, were compared to 92 asymptomatic females who presented
an intact PPT at MRI for PvuII and XbaI SNPs in the ER-α gene. Genomic DNA was extracted from saliva and genotypes
were obtained by polymerase chain reaction restriction fragment length polymorphism.

Results: The analysis of PvuII SNPs showed no significant differences in the frequency of alleles and genotypes between
control and PTT dysfunction groups. The XbaI SNPs in the ER-α gene showed significant differences in the frequency of
genotypes between control and test groups (p = 0.01; OR 95% 1.14 (0.55–2.33).

Conclusions: The XbaI SNP in the ERα gene may contribute to tendinopathy, and the A/A genotype could be a risk
factor for PTT tendinopathy in this population. The PvuII SNP studied was not associated with PTT tendinopathy.
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Background
The mechanisms of tendinopathy are complex and involve
mechanical stress, degenerative changes in the tendon tis-
sue, and disorganized healing, along with the possible con-
tribution from inflammatory processes. Some studies on
the role of estrogens in tendon biology have shown that
women are at a higher risk of tendon disorders, with dif-
ference according to pre- and post-menopausal status and
different phases of the menstrual cycle [1–6].

An increase in estrogens exerts a positive effect on the
overall collagen synthesis in tendons, while a decrease in
the synthesis of collagen fibers can result from estrogens
below physiological levels [7, 8]. Estrogen deficiency may
contribute to the age-related decrease in the healing cap-
acity of tendons [9] and may interfere with cell prolifera-
tion and matrix synthesis [10, 11].
Posterior tibial tendon (PTT) dysfunction is classically

considered to lead to adult acquired flatfoot [12], and
several risk factors have been proposed. However, many
patients present PTT dysfunction without seemingly any
of these risk factors or systemic conditions. It is there-
fore possible that an interaction between the various in-
trinsic and extrinsic factors with the genetic make-up of
a given individual increases the likelihood of that
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individual developing tendinopathy. There is an associ-
ation between of genetic single-nucleotide polymor-
phisms (SNPs) and tendinopathy [13–16], including
PTT dysfunction [17–21].
On the other hand, studies suggest that PTT dysfunc-

tion is a consequence and not the origin of adult-acquired
flatfoot deformity. The concept of posterior tibial tendon
dysfunction as the origin of the deformity is an old para-
digm which is being perpetuated in the literature, but we
still do not know whether this is the truth [12, 16, 17].
Steroid hormones primarily influence the female re-

productive tract, and they are also involved in regulating
the metabolism in connective tissues, such as the bone,
muscle, and cartilage. The main sources of estrogens are
the ovaries and the placenta, but the male testes, the ad-
renal glands, and several peripheral cells and other tis-
sues, such as osteoblasts, adipocytes, and endothelial
cells, also produce small amounts of estrogens [22].
The action of estrogen is predominantly mediated by

two classes of estrogen receptor: a rhodopsin-like G
protein-coupled receptor, which is located in the endo-
plasmic reticulum, and two intracellular hormone recep-
tors, namely estrogen receptor alfa and beta (ER-α and
ER-β). The latter are members of the nuclear receptor
superfamily and are unevenly distributed in many of the
estrogen-sensitive tissues.
The ER-α gene is located on chromosome 6q25.1.

Two well-studied polymorphisms in the ER-α gene are
PvuII c454-397T>C (NCBI ID: rs2234693) and XbaI
c454-351A>G (NCBI ID: rs9340799) present on intron 1
and commonly called PvuII and XbaI SNPs. These SNPs
have been associated to several estrogen-sensitive traits,
including osteoarthritis, scoliosis, osteoporosis, rotator
cuff tearing, and breast and prostate cancer [23–28]. In
addition, the presence of ER in the human tenocytes of
PTT has been demonstrated [29].
Therefore, the purpose of the present study was to in-

vestigate the association of PvuII and XbaI SNPs in ER-α
gene in female patients with PPT dysfunction.

Methods
Study population
This is a case–control cross-sectional study which
followed the guidelines of the Declaration of Helsinki.
The study protocol was approved by our institutional
Ethics committee (10166/2013), and written consent was
obtained from each participant.
Participants were patients from the Out-patient Clinics at

Department of Orthopedics and Traumatology and Depart-
ment of Gynecology of the University of São Paulo, Brazil.
All were female, aged over 40, and post-menopausal, with
at least 12months of amenorrhea and a follicle-stimulating
hormone level > 45mU/mL [30]. All participants under-
went standard clinical examination, including medical

history, medication use, personal history of systemic dis-
eases, and infectious or inflammatory diseases. Age, body
mass index (BMI), hypertension, hypothyroidism, and age
at menopause data were also collected.
Participants were divided into two groups:

� The test group, with 92 post-menopausal females
(mean age 59.5 years, range 41–59) who presented
PTT dysfunction diagnosed grade II or III
(Johnson and Strom Classification System). These
patients underwent surgical treatment, and the PTT
tendinopathy was confirmed by histopathology
(myxoid degeneration associated with multifocal
vascular proliferation) and by MRI (T2 image showing
intermediate signal intensity and tendon thickening).

� The control group was composed of 92 asymptomatic
post-menopausal females (mean age 63.7 years, range
47–62) with no clinical history of PTT disorders and
in whom no signal changes of the PTT were evident
at MRI. The target population was females in their
fourth to sixth decade of life.

All participants were in good general health and did
not present any of the following exclusion criteria: BMI
greater than 28, diabetes, rheumatic diseases, immuno-
logical disorders, liver or kidney disease, and infection or
trauma of the foot and ankle. There were no significant
differences between the groups in terms of BMI, hyper-
tension, hypothyroidism, and menopause time (p > 0.05).

Genotyping
DNA from epithelial buccal cells was extracted using the
procedure previously described [31]. DNA concentration
(ng/μL) was estimated by measurements of optical dens-
ity 260/280 nm ratio greater than 1.9.
The SNPs had previously been identified and reported

in the database of the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov/SNP/) with
minor allele frequencies greater than 0.4.
Genotyping of ER-α PvuII and XbaI SNPs was per-

formed using the polymerase chain reaction restriction
fragment length polymorphism (PCR-RFLP) method. The
fragment containing ER-α SNPs was amplified using for-
ward 5′-CGTCTACTCCTATGTCTGGT-3′ and reverse
5-CGTGTAGACTGAAGGGCAT-3′ primers. PCR were
carried out in a total volume of 50 μL containing 100 ng of
genomic DNA, 50mM KCl, 0.2 mM dNTPs (dATP, dCTP,
dGTP, and dTTP), 5 pmol/μL of each primer, 2 mM of
MgSO2, and 0.4 unit of Platinum ®Taq DNA Polymerase
High Fidelity (Life Biosciences). The PCR condition was
set as follows: 94 °C for 6min, 40 cycles of 94 °C for 30 s,
54 °C for 45 s, and 72 °C for 45 s, and final extension step
of 72 °C for 5 min. Then, PCR products were digested with
PvuII and XbaI restriction enzymes (Fermentas,

Pontin et al. Journal of Orthopaedic Surgery and Research          (2018) 13:316 Page 2 of 5

http://www.ncbi.nlm.nih.gov/SNP/


Vilnius, Lithuania) and electrophoresed onto 2% agar-
ose. The gel was stained by ethidium bromide and ob-
served under UV light.

Statistical analysis
Mann–Whitney U and Fisher’s exact test were used to
determine any significant differences between ages, BMI,
hypertension, hypothyroidism, and menopause time of
both groups. The chi-square test was applied to compare
the frequencies of alleles and genotypes of SNPs in ER-α
gene between patients and controls. The program
ARLEQUIN (v. 2.0—Schneider et al. [32]) was used to
verify the Hardy–Weinberg equilibrium in the popula-
tion studied.

Results
All genotype distributions were in Hardy–Weinberg
equilibrium. Considering the ER-α PvuII SNPs, there
were no significant differences in the frequencies of al-
leles and genotypes between the control and test groups
(Table 1).
The ER-α XbaI SNPs showed significant differences in

the frequencies of genotypes between the control and
test groups. The A/A genotype was found in 36% of the
test group and 18.5% of the control group (p = 0.01; OR
95% 1.14 (0.55–2.33). In the test group, the A allele was
observed with a frequency of 57%, while in the control
group, the most frequent genotype was the G allele, but
this was not statistically different (p = 0.17) (Table 1).

Discussion
Several genes are highly associated with tendinopathy
and tendon rupture and may be useful in constructing a

targeted gene panel for patients who have had tendon
injuries [16].
There is evidence of an association between SNPs in

the estrogen-related receptor beta (ERRβ) and tendon
disease. ERRβ exhibits constitutive transcriptional activ-
ity and is an orphan receptor that shares significant se-
quence homology with estrogen receptors ERα and ERβ.
Motta et al. [33] identified two SNPs (rs4903399 and
rs1676303) in the ERRβ gene which were significantly
over-represented in rotator cuff patients compared to
controls, while Teerlink et al. [34] showed that the SNP
rs17583842 in the same gene was significantly associated
with rotator cuff tears. Bonato et al. [35] identified that
the SNP rs6574293 in the ERRβ gene was associated
with temporomandibular disorders. Also, the SNPs
rs10132091 and rs4903399 in the ERRβ gene were asso-
ciated with comorbidity of temporomandibular disorders
and rotator cuff tendinopathy [35].
To our knowledge, this is the first study to analyze the

genetic association of SNPs in the ER-α gene in patients
with tibialis posterior tendinopathy. These data were de-
rived from 184 participants, providing solid evidence to
detect a clinically relevant statistical relationship between
SNPs and the condition at hand. All participants were
post-menopausal women. The test group was slightly
younger that the control group, but there were no signifi-
cant differences in BMI, hypertension, hypothyroidism,
and menopause time, thus minimizing the possible influ-
ence of systemic conditions on the pathogenesis of PTT
insufficiency.
In the present case–control cross-sectional study, we

identified an association between XbaI SNPs in the ER-α
gene and PTT insufficiency. The A/A genotype was
more prevalent in the test group, and we hypothesize

Table 1 SNPs frequencies of gene ER-α in the control and test groups

SNP SNPs Control group Test group p value ORa (95% CI)

PvuII c454-397T>C (NCBI ID: rs2234693) Allele (Chi-squared)

T 51.1 (94) 54.3 (100) p = 0.60 1.13 (0.75–1.71)

C 48.9 (90) 45.7 (84)

Genotype

T/T 21.7 (20) 23.9 (22)

T/C 58.7 (54) 60.9 (56) p = 0.72 1.13 (0.56–2.25)

C/C 19.6 (18) 15.2 (14)

XbaI c454-351A>G (NCBI ID: rs9340799) Allele n = 184 n = 184 (Chi-squared)

G 50.5 (93) 43.0 (79) p = 0.17 1.35 (0.90–2.04)

A 49.5 (91) 57.0 (105)

Genotype n = 92 n = 92

G/G 19.5 (18) 21.7 (20) p = 0.01 1.14 (0.55–2.33)

A/G 62.0 (57) 42.3 (39)

A/A 18.5 (17) 36.0 (33)
aValues are expressed in percentage, with the number of participants (n) in parentheses
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that it may be a risk factor for PTT insufficiency. The A/
A genotype may induce greater or faster degradation of
the extracellular matrix, which may culminate in tendi-
nopathy of the PTT. The XbaI SNPs lie in intron 1 of
the ERα gene, which is part of the A/B domain, the
trans-activating factor 1. This domain is a key site to
stimulate transcription from certain estrogen-responsive
promoters [36]. Among the possible explanations as to
how this intronic polymorphism affected PTT dysfunc-
tion risk are that intronic changes may have an impact
on the expression of receptors by influencing the tran-
scription through alternative splicing of the mRNA tran-
script [37] or the alteration of another unidentified gene
that is adjacent to the ERα gene [38].
Considering the PvuII SNP in ER-α gene, we did not de-

tect significant differences in the frequencies of alleles and
genotypes between the control and test groups. However,
the effect of this SNP may be masked by SNP in different
regions of a gene or other genes that participate in the
complex network of mediators from the tendon region.
In addition to that, extensive studies between PvuII and

XbaI SNPs in ER-α gene and different pathologies have
produced inconsistent results when comparing different
ethnic groups. Discrepancies between different studies
may result from differences in ethnic background, indicat-
ing the probability of inherited susceptibility arising from
different genomic ERα SNPs. However, replication studies
in other populations as well as functional studies are
needed to clarify the complex role of ERα in PTT
tendinopathy.
Studies have demonstrated an altered proportion of sev-

eral types of collagen in tendinopathy; specifically, PTT
dysfunction shows increased type III, IV, or V collagen
and decreased type I collagen which is diffusely distributed
and grossly surrounded by type III fibrils [21, 39]. Since al-
terations in estrogen levels affect the overall collagen syn-
thesis, the ERα XbaI SNPs might contribute to alteration
in collagens in patients with PTT dysfunction.
Further understanding of the biological mechanisms

underlying the tendinopathy process is an important pre-
requisite in developing genomics application. Early genetic
identification of individuals at higher risk to develop PTT
dysfunction can contribute to appropriate strategies for
prevention and treatment of acquired flatfoot in adults.
Studies suggest that posterior tibial tendon dysfunction

is a consequence and not the origin of flatfoot deformity.
The concept of posterior tibial tendon dysfunction as the
origin of the deformity is an old assumption, but it is still
unclear whether a cause–effect relationship is present. In
some instances, posterior tibial tendon transfer did not
produce flatfoot deformity developed over time. This
would support the idea that we are not looking at the
whole picture and that degenerative changes must be
present in multiple soft tissues (including, for example,

the spring, interosseous, and subtalar ligaments) for an
adult-acquired flatfoot deformity to develop [12, 16, 17, 39].
In conclusion, the XbaI SNPs in the ERα gene could

be a risk factor for PTT tendinopathy. The ER-α PvuII
SNP does not appear to be associated with PTT tendino-
pathy. Larger studies in other ethnic group may clarify
the clinical impact of such findings.
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