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Abstract

Given a skew left brace B, we introduce the notion of an “opposite” skew left brace B′, which is
closely related to the concept of the opposite of a group, and provide several applications. Skew
left braces are closely linked with both solutions to the Yang-Baxter Equation and Hopf-Galois
structures on Galois field extensions. We show that the set-theoretic solution to the YBE given by
B′ is the inverse to the solution given by B. Every Hopf-Galois structure on a Galois field extension
L/K gives rise to a skew left brace B; if the underlying Hopf algebra is not commutative, then
one can construct an additional, “commuting” Hopf-Galois structure (see [10], which relates the
Hopf-Galois module structures of each); the corresponding skew left brace to this second structure
is precisely B′. We show how left ideals (and a newly introduced family of quasi-ideals) of B′

allow us to identify the intermediate fields of L/K which occur as fixed fields of sub-Hopf algebras
under this correspondence. Finally, we use the opposite to connect the inverse solution to the YBE
and the structure of the Hopf algebra H acting on L/K; this allows us to identify the group-like
elements of H.
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1. Introduction

Skew left braces were developed by Guarnieri and Vendramin in [1] to construct non-degenerate,
not necessarily involutive set-theoretic solutions to the Yang-Baxter equation. They were developed
as a generalization to the concept of braces defined by Rump in [2] to find involutive solutions to
the YBE. As first pointed out in [3, Remark 2.6] and developed in the appendix by Byott and
Vendramin in [4], finite skew left braces–hereafter, “braces” for brevity–always arise from Hopf-
Galois structures on Galois field extensions. In [3, Remark 2.6], the author writes “We hope that
this connection between these two theories would be fruitful in the future”, a hope which has
been fulfilled: for example, in [5] Childs defines the notion of “circle-stable subgroups” of a brace
and shows that such subgroups correspond to sub-Hopf algebras of the Hopf algebra giving the
corresponding Hopf-Galois structure.

In this work (see Section 3), we introduce the rather simple notion of the opposite of a skew left
brace. Our construction simply reverses the order in one of the two binary operations which deter-
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mine the brace. Our motivation comes from an existing pairing of non-commutative Hopf-Galois
structures. We illustrate the usefulness of the opposite construction through a few applications.

As mentioned above, skew left braces provide set-theoretic solutions to the Yang-Baxter equation
which are non-degenerate. Given a set B, a solution is a function R : B × B → B × B satisfying
certain properties–see Section 2.2 for details. Each brace B gives rise to such a solution RB: the
non-degeneracy of RB implies that it has an inverse; in Section 4 we show how the opposite brace
allows for an easy construction of R−1B .

Suppose L/K is a finite Galois extension. Then Hopf-Galois structures on L/K correspond
with choices of certain groups N of permutations of the elements of Gal(L/K), which in turn
give rise to braces B(N). Unlike classical Galois theory, a Hopf-Galois structure will give some,
but not necessarily all, intermediate fields of L/K, only the ones which correspond to sub-Hopf
algebras. It is natural to ask which intermediate fields arise, which [5] answers by constructing a
new substructure of a brace. In Section 5 we use the opposite and relate these intermediate fields
with the known brace substructure of ideals (and the closely related, new concept of quasi-ideals) of
the opposite brace. Ideals allow us not only to find these intermediate fields K ≤ F ≤ L, but also
single out, for example, which allow L to be decomposed into two Galois extensions L/F and F/K
which are also Hopf-Galois in a manner canonically related to the original Hopf-Galois structure.

One can also use the constructed solution to the YBE to understand some of the structure of the
Hopf algebra which provides the corresponding Hopf-Galois structure. By using both connections to
skew left braces, we are able to determine the group-like elements of the Hopf algebra by examining
the second component of the solution to the YBE.

It is possible that a brace be equal to its own opposite, but it is easy to see that this happens if
and only if a certain commutativity condition is satisfied. However, it is also possible to have a brace
be isomorphic to its opposite, forming what we call, with abuse of terminology, a self-opposite brace.
Knowing if a brace is self-opposite has important consequences when determining the intermediate
fields in a Hopf-Galois extension which arise through the Hopf-Galois correspondence. Thus, in
Section 6 we consider the self-opposite question. At this point, there seems to be no simple criterion
to determine whether a brace is self-opposite.

2. (Skew Left) Braces, the Yang-Baxter Equation, and Hopf-Galois Structures

In this section we provide the background necessary for the rest of the paper.

2.1. Braces

We begin, of course, with the definition of a skew left brace. At this point, there does not seem
to be standard notation for skew left braces; we set ours based on [1].

Definition 2.1. A skew left brace B is a triple (B, ·, ◦) consisting of a set and two binary operations,
where (B, ·) and (B, ◦) are both groups and the following relation holds for all x, y, z ∈ B:

x ◦ (yz) = (x ◦ y) · x−1 · (x ◦ z),

where the symbol x−1 refers to the inverse to x ∈ (B, ·). We call the relation above the brace
relation.

As one would expect, a brace homomorphism is a map preserving both the dot and circle
operations, and an bijective homomorphism is a brace isomorphism.
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As stated in the introdution, for brevity we will refer to a skew left brace simply as a brace,
however the reader should be aware that “(left) brace” is used by many to refer to the case where
(B, ·) is abelian as in [2].

Going forward, we will adopt the following notational conventions for B = (B, ·, ◦), the first
(mentioned above) included for completeness:

• For x ∈ B, the inverse to x in (B, ·) will be denoted x−1.

• For x ∈ B, the inverse to x in (B, ◦) will be denoted x.

• For x, y ∈ B we will write xy for x · y when no confusion can arise.

• The identity in both (B, ·) and (B, ◦) will be denoted 1B . Note that the symbol 1B is not
ambiguous: if x · 1B = x for all x ∈ B then

x ◦ 1B = x ◦ (1B · 1B) = (x ◦ 1B)x−1(x ◦ 1B),

from which it follows from left cancellation that x−1(x ◦ 1B) = 1B , i.e., x = x ◦ 1B .

Here are some examples which will be used throughout this paper.

Example 2.2. Let (B, ·) be any finite group. Then B = (B, ·, ·) is readily seen to be a brace. We
call this the trivial brace on B.

Example 2.3. Let (B, ·) be any finite group, and define x ◦ y = y · x for all x, y ∈ B. Then
B = (B, ·, ◦) is also a brace. We call this the almost trivial brace on B.

Example 2.4. Let
B = 〈η, π : η4 = π2 = ηπηπ = 1〉.

Then B ∼= D4, the dihedral group of order 8. Define a binary operation ◦ on B as follows:

ηiπj ◦ ηkπ` = η2j`
(
ηkπ`

) (
ηiπj

)
= ηk+(−1)`i+2j`πj+`.

Note that η2j` is in the center of (B, ·). This operation is associative: let xj = ηiπj , x` = ηkπ`,
and xn = ηmπn for some choices i, k,m. Observe that, e.g., xjx` = yj+` for some yj+` = ηrπj+`.
Then

xj ◦ (x` ◦ xn) = xj ◦ (η2`nxnx`) = η2j(`+n)η2`nxnx`xj = η2j`+2jn+2`nxnx`xj

and similarly

(xj ◦ x`) ◦ xn = η2j`x`xj ◦ xn = η2n(j+`)η2j`xnx`xj = η2j`+2jn+2`nxnx`xj .

Additionally, ηiπj ◦ 1B = ηiπj so 1B is the identity, and

ηi ◦ η−i = 1B , η
iπ ◦ ηi+2π = 1B

shows ηi = η−i and ηiπ = ηi+2π and hence (B, ◦) is a group. The identities π ◦ η = η−1 ◦ π and
π ◦ π = η ◦ η can be easily established, and since

η◦k := η ◦ η · · · ◦ η︸ ︷︷ ︸
k times

= ηk
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we see η ∈ (B, ◦) has order 4, hence (B, ◦) ∼= Q8.
Finally, we claim that (B, ·◦) satisfies the brace relation. Writing xj , x`, and xn as above we get

xj ◦ (x`xn) = η2j(`+n)x`xnxj

= η2j`x`η
2jnxnxj

= η2j`x`(xjx
−1
j )η2jnxnxj

= (xj ◦ x`)x−1j (xj ◦ xn),

and hence (B, ·, ◦) is a brace.

2.2. The Yang-Baxter Equation

As mentioned previously, skew left braces were originally constructed to provide set-theoretic
solutions to the Yang-Baxter Equation. We now review this concept.

Definition 2.5. A set-theoretic solution to the Yang-Baxter equation is a set B together with a
function R : B ×B → B ×B such that

R12R23R12(x, y, z) = R23R12R23(x, y, z)

for all x, y, z ∈ B, where R12 = R× 1B and R23 = 1B ×R.
Furthermore, we say R is involutive if R(R(x, y)) = (x, y) for all x, y ∈ B; and if we write

R(x, y) = (fx(y), fy(x)) for some functions fx, fy : B → B we say R is non-degenerate if fx and fy
are both bijections.

Notice above that we will often refer to R as the solution, leaving B implicit.

Example 2.6. Let B be any finite group, written multiplicatively. Then R(x, y) = (y, y−1xy) is a
non-degenerate solution to the YBE. It is involutive if and only if B is abelian.

Example 2.7. In a manner similar to the above, let B be any finite group, written multiplicatively.
Then R(x, y) = (x−1yx, x) is a non-degenerate solution to the YBE. It is also involutive if and only
if B is abelian.

Example 2.8. Let B be the set B = {ηiπj : 0 ≤ i ≤ 3, 0 ≤ π ≤ 1}. Then

R(ηiπj , ηkπ`) =
(
η(−1)

jk+2i`+2j`π`, ηi+2j`πj
)

provides a non-degenerate solution to the YBE, where the exponent on η is interpreted mod 4 and
the exponent on π is interpreted mod 2. We leave the details to the reader for now, although it
will follow from the paragraph to follow that R must satisfy with YBE.

The connection between solutions to the YBE and braces are as follows. Suppose B := (B, ·, ◦)
is a brace. Let RB : B ×B → B ×B be given by

RB(x, y) = (x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y).

By [1, Theorem 1], RB provides a non-degenerate, set-theoretic solution to the YBE, involutive
if and only if (B, ·) is abelian. In fact, Examples 2.6, 2.7, 2.8 were constructed from the braces
given in Examples 2.2, 2.3, and 2.4 respectively.
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2.3. Hopf-Galois Structures

We start by recalling the definition of a Hopf-Galois extension–more details can be found, e.g.,
in [6, §2].

Definition 2.9. Let L/K be a field extension. Suppose there exists a K-Hopf algebra H, with
comultiplication and counit maps ∆ and ε respectively, which acts on L such that

1. h · (st) = mult ∆(h)(s⊗ t), h ∈ H, s, t ∈ L,

2. h(1) = ε(h)1, h ∈ H,

3. The K-module homomorphism L⊗KH → EndK(L) given by (s⊗h)(t) = sh(t), h ∈ H, s, t ∈
L is an isomorphism.

Then H is said to provide a Hopf-Galois structure on L/K, and we say L/K is Hopf-Galois with
respect to H, or H-Galois.

If H gives a Hopf-Galois structure on L/K then

LH := {s ∈ L : h(s) = ε(h)s for all h ∈ H} = K,

and we think of K as the “fixed field” under this action. If H0 is a sub-Hopf algebra of H, then
LH0 , defined analogously, is an intermediate field in the extension L/K. While the usual Galois
correspondence provides a bijection between subgroups and intermediate fields, the correspondence
between sub-Hopf algebras and intermediate fields need not be onto (though it is certainly injective).

In the groundbreaking paper [7], Greither and Pareigis showed that Hopf-Galois structures on
any separable field extension L/K could be found using only group theory; we shall outline their
results in the case where L/K is Galois. Let G = Gal(L/K), and let Perm(G) denote the group
of permutations of G. A subgroup N ≤ Perm(G) is called regular if for all g, h ∈ G there exists a
unique η ∈ N such that η[g] = h. Note that N must have the same order as G. Furthermore, we
shall say N is G-stable if gη ∈ N for all g ∈ G, η ∈ N , where gη ∈ Perm(G) is given by

gη[h] = λ(g)ηλ(g−1)[h], h ∈ G

and λ(k) ∈ Perm(G) is left multiplication by k ∈ G.
Given a regular, G-stable N ≤ Perm(G), let HN be the invariant ring HN = L[N ]G, where G

acts on N as above and on L through Galois action. Then HN is a K-Hopf algebra which acts on
` ∈ L via ∑

η∈N
aηη

 · ` =
∑
η∈N

aηη
−1[1G](`),

∑
η∈N

aηη ∈ HN ⊂ L[N ]G.

The association N 7→ HN for N ≤ Perm(G) is a bijection between regular, G-stable subgroups and
Hopf Galois structures on L/K.

Example 2.10. Let N = ρ(G) = {ρ(g) : g ∈ G}, where ρ(g)[h] = hg−1 is right regular represen-
tation. For h, k ∈ G then ρ(g)[h] = k if and only if g = hk−1, hence ρ(G) is regular. Since the
images of the left and right regular representations commute, ρ(G) is G-stable. In fact, λ(g) acts
trivially on ρ(h) for all g, h ∈ G, so Hρ(G)

∼= K[G]. Using the formula given above we see that the
action of Hρ(G) on L corresponds to the usual action of K[G], and so we recover the classical Galois
structure on L/K.
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Example 2.11. Let N = λ(G) = {λ(g) : g ∈ G}, λ(g) as above. Then λ(G) is regular, and since
gλ(h) = λ(ghg−1) ∈ λ(G) we see that λ(G) is a G-stable subgroup of Perm(G). The structure
given by Hλ(G) is called the canonical nonclassical Hopf-Galois structure in [8].

Example 2.12. Suppose G = 〈s, t : s4 = t4 = 1, s2 = t2, stst−1 = 1〉 ∼= Q8. Let η = ρ(s), π =
λ(s)ρ(t) ∈ Perm(G), and let N = 〈η, π〉. Then N ≤ Perm(G) is regular, G-stable, and N ∼= D4,
the dihedral group of order 4: see [9, Lemma 2.5] for details. Note that this is one of many regular,
G-stable subgroups of Perm(G), as found in loc. cit.

2.4. Connecting Braces to Hopf-Galois Structures

As mentioned in the introduction, Bachiller points out a connection between Hopf-Galois struc-
tures and braces. We shall describe this connection using an equivalent, but different, formulation
of the correspondence.

Let ∗G denote the group operation on some finite group G, and suppose (N, ·) ≤ Perm(G) is
regular and G-stable. Then there is a map a : N → G given by

a(η) = η[1G].

By the regularity of N , a is a bijection. We define a binary operation ◦ on N by

η ◦ π = a−1(a(η) ∗G a(π)), η, π ∈ N.

Then (N, ◦) ∼= (G, ∗G), and (N, ·, ◦) is a brace–note that G-stability is used in verifying that the
brace relation holds. We shall denote this brace by B(N), which we understand depends implictly
on G. As every Hopf-Galois structure on a Galois extension with group G corresponds to a regular,
G-stable N we get can construct a brace for every such structure.

Example 2.13. Let N = ρ(G) = {ρ(g) : g ∈ G}, where ρ(g)[h] = hg−1 is right regular represen-
tation. Then a : ρ(G) → G is the “inverse” map a(ρ(g)) = g−1, and the corresponding brace has
circle operation

ρ(g) ◦ ρ(h) = a−1(a(ρ(g))a(ρ(h))) = a−1(g−1h−1) = ρ((g−1h−1)−1) = ρ(hg) = ρ(h)ρ(g)

giving the almost trivial brace constructed in Example 2.3.

Example 2.14. Let N = λ(G), so a : N → G is simply a(λ(g)) = g. Then

λ(g) ◦ λ(h) = a−1(a(λ(g))a(λ(h))) = a−1(gh) = λ(gh) = λ(g)λ(h)

giving the trivial brace from Example 2.2

Example 2.15. Let G,N be as in Example 2.12. Then a : N → G is given by

a(ηi) = ηi[1G] = s−i, a(ηiπ) = ηiπ[1G] = ηi[st−1] = st−1s−i = si+1t−1.

It is easiest to work out the circle operation in cases, depending on the powers of π. We have

ηi ◦ ηk = a−1(s−i−k) = ηi+k

ηi ◦ ηkπ = a−1(s−i+k+1t−1) = ηk−iπ

ηiπ ◦ ηk = a−1(si+1t−1s−k) = a−1(si+k+1t−1) = ηi+kπ

ηiπ ◦ ηkπ = a−1(si+1t−1sk+1t−1) = a−1(si−kt−2) = a−1(si−k+2) = ηk−i−2.
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Generally,

ηiπj ◦ ηkπ` = ηk+(−1)`i+2j`πj+`,

which agrees with the brace constructed in Example 2.4.

Conversely, suppose B = (B, ·, ◦) is a brace. Then (B, ◦) is a group. For each x ∈ B define
ηx ∈ Perm(B, ◦) by

ηx[y] = x · y, y ∈ B.
Then ηx[y] = z if and only if x = z · y−1, so N = {ηx : x ∈ B} is a regular subgroup of Perm(B, ◦).
Furthermore, N is (B, ◦)-stable: for x, y ∈ B we have, since λ(y) ∈ Perm(B, ◦) is left multiplication
in the circle group,

yηx[z] = λ(y)ηxλ(y)[z]

= λ(y)ηx[y ◦ z]
= λ(y)[x · (y ◦ z)]
= y ◦ (x · (y ◦ z))
= (y ◦ x)y−1(y ◦ y ◦ z)
= (y ◦ x)y−1 · z
= η(y◦x)y−1 [z],

so yηx = η(y◦x)y−1 ∈ N . Thus, N is a regular, (B, ◦)-stable subgroup of Perm(B, ◦), hence N
provides a Hopf-Galois structure on any Galois extension L/K with Galois group isomorphic to
(B, ◦).
Example 2.16. Let G = 〈s, t〉 ∼= Q8 as in Example 2.12. Let ηt = ρ(t), πt = λ(t)ρ(s), and let
Nt = 〈ηt, πt〉. Then, by [9, Lemma 2.5], Nt ≤ Perm(G) is regular, G-stable, isomorphic to D4, but
different from the one considered in Example 2.12. Proceeding in a manner similar to 2.15 one can
show

ηitπ
j
t ◦ ηkt π`t = η

k+(−1)`i+2j`
t πj+`t ,

and thus we see that different Hopf-Galois structures can give the same brace.

3. The Opposite Brace

In this section, we shall define the opposite brace and describe some of its properties.

Proposition 3.1. Let B = (B, ·, ◦) be a brace, and for each x, y ∈ B define x ·′ y = yx. Then
B′ := (B, ·′, ◦) is a brace.

Proof. Clearly, (B, ◦) is a group, and since (B, ·′) is the opposite group of (B, ·) it is a group as
well, sharing the same identity and inverses. It remains to show the brace relation. For x, y, z ∈ B
we have, using the brace relation on B,

x ◦ (y ·′ z) = x ◦ (zy)

= (x ◦ z)x−1(x ◦ y)

= (x ◦ z) ·
(
(x ◦ y) ·′ x−1

)
=
(
(x ◦ y) ·′ x−1

)
·′ (x ◦ z)

= (x ◦ y) ·′ x−1 ·′ (x ◦ z),
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and hence B′ is a brace.

Definition 3.2. For B = (B, ·, ◦) a brace, the brace B′ constructed above is called the opposite
brace to B.

We list the following properties for future reference. Their proofs are trivial and omitted.

Lemma 3.3. Let B = (B, ·, ◦) be a brace. Then

1. (B′)′ = B.

2. If (B, ·) is abelian, then B′ = B.

3. If C is a brace, and f : B→ C is a brace homomorphism, then f is also a brace homomorphism
B′ → C′.

Opposite braces arise arise from an existing construction in Hopf-Galois theory, which we term
the opposite Hopf Galois structure, which we shall now describe. Let G be a group, and let N ≤
Perm(G) be regular and G-stable. Define

N ′ = CentPerm(G)(N) = {η′ ∈ Perm(G) : ηη′ = η′η for all η ∈ N}.

Then, by [7, Lemmas 2.4.1, 2.4.2], N ′ is a regular, G-stable subgroup of Perm(G). In fact, for η ∈ N ,
define φη ∈ Perm(G) by φη[g] = µg[η[1G]], where µg is the element of N such that µg(1) = g (such
a µg exists, and is unique, by regularity). One can show that φηφπ = φπη for η, π ∈ N , and that N ′

naturally identifies with the opposite group Nopp of N . The relationship between N and N ′ has
been explored in the area of Hopf-Galois module theory, producing some interesting results [10].

Let us compute the brace corresponding to N ′. Let a : N → G and a′ : N ′ → G be the bijections
obtained by evaluation at 1G as before. Then

a′(φη) = φη[1G] = µ1G [η[1G]] = 1N [η[1G]] = η[1G] = a(η),

hence B(N ′) = (N ′, ·, ◦′) with

φη ◦′ φπ = (a′)−1(a′(φη)a′(φπ))

= (a′)−1(a(η)a(π))

= (a′)−1aa−1(a(η)a(π))

= (a′)−1a(η ◦ π)

= φη◦π.

Define f : B(N ′)→ (B(N))′ by f(φη) = η for all η ∈ N . Then

f(φη ◦′ φπ) = f(φη◦π) = η ◦ π = f(φη) ◦ f(φπ)

and
f(φηφπ) = f(φπη) = πη = η ·′ π = f(η) ·′ f(π)

for all η, π ∈ N . Thus:

Proposition 3.4. With the notation as above, B(N ′) ∼= (B(N))′.
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Example 3.5. Let G = 〈s, t : s4 = t4 = 1, s2 = t2, stst−1〉 ∼= Q8 as in Example 2.12. In [9, Lemma
2.5] one finds six different regular, G-stable subgroups which are isomorphic to D4, namely

Ns,ρ = 〈ρ(s), λ(s)ρ(t)〉 Nt,ρ = 〈ρ(t), λ(t)ρ(s)〉 Nst,ρ = 〈ρ(st), λ(st)ρ(t)〉
Ns,λ = 〈λ(s), λ(t)ρ(s)〉 Nt,λ = 〈λ(t), λ(s)ρ(t)〉 Nst,λ = 〈λ(st), λ(t)ρ(st)〉.

Note that the first two correspond to Examples 2.12 and 2.16 respectively. We have seen that
B(Ns,ρ) ∼= B(Nt,ρ), and it is easy to see that they are isomorphic to B(Nst,ρ) as well. One can
quickly verify that the elements of Nx,ρ and Nx,λ commute for each x ∈ {s, t, st}, hence the three
subgroups in the second row all correspond (up to isomorphism) the same brace, namely B(Ns,ρ)

′.

4. The Inverse Solution to the Yang-Baxter Equation

Earlier, we saw how a brace B := (B, ·, ◦) provides us with a set-theoretic solution RB to the
YBE: one which is always non-degenerate, and one which is involutive (that is, self-inverse) if and
only if (B, ·) is abelian. It is natural to wonder what the inverse to RB is when (B, ·) is not abelian.
Since B = B′ if and only if (B, ·) is abelian, perhaps the opposite brace can help us determine the
inverse. In fact:

Theorem 4.1. Let B be a brace with corresponding solution to the Yang-Baxter equation RB. Then
RB′ is a two-sided inverse to RB, that is, RB′RB(x, y) = RBRB′(x, y) = (x, y) for all x, y ∈ B.

Proof. By interchanging a brace with its opposite, it suffices to show that RB′RB(x, y) = (x, y) for
all x, y ∈ B. Recall that both B and B′ have the same inverses, i.e., x ·′ x−1 = x ◦ x = 1B where
x−1, x are the inverses in B.

Let x, y ∈ B. We have

RB(x, y) = (x−1 · (x ◦ y), x−1 · (x ◦ y) ◦ x ◦ y)

RB′(x, y) = (x−1 ·′ (x ◦ y), x−1 ·′ (x ◦ y) ◦ x ◦ y) = ((x ◦ y) · x−1, (x ◦ y) · x−1 ◦ x ◦ y)

and so, suppressing the dot notation,

RB′RB(x, y) = RB′(x
−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y).

The first component of this composition is therefore((
x−1(x ◦ y)

)
◦
(
x−1(x ◦ y) ◦ x ◦ y

)) (
x−1(x ◦ y)

)−1
= (x ◦ y)(x ◦ y)−1x = x,

while the second component, using the reduction above, is

x ◦ x ◦ y = y,

as required.

Example 4.2. Return to the solution RB from Example 2.8, namely

R(ηiπj , ηkπ`) =
(
η(−1)

jk+2i`+2j`π`, ηi−2j`πj
)
,
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which was obtained from the brace in Example 2.4. The reader can check that we have

RB′(η
iπj , ηkπ`) =

(
ηk+2j`π`, η(−1)

`i+2jk+2j`πj
)
.

To verify that RB′ = R−1B , we have

RB′RB(ηiπj) = RB′

(
η(−1)

jk+2i`+2j`π`, ηi−2j`πj
)

=
(
ηi+2j`−2j`πj , η(−1)

j[(−1)jk+2i`+2j`]+2`(i−2j`)−2j`π`
)

=
(
ηi, ηk+(−1)j [2i`+2j`]+2i`−2j`π`

)
= (ηiπj , ηkπ`)

since η4 = 1B . That RB′RB(ηiπj) = (ηi, πj) is similar.

The explicit inverse solution allows us to identify group-like elements in the corresponding Hopf
algebra. Recall that h ∈ H is group-like if ∆(h) = h ⊗ h where ∆ is the comultiplication in the
Hopf algebra H.

Corollary 4.3. Let the Galois extension L/K be H-Hopf Galois for some K-Hopf algebra HN .
Let B = (B, ·, ◦) be the brace corresponding to this Hopf-Galois structure, and for i = 1, 2 let
pri : B × B → B be the projection onto the ith factor. Then each y ∈ B with pr2RB(x, y) = x for
all x naturally identifies with a group-like element of HN , and vice-versa.

Proof. We claim that an element h ∈ HN = L[N ]G is group-like if and only if h ∈ N and G acts
trivially upon it, that is, if and only if h ∈ N ∩ ρ(G). Indeed, h ∈ HN is group-like if and only if it
is group-like when base changed to L⊗K L[N ]G ∼= L[N ], and since the group-likes in L[N ] are the
elements of the group N it follows that h is group-like if and only if h ∈ N , say h = η ∈ N . But G
acts trivially on η if and only if λ(g)ηλ(g−1) = η for all g ∈ G, i.e., η ∈ CentPerm(G)(λ(G)) = ρ(G).

Recall that B induces a regular, (B, ◦) stable subgroup of Perm(B, ◦): N = {ηy : y ∈ B} ≤
Perm(B, ◦) where ηy[z] = y · z, and xηy = η(x◦y)x−1 . So (B, ◦) acts trivially on ηy if any only if
(x ◦ y)x−1 = y, i.e., pr1RB′(x, y) = y for all x ∈ B. This can only happen if pr2RB(x, y) = x since
RBRB′(x, y) = (x, y). Through the isomorphism (B, ◦)→ G we obtain the grouplike in HN .

Example 4.4. The trivial brace, corresponding to N = λ(G), gives the solution R(x, y) =
(y, y−1xy). So y is group-like if and only if y−1xy = x for all x ∈ B, i.e., y ∈ Z(B, ·).

Example 4.5. The almost trivial brace, corresponding to N = ρ(G) and the classical Galois
structure, gives the solution R(x, y) = (x−1yx, x). Clearly, every y is group-like.

Example 4.6. The brace considered in Example 2.4, corresponding to the Hopf-Galois structure
in Example 2.12, gives the solution

R(ηiπj , ηkπ`) =
(
η(−1)

jk+2i`+2j`π`, ηi+2j`πj
)
.

One can see that pr2R(ηiπj , ηkπ`) = ηiπj for all i, j if and only if ` is even, hence the group-likes
correspond are elements of the form ηk. This makes sense since η = ρ(s).
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5. On the Hopf-Galois Correspondence

Suppose L/K is Galois with Galois group G. We have seen that any N ≤ Perm(G) regular,
G-stable gives rise to a Hopf-Galois structure on L/K, but the correspondence between sub-Hopf
algebras and intermediate fields is not surjective. It is natural to ask: which intermediate fields
arise as the fixed field of a sub-Hopf algebra? Since the correspondence from sub-Hopf algebras to
intermediate fields is injective, this is equivalent to determining the sub-Hopf algebras of HN .

Definition 5.1. Let L/K be Hopf-Galois for some Hopf algebra H. We say that an intermediate
field K ⊆ F ⊆ L is realizable with respect to H (or simply realizable for short) if F = LH0 for H0

some sub-Hopf algebra of H.

In [5], Childs shows that realizable subfields are in one-to-one correspondence with what he calls
“◦-stable (or ‘circle-stable’) subgroups” of the corresponding brace. For B = B(N) = (B, ·, ◦), a
subgroup C ≤ (B, ·) is said to be ◦-stable if (x ◦ y)x−1 ∈ C for x ∈ B, y ∈ C. A ◦-stable subgroup
is closed under ◦ as well, hence is a sub-brace of B.

We will take a different approach to realizable subfields using the results of [11] and the concept
of opposites. It is not hard to show that a ◦-stable subgroup, when viewed in the opposite brace,
looks like the more familiar brace structure called an ideal, one which we generalize somewhat below
by relaxing normality conditions.

Definition 5.2. Let B = (B, ·, ◦) be a brace.

1. A quasi-ideal of B is a subgroup I ≤ (B, ·) such that

x−1(x ◦ y) ∈ I, x ∈ B, y ∈ I.

2. A ·-quasi-ideal (·-QI) of B is a quasi ideal which is normal in (B, ·).
3. A ◦-quasi-ideal (◦-QI) of B is a quasi ideal which is normal in (B, ◦).
4. An ideal of B is a subgroup of (B, ·) which is both a ·-QI and a ◦-QI.

Note that a quasi-ideal I is also a subgroup of (B, ◦), hence is a sub-brace of B. To see this,
note that for all x, y, z ∈ B we have

x−1(x ◦ y ◦ z) = x−1(x ◦ y)(x ◦ y)−1(x ◦ y ◦ z),

and if y, z ∈ I then x−1(x ◦ y) ∈ I and (x ◦ y)−1(x ◦ y ◦ z) ∈ I, hence their product is in I and I is
closed under ◦. Additionally,

1B = x−1(x ◦ yy) = x−1(x ◦ y)x−1(x ◦ y,

and since 1B ∈ I and x−1(x ◦ y) ∈ I we get that x−1(x ◦ y) ∈ I, i.e., y ∈ I.
By [1, Example 2.2], the kernel of a brace morphism has the structure of an ideal. Additionally,

by [1, Lemma 2.3], if I is an ideal of B then both I and B/I are braces. Thus, ideals are essential
to understanding the category of braces.

Now suppose B = B(N) for N a regular G-stable subgroup of Perm(G), where G := Gal(L/K).
Each of the substructures above gives us insight as to the intermediate fields in the HN ′ -Hopf Galois
structure on L/K, where as above N ′ = CentPerm(G)(N) as before.

We begin with the simplest of the structures.
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Lemma 5.3. Quasi-ideals I of B := B(N) correspond bijectively with intermediate fields K ≤
LI ≤ L realizable with respect to HN ′ .

Proof. Let I be a quasi-ideal of B. Since the underlying sets of B and B′ are the same, namely N ,
and x−1(x ◦ y) = (x ◦ y) ·′ x−1 for all x, y ∈ N we get that I is a ◦-stable subgroup of B′. Through
the isomorphism (B(N))′ → B(N ′) its image is a ◦-stable subgroup in B(N ′), say I ′. Then, by
[5, Theorem 4.3], I ′ corresponds to a sub-Hopf algebra of HN ′ , hence an intermediate field in L/K
which is realizable with respect to HN ′ . Conversely, if F is a field which is realizable with respect
to HN ′ , there is a corresponding ◦-stable subgroup of B(N ′), hence of B′, giving us a quasi-ideal
of B.

By [11, Prop. 2.2] (which itself is a reformulation of the ideas from [7, §5]), sub-Hopf algebras
of HN correspond bijectively to G-stable subgroups I of N , hence realizable fields correspond to
such I. We can relate this theory to [5] as follows. Suppose B = (B, ·, ◦) is a brace, and I is a
◦-stable subgroup of B. Let G = (B, ◦), and let N = {ηx : x ∈ B} ≤ Perm(G) where ηx[y] = x · y.
Let I∗ = {ηi : i ∈ I} ≤ N . Then

xηi = η(x◦i)x−1 , x, i ∈ B
and since I is ◦-stable we know (x ◦ i)x−1 ∈ I, hence I∗ is G-stable. It is easy to see that the
converse holds as well.

Additionally, if I E N then LHI/K is also Hopf-Galois for a particular Hopf algebra related to
HN–see [11, Theorem 2.10]. Thus we get:

Lemma 5.4. There is a bijection between ·-quasi-ideals I of B := B(N) and intermediate fields
K ≤ LI ≤ L realizable with respect to HN ′ such that LI/K is also Hopf-Galois via the K-Hopf
algebra LI [N

′/I ′]G, where I ′ is the image of I under the isomorphism I 7→ I ′ above.

How LI [N
′/I ′]G acts on LI is not obvious–see the discussion prior to [11, Theorem 2.10] for a

complete description.
Of course, if I E (B, ◦), then the corresponding subgroup of G is also normal. This gives:

Lemma 5.5. ◦-quasi-ideals I of B := B(N) correspond bijectively with intermediate fields K ≤
LI ≤ L realizable with respect to HN ′ such that LI/K is Galois.

We summarize:

Theorem 5.6. Let L/K be Galois, group G, and let N ≤ Perm(G) be regular and G-stable. Let
B = B(N) and B′ = (B(N))′ = B(N ′). Let I ⊆ B be a quasi-ideal. Then there exists a field
K ≤ LI ≤ L such that L/LI is Hopf-Galois via the LI-Hopf algebra L[I]G. Furthermore:

1. If I is a ·-QI then LI/K is also Hopf-Galois with respect to a Hopf algebra which depends on
H.

2. If I is a ◦-QI then LI/K is (classically) Galois.
3. If I is an ideal, then LI/K is both Galois and Hopf-Galois in the sense mentioned above.

Furthermore, any realizable intermediate field F is of the form LI for some quasi-ideal I; and if F
satisfies the proprieties (1), (2), or (3) above, then I is a ·-QI, ◦-QI, or an ideal respectively.

Example 5.7. Suppose B = (B, ·, ·) is the trivial brace. If I ≤ (B, ·) is any subgroup, then I
is automatically a quasi-ideal since x−1(x ◦ y) = y. It is an ideal if and only if I is normal in
(B, ·). This makes sense since B′ is (isomorphic to) the brace corresponding to the classical Galois
structure: each subgroup gives an intermediate field, and the Hopf-Galois structure on LI coincides
with the Galois structure when I is normal.
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Example 5.8. Suppose B = (B, ·′, ·) is the almost trivial brace. If I ≤ (B, ·) is any subgroup,
then I is a quasi-ideal if and only if x−1 ·′ (x ◦ y) = xyx−1 for all x ∈ B, y ∈ I, i.e., if I is normal
in (B, ·). If this is the case, then it is automatically an ideal as well.

Example 5.9. Let B = 〈η, π〉 ∼= D4 with, as usual,

ηiπj ◦ ηkπ` = ηk+(−1)`i+2j`πj+`, 0 ≤ i, k ≤ 3, 0 ≤ j, ` ≤ 1.

Of course, I = {1B} and I = B are ideals. The group (B, ·) has eight other subgroups. Notice that
any quasi-ideal I of B of order 4 is necessarily an ideal of B since (B : I) = 2.

I = 〈η〉. We have (xj)
−1(xj ◦ηk) = x−1j ηkxj ∈ I since I is normal in (B, ·). Thus I is a quasi-ideal,

hence an ideal since |I| = 4.

I = 〈η2〉. This must be a quasi-ideal as well from the work above, as well as an ideal since I =
Z(B, ·) = Z(B, ◦).

I = 〈ηkπ〉, 0 ≤ k ≤ 3. Since

(ηπ)−1(ηπ ◦ ηkπ) = ηπ(ηk−1) = η2−kπ 6∈ 〈ηkπ〉

we see that I is not a quasi-ideal.

I = 〈η2, π〉. From the above, the quasi-ideal condition x−1(x ◦ y) ∈ I holds for y = η2. For k = 0, 2
we have

(ηiπj)−1(ηiπj ◦ ηkπ) = π−jη−i(ηi+kπj+1) = ηkπ ∈ I

so I is a quasi-ideal of B, hence an ideal.

I = 〈η2, ηπ〉. For k = 1, 3 we have

(ηiπj)−1(ηiπj ◦ ηkπ) = π−jη−i(ηi−kπj+1) = η(−1)
jkπ ∈ I

and is also an ideal.

6. Self-Opposite Braces

We conclude this paper with a discussion concerning self-opposite braces. Of course, B = B′ if
and only if (B, ·) is an abelian group. However, it is possible for B and B′ to be isomorphic, as the
following example shows.

Example 6.1. Let (G, ∗G) be any nonabelian group. Let B = G × G, and define two operations
on B as follows:

(x, y) · (z, w) = (x ∗G z, w ∗G y)

(x, y) ◦ (z, w) = (x ∗G z, y ∗G w).

It is easy to show that B := (B, ·, ◦) is a brace (indeed, the product of the trivial and almost trivial
braces on G), and that the map T : B→ B′ given by T (x, y) = (y, x) is an isomorphism.
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More generally, if B is any brace, then so is B×B′, and (B×B′)′ = (B′×B) ∼= B×B′. While
equality, not isomorphism, is required for RB and RB′ to be equal, the enumeration of realizable
fields depends only on the isomorphism class of B. Clearly, if B(N) is self-opposite then quasi-ideal,
etc. classify the realizable, etc., fields in the sense of Theorem 5.6 corresponding to the Hopf algebra
HN .

Because of this, it would be interesting to have sufficient, and possibly necessary, conditions for
a brace to be self-opposite. While we do not have a full set of conditions (though certainly (B, ·)
abelian, or B ∼= C×C′ suffice), we do have some necessary conditions, from which we can determine
some braces which are not self-opposite.

For example, let us call (x, y) ∈ B × B an L-pair if x ◦ y = xy; if x ◦ y = yx then we will call
(x, y) an R-pair. If φ : B→ B′ is an isomorphism and (x, y) is an L-pair of B, then

φ(x) ◦ φ(y) = φ(x ◦ y) = φ(x · y) = φ(x) ·′ φ(y) = φ(y) · φ(x),

and hence (φ(x), φ(y)) is an R-pair of B. Thus we get:

Proposition 6.2. If the number of L-pairs and R-pairs of B is not equal, then B is not self-
opposite.

Example 6.3. Let us consider Example 2.4 one last time: B = 〈η, π〉 ∼= D4 with

ηiπj ◦ ηkπ` = η2j`(ηkπ`)(ηiπj) = ηk+(−1)`i+2j`πj+`, 0 ≤ i, k ≤ 3, 0 ≤ j, ` ≤ 1.

If ηiπj ◦ ηkπ` = ηiπjηkπ` = ηi+(−1)jkπj+` then we must have

k + (−1)`i+ 2j` ≡ i+ (−1)jk (mod 4).

Picking j = ` = 0 gives us 16 L-pairs. If j = 1, ` = 0 we get

k + i ≡ i− k (mod 4),

which provides 8 pairs, corresponding to the cases k = 0, 2. Setting j = 0, ` = 1 gives another 8
pairs, and if j = ` = 1 we get

k − i+ 2 ≡ i− k (mod 4),

so 2(i + k) ≡ 2 (mod 4), which holds if i and k are of different parity, giving another 8 pairs. In
total, B has 40 L-pairs.

On the other hand, if ηiπj ◦ ηkπ` = η2j`(ηkπ`)(ηiπj) = ηkπ`ηiπj , j, ` = 0, 1 then it is necessary
and sufficient that 2j` = 0, in other words either j = 0 or ` = 0 or both. This gives 48 R-pairs for
B, hence B is not self-opposite.
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