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The edge bending wave on a thin isotropic semi-infinite plate reinforced by a beam1

is considered within the framework of the classical plate and beam theories. The2

boundary conditions at the plate edge incorporate both dynamic bending and twist-3

ing of the beam. A dispersion relation is derived along with its long-wave approxi-4

mation. The effect of the problem parameters on the cut-offs of the wave in question5

is studied asymptotically. The obtained results are compared with calculations for6

the reinforcement in the form of a strip plate.7

a)l.prikazchikova@keele.ac.uk

1

mailto:l.prikazchikova@keele.ac.uk


JASA/Sample JASA Article

I. INTRODUCTION8

Thin elastic structures in the shape of a plate reinforced by a beam have various important9

applications in naval, civil and aerospace engineering, see1–3. Static and dynamic behaviour10

of stiffened plates was intensively studied in numerous publications within the framework11

of the classical bending theories for plates and beams also taking into consideration beam12

torsion, see e.g.4–8. At the same time, to the best of authors’ knowledge edge waves in13

stiffened plates have only been analysed in two papers9,10, dealing with a semi-infinite strip14

with simply supported sides. Bending vibrations of an elastic strip were earlier investigated15

in various setups, e.g. see11,12. We also mention the recent authors’ contribution13 treating16

a semi-infinite plate reinforced by a strip plate along the edge.17

The edge bending wave on an elastic plate has received much attention since long ago, tak-18

ing into consideration anisotropy, vertical inhomogeneity, contact with elastic foundations,19

and three dimensional dynamic phenomena, e.g. see the general reference papers14,15, and20

also more recent publications16,17. In contrast to the Rayleigh wave on an elastic half space,21

the plate edge bending wave demonstrates dispersion governed by a specialised parabolic-22

elliptic model18.23

This note is concerned with qualitative analysis of bending vibrations localised along the24

edge of a semi-infinite plate, stiffened by a beam. Dispersion relation is derived together25

with its long-wave asymptotic approximations. At the leading order the latter coincides26

with the dispersion relation for the plate bending wave on a free edge19. Next order solution27

reveals the influence of stiffening on the edge wave localisation. Comparison of the dispersion28
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relation for a plate reinforced by a beam with a narrow rectangular cross-section and for29

a plate reinforced by a strip plate is demonstrated, justifying the adapted ‘plate-beam’30

formulation.31

The effect of material and geometric parameters on edge wave localisation is investigated.32

A special focus is on the asymptotic evaluation of the cut-offs of the studied edge wave which33

have been earlier discovered in9,10. The possibility of cut-offs over the range of validity of34

the adapted classical structure theories is addressed.35

II. STATEMENT OF THE PROBLEM36

Consider a thin isotropic elastic plate stiffened by an elastic beam along the edge. The37

Cartesian coordinate system is chosen in such a way that x and y are in the midplane of the38

plate with x going along the interface, see Figure 1.39

FIG. 1. Plate reinforced by a beam
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The equation of motion for the midplane deflection w2 in the classical theory for plate40

bending is41

D2

(
∂4w2

∂x4
+ 2

∂4w2

∂x2∂y2
+
∂4w2

∂y4

)
+ 2ρ2h

∂2w2

∂t2
= 0, (1)

where D2 is bending stiffness of the plate, h is half thickness of the plate, and t is time. Also,42

in what follows ρj are mass densities, Ej are Young’s moduli, Gj are shear moduli, νj are43

Poisson’s ratios, j = 1, 2. Indexes 1 and 2 correspond to the beam and plate, respectively.44

The boundary conditions for the plate edge y = 0 maybe obtained by considering the45

beam flexure and twisting, see for example5, resulting in46

E1Iy
∂4w2

∂x4
+ ρ1A

∂2w2

∂t2
= −D2

(∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

)
,

G1Jt
∂3w2

∂x2∂y
− ρ1J

∂3w2

∂t2∂y
= −D2

(∂2w2

∂y2
+ ν2

∂2w2

∂x2

)
,

(2)

where Iy and J are the area and polar moments of inertia of the beam’s cross section, Jt is47

the torsional constant, and A is the area of the beam’s cross section.48

III. DISPERSION RELATION49

The solution of the equation (1) is sought for in the form of a travelling harmonic wave50

as51

w2(x, y, t) = w2(y)ei(kx−ωt), (3)

where ω is frequency, and k is wave number. Substituting (3) into (1), we arrive for the

edge wave at

w2(y) = C1e
−kλ1y + C2e

−kλ2y,
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where C1 and C2 are arbitrary constants, and

λ1 =
√

1 + γ2, λ2 =
√

1− γ2, γ2 =
ω

k2

√
2ρ2h

D2

.

Now, on substituting (3) into the boundary conditions (2) we arrive at the 2×2 set of linear

equations, leading to the general exact dispersion relation

(λ1λ2 + 1)2 − ν2(λ1 + λ2)
2 − (1− ν2)2

− (λ1 + λ2)(α1γ
2
2ρ− β2λ1λ2 − β1)δh

− β2(α1γ
2
2ρ− β1)δ2h − α2γ

2
2ρλ1λ2(λ1 + λ2)δ

3
h

+ α2γ
2
2ρ(α1γ

2
2ρ− β1)δ4h = 0,

(4)

where

α1 =
A

2h2
, α2 =

J

2h4
, β1 =

E1Iy
hD2

, β2 =
G1Jt
hD2

,

and δh = kh, ρ =
ρ1
ρ2

.52

Setting δh = 0 in (4) and returning back to original variables we get the well known

relation for a free plate edge, see e.g.19

D2k
4c4 = 2ρ2hω

2,

where

c =
[
(1− ν2)

(
3ν2 − 1 + 2

√
2ν22 − 2ν2 + 1

)]1/4
.

Let us next introduce a new unknown function by53

φ =

√
1− γ22
ν22

, (5)

corresponding to the appropriately normalised attenuation rate which is not sensitive to

the value of a Poison’s ratio. This is seemingly the most relevant characteristic of slowly
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decaying edge bending waves. Hence, equation (4) can be re-written as

(1 + ν22φ)2 − 2ν2(1 + ν22φ)− (1− ν2)2

−
√

2(1 + ν22φ)
(
α1ρ

(
1− ν42φ2

)
− β2ν22φ− β1

)
δh

− β2
(
α1ρ(1− ν42φ2)− β1

)
δ2h

− α2ν
2
2ρ(1− ν42φ2)φ

√
2(1 + ν22φ)δ3h

+ α2ρ
(
α1ρ(1− ν42φ2)− β1

) (
1− ν42φ2

)
δ4h = 0,

(6)

At φ = 0 (γ2 = 1) we have for cut-off values54

ν22 + (α1ρ− β1)
(√

2δh + β2δ
2
h − α2ρδ

4
h

)
= 0. (7)

Over the range of validity of thin plate theory (δh � 1) we get at leading order55

δ∗h ≈
ν22√

2(β1 − α1ρ)
. (8)

Thus, for a non-contrast setup (α1 ∼ β1 ∼ ρ ∼ 1) the sought for cut-offs belong to the56

interval 0 < δ∗h � 1 provided that ν2 � 1 and β1 > α1ρ. This conclusion agrees with the57

observations in paper9, see eq. (23) and Figure 2 therein.58

Next, expanding φ into a series about δh = 059

φ = φ0 + φ1δh + . . . (9)

and substituting into the dispersion relation (6), we obtain60

φ0 =
ν2 − 1 +

√
2ν22 − 2ν2 + 1

ν22
, (10)

and61

φ1 =

(
(1− ν42φ2

0)ρα1 − β1 − β2ν22φ0

)√
2(1 + ν22φ0)

2ν42φ0 − 2(ν2 − 1)ν22
. (11)
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It is worth noting that (8) and (9)-(11) do not contain the parameter α2 involving rotation62

inertia of the beam. This is in line with the asymptotic analysis of a similar problem for the63

edge reinforcement in the form of a plate strip in13. In addition, (8) also does not depend64

on parameter β2, expressing the effect of torsional rigidity.65

IV. EXAMPLE66

In this section we present the results of numerical comparison of the dispersion curves for67

a plate reinforced by a beam and a composite ‘plate-plate’ structure, in order to validate the68

‘plate-beam’ model in the previous section. To this end, consider bending of a semi-infinite69

Kirchhoff plate reinforced by a strip plate along the edge as shown in Figure 2, assuming70

that for the strip plate H � h. For the latter, the equation of motion follows from (1) by71

substituting 1 instead of 2 in all the suffices.72

FIG. 2. Plate reinforced by a strip plate

Traction free boundary conditions on the edge y = 0 are given by73

∂2w1

∂y2
+ ν1

∂2w1

∂x2
= 0,

∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y
= 0. (12)
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The continuity conditions at y = H are

w1 = w2,

∂w1

∂y
=
∂w2

∂y
,

D1

(∂2w1

∂y2
+ ν1

∂2w1

∂x2

)
= D2

(∂2w2

∂y2
+ ν2

∂2w2

∂x2

)
,

D1

(∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

)
= D2

(∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

)
.

The related dispersion equation is74

detM = 0, (13)

with the non-zero components of 6× 6 matrix M given in Appendix, where the notation

D =
D1

D2

is introduced.75

For a plate reinforced by a beam with a narrow rectangular cross section the quantities

Iy, J , Jt, and A in (2) are defined as

Iy =
2

3
h3H, J =

1

6
hH3, Jt =

8

3
h3H, A = 2hH.

Taking into account the relations

Dj =
2Ejh

3

3(1− ν2j )
, Gj =

Ej
2(1 + νj)

, j = 1, 2,

we have76

α1 = η, α2 =
1

12
η3, β1 = D(1− ν21)η, β2 = 2D(1− ν1)η, (14)
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where η = H/h. Substituting the above formulae into (6) we obtain dispersion equation

(1 + ν22φ)2 − 2ν2(1 + ν22φ)− (1− ν2)2 −
√

2(1 + ν22φ)×

(
ρ(1− ν42φ2)−D(1− ν1)(1 + ν1 + 2ν22φ)

)
δH

− 2D(1− ν1)
(
ρ(1− ν42φ2)−D(1− ν21)

)
δ2H

− 1

12
(1− ν42φ2)ν22ρφ

√
2(1 + ν22φ)δ3H

+
1

12
(1− ν42φ2)ρ(ρ(1− ν42φ2)−D(1− ν21))δ4H = 0,

(15)

where δH = kH � 1. Now, the cut-off at leading order is given by the formula77

δ∗H ≈
ν22√

2(D(1− ν21)− ρ)
, (16)

which readily follows from (8) and is valid provided that ν22 � 1 and D(1− ν21) > ρ.78

Also, the asymptotic expansion for φ, analogous to (9), becomes79

φ = φ̃0 + φ̃1δH + . . . , (17)

where φ̃0 = φ0 and

φ̃1 =
√

2(1 + ν22φ0)×(
ρ(1− ν42φ2

0)−D(1− ν1)(1 + ν1 + ν22φ0)
)

2ν22(1− ν2 + ν22φ0)
.

In Figures 3 and 4 the function φ is plotted against dimensionless wave number δH . In80

these figures the dispersion curves for a plate reinforced by a beam (15) and by a strip plate81

(13) are plotted together with those corresponding to the two term asymptotic approxima-82

tions (17). Numerical examples are presented for ν1 = 0.31 and ν2 = 0.35.83

As might be expected, both beam approximation (15) and its two-term asymptotics (17)84

are robust only over the long wave range (δH � 1), see the curves for D = 2.3 in Figure85
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FIG. 3. Comparison of dispersion relations (13) (solid line), (15) (dashed line) and asymptotic

expansion (17) (dotted line) for ρ = 1.0 and D = 2.3, 1.25, 1.11.

3 and ρ = 0.2 in Figure 4, for which the asymptotic formulae (16) gives δ∗H = 0.08 and86

δ∗H = 0.12, respectively. Outside the long wave range, the deviation between the results for87

plate and beam edge reinforcement become more substantial. In particular, as follows from88

formula (7) with (14) the beam reinforcement does not assume a cut-off under the condition89

D(1 − ν21) − ρ = 0, which is satisfied for the curves corresponding to D = 1.11 in Figure90

3 and ρ = 0.9 in Figure 4. At the same time, for both of these scenario the strip plate91

reinforcement predicts cut-offs at δ∗H ∼ 1.92

V. CONCLUSION93

We studied the edge wave problem for a semi-infinite plate reinforced by a beam taking94

into account both bending and twisting vibrations of the beam. The explicit asymptotic95

formulae for the cut-offs of the edge waves are presented. The validity of the chosen approx-96

imate formulation starting from the classical plate and beam theories is also addressed. Dis-97
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FIG. 4. Comparison of dispersion relations (13) (solid line), (15) (dashed line) and asymptotic

expansion (17) (dotted line) for D = 1.0 and ρ = 0.2, 0.7, 0.9.

persion relation is obtained and long-wave approximation is derived. The numerical results98

are validated by comparison with the more general dispersion relation for a reinforcement99

in the form of a strip plate, which is also treated on the basis of the 2D Kirchhoff theory.100

The developed framework may be extended to more general setups including anisotropic101

structures as well as more elaborated structure models, e.g. see14,20.102
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VI. APPENDIX103

The entries of the matrix M in (13) are given by

M11 = M12 = λ211 − ν1, M13 = M14 = λ221 − ν1

M21 = −M22 = λ11(λ
2
11 + ν1 − 2),

M23 = −M24 = λ21(λ
2
21 + ν1 − 2),

M31 = λ11e
λ11δH , M32 = −λ11e−λ11δH ,

M33 = λ21e
λ21δH , M34 = −λ21e−λ21δH ,

M35 = λ12e
−λ12δH , M36 = λ22e

−λ22δH ,

M41 = eλ11δH , M42 = e−λ11δH , M43 = eλ21δH ,

M44 = e−λ21δH , M45 = −e−λ12δH , M46 = −e−λ22δH ,

M51 = D(λ211 − ν1)eλ11δH , M52 = D(λ211 − ν1)e−λ11δH ,

M53 = D(λ221 − ν1)eλ21δH , M54 = D(λ221 − ν1)e−λ21δH ,

M55 = −(λ212 − ν2)e−λ12δH , M56 = −(λ222 − ν2)e−λ22δH ,

M61 = Dλ11(λ
2
11 + ν1 − 2)eλ11δH ,

M62 = −Dλ11(λ211 + ν1 − 2)e−λ11δH ,

M63 = Dλ21(λ
2
21 + ν1 − 2)eλ21δH ,

M64 = −Dλ21(λ221 + ν1 − 2)e−λ21δH ,

M65 = λ12(λ
2
12 + ν2 − 2)e−λ12δH ,

M66 = λ22(λ
2
22 + ν2 − 2)e−λ22δH ,
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where

λ1j =
√

1 + γj, λ2j =
√

1− γj,

and

γj =
ω

k2

√
2ρjh

Dj

, j = 1, 2.
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