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Abstract—Anomaly detection is a problem with applications
for a wide variety of domains, it involves the identification of novel
or unexpected observations or sequences within the data being
captured. The majority of current anomaly detection methods
are highly specific to the individual use-case, requiring expert
knowledge of the method as well as the situation to which it is
being applied. The IoT as a rapidly expanding field offers many
opportunities for this type of data analysis to be implemented
however, due to the nature of the IoT this may be difficult. This
review provides a background on the challenges which may be
encountered when applying anomaly detection techniques to IoT
data, with examples of applications for IoT anomaly detection
taken from the literature. We discuss a range of approaches which
have been developed across a variety of domains, not limited to
Internet of Things due to the relative novelty of this application.
Finally we summarise the current challenges being faced in the
anomaly detection domain with a view to identifying potential
research opportunities for the future.
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I. INTRODUCTION

THE Internet of Things (IoT) is a paradigm within com-
puting related to the enablement of devices, ”things”,

with the ability communicate data with each other without
requiring the direct involvement of human agents [1]. These
devices may take the form of sensors, actuators, computers
or ’smart’ objects which are able to observe or interact with
their internal and external environments. The growth of IoT
has been enabled by the development of a wide range of cost
effective sensing and computing solutions able to work in
environments which would have previously been unattainable.
IoT is currently undergoing rapid expansion with estimates of
global economic impact of up to $11.1 trillion per year by
2025 [2] and up to 20 billion connected devices by 2020 [3].

Within the data analysis performed over IoT data there is
often a need to identify novel or unusual states within a system
being monitored by the sensors deployed within the direct
environment around that system. This type of analysis has
applications within a variety of domains from smart traffic
management, remote health-care and assisted living, efficient
smart energy management and automated industrial processes.
This process is often referred to as novelty detection, anomaly
detection, outlier detection or event detection.
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Currently many anomaly detection methods require signif-
icant human interaction to enable these systems and subse-
quently extract and interpret the data generated. It is relatively
easier for an expert to look a small subset of data representing
the state of a system and manually identify the trends and
patterns which are of interest, even if the system is small it
may be difficult to identify these trends manually. However
as the number of interconnected devices increases so does the
complexity of this data analysis, as such there is interest in
developing automated approaches allowing the experts to only
investigate the most important events observed.

In section II we define the main types of anomalies which
may be encountered in an IoT system. The potential uses
of anomaly detection in a variety of IoT settings are dis-
cussed in III. In section IV we discuss the specific challenges
which complicate the process of anomaly detection. Section
V investigates the range of approaches which have been
historically employed as well as those which are under current
development. Finally we will summarise the current research
challenges being encountered and potential future directions
within the domain in section VI.

II. DEFINING AN ANOMALY

There have been a number of attempts to define the
nature of anomalous data. Hawkins defines an outlier as:
”an observation which deviates so significantly from other
observations as to arouse suspicion that it was generated by a
different mechanism” [4]. An alternate definition was offered
by Barnett and Lewis where: ”an outlier is an observation (or
subset of observations) which appears to be inconsistent with
the remainder of that set of data” [5].

A general definition of an anomaly within the context of
the IoT is: the measurable consequences of an unexpected
change in state of a system which is outside of its local
or global norm. This definition comprises of a number of
important observations about the nature of IoT data:

• The majority of data captured by an IoT system can
be considered ’normal’ in that it represents the usual
operating characteristics for that specific system

• The concept of ’normal’ operation of a system can change
over time for a variety of reasons.

• The data generated by an IoT deployment represents only
a view of the actual processes which govern the system
being monitored.

A. Point anomaly
Point anomalies are the most similar to the definition

offered by Hawkins [4]. A key characteristic of these anomaly
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Fig. 1. A point anomaly (circled in red) in random gausian noise.

types (Fig. 1) is the return of the time-series to its previous
’normal’ state within a very short time period of only a few
observations.

These point anomalies may represent statistical noise, they
could be produced by faulty sensing equipment or they could
represent a significant short period event which is of interest
to the operators of the system.

B. Contextual anomalies

Fig. 2. Example of a contextual anomaly - the anomalous value at 600 is the
same as a number of other observations however in context this observation
is anomalous. Adapted from [6].

Contextual anomalies [6] are observations or sequences
which deviate from the expected patterns within the time-series
however if taken in isolation they may be within the range of
values expected for that signal. When taken in the context of
the surrounding observations (Fig. 2) a contextual anomaly is
a deviation from the norm.

C. Collective or Pattern Anomalies

A collective anomaly [6] or pattern anomaly [7] is a
collection of observations which are anomalous with respect to
the rest of the data. Individual observations within a collective
anomaly may or may not be anomalous, it is only when they
appear as a group that they arouse suspicion (Fig 3).

Fig. 3. Example of a collective anomaly in simulated ECG time-series,
marked in red adapted from [6].

III. APPLICATIONS FOR IOT

The IoT approach is being increasingly applied to a variety
of domains due to the inexpensive and non-intrusive nature of
the devices on the market and in development.

A general application of anomaly detection is the identifica-
tion of outlier observations which may affect future analytics
performed on data collected within the IoT network.

A. Industrial IoT and Industry 4.0

Anomaly detection methods have been applied to a variety
of industrial processes from system health monitoring in large-
scale power generation [8], intelligent maintenance scheduling
in smaller production plants [9], fault detection in residential
Heating Ventilation and Air Conditioning (HVAC) systems
[10] and quality control techniques in manufacturing [11].
Large and high-value installations can justify the expense of
human analysts or specifically tailored solutions, however as
the scale and value of the installation falls the need for more
generalised and automated approaches becomes clear.

Anomaly detection is used on sensor readings from engine-
based machines in [12], here they use simple machine learning
approaches to model the normal behaviour based upon a range
of parameters with a one minute resolution. These models
are then used to identify specific failure modes when the
received data falls outside of the learnt normal regions. In
this example the authors use expert knowledge to define
which of the many tracked data streams are most relevant
to specific fault modes. They utilise histograms to analyse
the relations between these reduced variable combinations to
help guide their detection algorithms. This tailored approach
assists in specifying the type of detected anomaly and reduces
computational complexity in comparison to using all available
data streams for each method.

Prediction and diagnosis of faults is performed on a 3MW
wind turbine in [13] where data is collected from the ex-
isting Supervisory Control and Data Acquisition (SCADA)
system avoiding the need for expensive sensor suites to be
retrofitted to device. Operational data was collected at ten-
minute intervals with labelled data available for fault states in
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the working turbine. Using a subset of features they trained
a number of classifiers to detect specific fault modes noting
difficulties with this training due to the imbalance between
normal and anomalous sub-sequences. They found they were
able to predict faults up to an hour in advance of when the
actual anomaly occurred, this may allow automated processes
to occur to mitigate the effects of the developing fault thereby
allowing for maintenence to be scheduled to repair the device
in question.

Surface mounted audio sensors are retrofitted to industrial
machinery in [14]. Audio spectrum data is used to monitor
the operation of internal components within the machine. The
authors provide a framework for low-cost non-intrusive mon-
itoring of system state which allows for faults to be detected
during their early stages before failure occurs, this allows
for responsive maintenance to be scheduled thereby reducing
unexpected down-time for the machinery they investigated.

IoT sensors were installed in a water treatment facility
[15] to aid in the management of chemical and particulate
concentrations in storage tanks. The aim of the anomaly
detection process would be to automatically identify when
the tank entered an unsuitable state and allow for reactive
measures to be triggered without human intervention.

As the price for IoT devices falls there is an increasing
likelihood of older industrial equipment being brought in-
line with newer devices by retrofitting monitoring solutions.
General purpose anomaly detection methods may be able
to provide deeper insight into the operational state of these
devices and thereby improve efficiency and up-time for the
processes on which they operate.

B. Smart Energy

The introduction of increased monitoring and sensing within
the power network has lead to a change in the way energy
is managed. Many countries are introducing ’Smart Meters’
across their network. These devices are able to monitor power
usage at a range of time intervals and automatically report
these values to the operator of the network. This provides
useful information to both the customer and controller which
gives the customer the opportunity to exercise this knowledge
to adjust their own behaviours whilst decreasing the require-
ment for manual or estimated meter readings on the part of
the power company.

One advantage of this near real-time monitoring of power
usage is the ability for the energy suppliers to identify faults
in the local distribution network as they happen rather than
relying upon customers to inform them of outages [16], their
approach uses data fusion from multiple customers to identify
faults at the individual or local levels as well as aiding in
localisation of those detected anomalies. If a number of units
all report similar issues at a similar time it is possible to
identify the location of a fault as well as potentially which
type of fault has been encountered.

In [17] power-line communication signals are used to iden-
tify and localise faults in the distribution network such as
electrical faults, impaired cables and unexpected impedance
changes. They utilise a two part algorithm, the first detects

and tracks the evolution of faults over time while the second
uses information about the network topology to localise the
faults identified by the first algorithm.

Values recorded by micro-synchrophasor units (sensors able
to detect voltage and current phase angle and magnitude at
GPS accurate time-steps) have been shown to be useful in
the detection and localisation of faults and failures in power
networks using more traditional big-data analysis techniques
in [18], the challenge faced in this case is the sampling
frequency from each installed unit (around 120 readings/s)
which poses a significant computational challenge for any
automated detection process which may be deployed.

In addition to the detection of technical losses within power
networks a number of approaches have been suggested for
the detection of non-technical losses (energy theft) using the
information provided by commonly installed smart meters
[19], [20]. Mashima and Cardenas [21] approach the problem
by assuming a worst-case physical attack on a smart meter
to show the ability for their method to detect a long-term
approach to energy theft.

C. Smart City and Buildings

The IoT paradigm is being extended to management and
monitoring of cities and buildings by introducing networks of
sensors to monitor events occurring within their environment.
This shift allows for additional data to be collected on the
environment in which the network is installed thereby enabling
data-driven analysis of the conditions present.

Within the smart city context IoT approaches have been
demonstrated to identify anomalous road conditions. A number
of applications use crowd-sourced data from mobile devices
to identify high-congestion locations within their route-finding
applications and therefore suggest alternate routes to con-
sumers, often this is enabled by the algorithm detecting and
aggregating unusual movement behaviour from the positional
information reported by user devices [22], this may allow the
user to avoid high-congestion areas thereby reducing impact
of their journey. Road surface health monitoring has been
suggested by [23], [24] using connected devices to enable
monitoring of road conditions, thereby allowing timely mainte-
nance to be performed as to reduce damage to private vehicles
and reduce road traffic incidents. Bus trajectory data is used
in [25] to map congestion within urban areas to help guide a
data-driven approach to urban management.

Airborne pollution levels within urban environments are
another important issue being faced globally. A number of
studies have demonstrated the use of networked sensors to
detect and monitor pollution levels in cities [26], [27]. The data
collected via these methods enables urban planners to make
informed decisions with Health, Traffic and the Environment
in mind.

Smaller IoT networks are increasingly being installed within
commercial and residential buildings. Data collected by these
networks may be used to analyse and improve energy effi-
ciency within the location [28], [29], [30], [31]. A number
of these approaches introduce additional contextual informa-
tion into their algorithms to account for variations in usage
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dependent upon the day of the week or which month is being
monitored as well as the current weather conditions.

Smart home data has been suggested for activity monitoring
within assisted living situations [32], [33] whereby the ’nor-
mal’ activities of the individual are learnt and significant de-
viations may be raised as anomalous thereby giving increased
awareness to carers or health services. An example provided in
[34] discusses the event that a monitored individual is found to
be on the floor in a kitchen for an extended period of time, this
behaviour would be unusual and may be suggestive of a fall
or collapse and therefore require assistance from emergency
services.

IV. CHALLENGES FACED IN ANOMALY DETECTION

At a basic level anomaly detection is the identification of
patterns which do not conform to the expected norm for the
system [6]. There are a number of elements which make this
basic interpretation very challenging.

A. Elements of IoT data

IoT data may present similarly to data collected from other
domains however there are a number of aspects to the structure
of the time-series as well as the environment in which the data
is being produced and analysed which could affect the success
of an anomaly detection algorithm.

1) Contextual information: With a variety of sensors dis-
tributed around the environment of the system being monitored
there is the opportunity to include contextual information
into the anomaly detection process [35], the inclusion of
this information offers the chance to improve the abilities of
the analytic framework but similarly introduces a number of
challenges which must be overcome.

Temporal Context - As the majority of IoT data is generated
in the form of time-series data [36] (whether sampled at set
intervals or via irregular sampling) there is some implication of
temporal correlation between observations - that is the reading
at time t is in some-way related to observations at times
[t−1 → t−n].

Spatial Context - Similarly when multiple sensors are de-
ployed monitoring the same system there is some implicit
spatial context to be managed [36], this becomes more difficult
to handle as the spatial context is increased in size or when
the sensors themselves are made mobile via some mechanism.
An example would be sensors mounted on a platform such as
a train. Observations which may be normal on flat ground in a
city may be anomalous when observed as the train is climbing
an incline in a rural area. This may be mitigated by addition of
other sensors to the network if this is thought to be important,
for instance an accelerometer measuring the current angle of
the engine could provide vital information when monitoring
system health.

External context - A subset of spatial context would be the
external conditions around the system being monitored. For
example if an IoT system were monitoring power usage in
a building with relation to internal temperature, for instance
to ensure the heating network was performing optimally, it
would be important to know the weather conditions outside

of the building being monitored. This additional contextual
information could be gathered by external sensors mounted
on the roof (however their readings may be inaccurate due
to weather conditions and heat loss through the roof) or by
using third-party weather information such as forecasts or local
weather station data.

The introduction of contextual information can enrich the
ability for an anomaly detection algorithm to correctly identify
those observations or sequences which do not conform to the
expected behaviour, however it does increase the complexity
of the process and therefore it is important to select the correct
contextual information when choosing the anomaly detection
process as well as when designing the initial sensor network.

2) Dimensionality: Dimensionality describes the number of
separate data attributes captured in each observation [6], the
dimensionality of the data affects the choice of method used as
certain approaches are unsuitable for higher-dimensional data.
Additionally the computational cost of higher-dimension data
may be more than that of lower-dimensional data.

IoT data is produced in two broad categories:
Univariate data consists of a sequence of observations taken

by a single sensor. These data-streams are most often in the
form of a key-value pair where the key is the time-stamp of the
observation with the value being a scalar, nominal or ordinal
reading of the environment being monitored, xt. These may
also be aggregated data from multiple sensors which has been
combined into a single value during a preprocessing stage.

Multivariate data consists of a sequence of observations
taken by multiple sensors. These data-streams are most often
in the form of a key-vector pair with a number of obser-
vations taken at the same time-stamp each associated with
a different sensor or actuator monitoring a single system,
xt = [xt1, ..., x

t
n]. These can be thought of as being a collection

of temporally correlated univariate data streams which provide
a more complete view of the system being monitored.

Anomaly detection over univariate streams relies upon the
comparison of the current observation against the local or
global history of the time-series being analysed. This is
contrasted with multivariate streams where not only is the
history of the stream important to the detection task, but
also the relationship between each of the measurements which
combine to form the observation at a given time-step.

3) Noise: Noise is inherent in real-world systems. Noisy
data represents fluctuations in the reported values which is
not significant to the overall structure of the data as a whole
and may be caused by minor variations in the sensitivity of the
detector, unrelated events occurring within the vicinity of the
sensor or transmission based errors in the data management
system.

In an IoT environment where a large number of low cost,
resource constrained sensors are deployed the data quality is
often affected by significant noise, inconsistencies and missing
or duplicated data. Where the sensors are powered by battery
these challenges are often amplified as the available charge
decreases [37], it is often possible to aggregate data from
multiple similar sensors into a single observation to reduce
the environmental noise.
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In some cases a change in the quality, pattern, or distribution
of the noise may represent a significant event within the
system, therefore it is important to understand the nature and
causes of the noise and as such it may not be suitable to apply
traditional noise reduction techniques to the raw data before
the anomaly detection stage.

4) Stationarity: A stationary time-series is one where the
mean, variance and autocorrelation does not vary with time.
There are a number of ways in which a real-world time series
can display non-stationarity and it is these elements which
make many approaches unsuitable for IoT anomaly detection.

Concept Drift is the change in statistical distribution of a
data stream over time [7], [38], [39].

Seasonality refers to a special case of concept drift where
cyclical changes occur over varying time-scales of much
higher period than the sampling resolution [40].

Change Points are locally or globally permanent changes
in the normal state of a system being monitored [41]. These
changes are generally more abrupt than those seen in concept
drift and represent the rapid adoption of a new state within
a system. Change points may be expected such as when
upgrading a component within a machine, or unexpected such
as a sudden increase in usage of a particular stretch of road.

The ability for an anomaly detection method to adapt to
changes in the structure of the data is important for longer-
term deployments as data points which may have represented
anomalies at some point in the history of the system may now
no-longer be seen as anomalous given the current state of the
system.

B. Prior knowledge
When deploying an anomaly detection method into a new

or poorly known system it is often impossible to provide a
sufficient historic dataset to be able to correctly define both
the normal operating state of the system as well as any or all
potential anomaly types which may be seen [42].

This lack of prior knowledge of the data as well as the
relative scarcity of anomalous sequences of observations in
any data which may have already been collected causes dif-
ficulty when applying traditional supervised machine learning
approaches. There are a number of methods by which an im-
balanced dataset may be manipulated to allow for supervised
learning approaches. Re-sampling of initial training data i.e.
the reduction of ’normal’ instances or introduction copies of
known anomalies, can lead to significant under- or over-fitting
of the final model. Possibly the most applicable approach for
the IoT domain would be the introduction of synthetic anoma-
lies into the training set based upon known anomaly modes
using tools such as PARANOM [43]. All of these approaches
may however damage the temporal context of those anomalies
as there may be important prior trends which are not as visible
to the analyst designing the training data. Additionally the use
of a supervised classifier for anomaly detection, while useful
for identification of known anomaly modes, may subsequently
have difficulty with identifying novel anomaly modes upon
which it has not been trained.

There are some situations where a priori knowledge can
be transferred from similar systems, this is the case for many

network intrusion and security tasks such as the detection of
Distributed Denial of Service attacks [44], or in Industrial
IoT systems where the same machine has been deployed in
multiple locations with known failure modes.

For the majority of cases however this corpus of historic
data representing both the ’normal’ and ’anomalous’ instances
is simply not available and as such a basic assumption must
be made: The majority of observations made about the system
are within the bounds of ’normal’ operation.

There are machine learning techniques which provide an
opportunity to combat this lack of knowledge by utilising un-
supervised or semi-supervised processes. In these approaches
the system will be trained using the ’normal’ data collected
about the state of the system and therefore when data falls
outside of some boundary condition it is reported as anoma-
lous. This approach allows for the discovery of novel anomaly
modes or application to new or unique environments at the cost
of detailed information about the specific anomalies identified.

As the corpus of knowledge increases, more normal data
is collected as well as various data relating to anomalies it
may be possible to begin to include classifications of these
anomalous states into the analytics pipeline.

C. Time and Resource Constraints

Within an IoT deployment the majority of devices will
be of low power with limited computational resources, as
such the current model is generally to collect and process
the data at some centralised location, usually using cloud
or datacentre computing technologies. This model allows for
greater resources to be leveraged for the analytic process
however this also introduces some level of latency to the
system due to round-trip delays as well as resource scheduling
[45].

In some cases this is allowable as it is not important to act
quickly upon the knowledge gathered from the data, however
when looking towards automation of connected resources it
may be a requirement for the data to be processed quickly
and therefore reports be generated as soon as possible after
the data is generated [46]. The use of Edge/Fog devices offers
an opportunity for this to occur closer to the location the data is
generated, however these devices are inherently lower powered
than cloud services and therefore it is important to understand
the computational cost of any analytic task being performed
on that data.

Wireless IoT devices send small bursts of data, generally
using a low-powered or long-range communication protocol.
This allows for devices to be deployed in remote locations yet
still be able to communicate with central systems. The limits
on the quantity of data which can be sent via these protocols
is significantly limited. Repeated long range communications
also incur a significant cost in terms of battery usage where
the devices are self-powered, as such if limited processing can
be performed closer to the device and aggregated information
sent at a lower frequency it may be possible to increase the
lifetime of any such device [47].

Management and storage of data also becomes a concern
when large numbers of sensors are deployed [46], it may be
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impractical to store the entire dataset collected by an IoT net-
work in a format which can easily be accessed by the anomaly
detector, rather initial analysis can be performed before the
data is further transformed and archived. This requires the use
of techniques which do not require the presence of the entire
dataset:

Sliding windows offer an opportunity to reduce the storage
requirements on the devices tasked with processing the data
by only retaining recent observations. However there may be
features which can be missed by only performing the analysis
on these data windows therefore the anomaly detection model
would require some way of ’remembering’ past trends and
patterns without necessarily requiring access to the entire
historical dataset.

Incremental processing is the extreme limit of the windowed
approach, in this case only the most recent observation is
processed and as such each data point is analysed exactly
once by the anomaly detection method. Historic trends and
patterns must therefore by retained entirely within the model
being used for the task.

D. Reporting Method
There are two primary ways in in which anomalous data

may be reported [6], [48]:
1) Anomaly Score: An anomaly score is a value represent-

ing the degree to which a given observation deviates from the
expected value as defined by the anomaly detection model
being used. There are a variety of methods of generating
anomaly scores unique to each algorithm. This method is often
of use when performing later analysis of the collected data as
the analyst may choose to investigate only the top-n anomalies
within a given time period.

This scoring may also be useful in the identification and
management of outliers when performing associated analytic
tasks such as predictive analytics.

2) Labels: A binary label may be applied to each obser-
vation noting whether the detection algorithm has identified
the observation as ’normal’ or ’anomalous’. Some algorithms
may directly report this binary classification however often
this is calculated using some threshold over the initial score
generated by the detection algorithm. A basic method would
be to assume some distribution of scores over the time-series
and utilise a user defined threshold or deviation beyond which
an anomaly is flagged.

This approach may see the greatest utilisation where im-
mediate reporting is required such as in the identification of
failures in the system being monitored where the operator or
owner of the system requires near real-time notification of
anomalous states.

For more complex anomaly detection systems, in particular
those utilising a supervised learning approach, there may be
multiple anomaly classes each with their own label allowing
the option of different notifications to be triggered based upon
the assigned label.

V. CURRENT METHODS

As the growth of IoT technology is relatively recent there
are only a small number of approaches presented which oper-

ate in purely IoT environments, there is however a long history
of anomaly detection over time-series and non-temporal data
from a broad variety of domains from which techniques may
be investigated for IoT specific applications.

There are a number of surveys which have investigated the
problem of anomaly detection in general, often with short
sections discussing detection of anomalies in time-series data.
Early works include Hawkins [4] and Abraham and Chang
[49]. Markou and Singh [50], [51] provide a comprehensive
two-part survey investigating both statistical and neural net-
work approaches up to 2003. Chandola et al.[6] provide a deep
investigation of the methods available in 2009, with Zhang
et al.[52] discussing the approaches applicable to the early
IoT. More recently Chalapathy and Chawla [42] investigate
the application of deep learning approaches to the broader
field of anomaly detection with some space given to time-
series situations such as IoT and Industrial IoT. This review
pursues a narrower scope investigating only those techniques
most applicable to the types and structures of data expected
within the IoT time-series domain.

There are a broad range of algorithms and approaches
presented for the purpose of detecting anomalies in time-series
data. Whilst some techniques may combine elements from
multiple approaches the general methods can be divided into
the following groups:

• Statistical and Probabilistic: These methods utilise histor-
ical data to model the expected behaviour of a system.
When a new observation is received it is compared
against the current model for that system and if it does
not fit within that model it is registered as an anomaly
[51].

• Pattern matching: This method uses direct modelling
of the time-series. In a supervised setting with known
characteristics for expected anomalous sub-sequences the
detector will compare each new observation against a
database of labelled anomaly events and flag those which
are most similar. In the case where there is a lack of
prior labelled anomalies the detector may learn the most
common historic patterns within the normal data and
flag those novel sub-sequences which do not match the
historic corpus as anomalies.

• Distance based: A distance metric is defined such that
a newly received observation can be compared against
those preceding it with the assumption that a lower dis-
tance would most likely occur from similar mechanisms
and therefore would be flagged as normal. Conversely a
larger distance would indicate the observation as having
been generated by a different mechanism and as such
would be flagged as anomalous [6].

• Clustering: This approach projects the data into a multi-
dimensional space and utilises the density of the resulting
clusters. Those observations which present close and
within dense clusters are indicated as normal observations
while those which present further away from, or do not
belong to, these clusters are reported as anomalous [6].

• Predictive: A regression model is generated based upon
the recent and longer-term trends of the system predicting
the expected value at some future time. When a new
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observation is received it is compared against these pre-
dicted values and an assessment is made of how accurate
that prediction was, where the observed value and the
predicted value vary greatly that observation is flagged
as anomalous [15].

• Ensemble: The ensemble approach uses a number of
different algorithms to observe each data point and some
form of voting mechanism is employed over the outputs
from each method. An ensemble can be constructed from
a group of similar detectors, such as a range of predictive
models, or from a collection of dissimilar detectors,
such as the combination of probabilistic, clustering and
statistical detectors. Often the use of ensemble techniques
can improve the overall success of a detection suite at
the potential expense of increased set-up complexity and
computational time.

The choice of approach is strongly dependent upon a
number of factors within the data being monitored as well
as the environment in which the anomaly detector will be
deployed.

A. Anomaly Detection on Univariate Time-series Data

Univariate time series represent the data output from a single
source linked with the time of the observation. This may be a
current trading price for a stock or share, the electrical signal
from a single trace in an Electroencephalogram (EEG), total
network traffic at a specific time step or the value produced
by a single IoT sensor. The structure of the underlying system
being monitored is of high importance to the accuracy of any
univariate anomaly detection method.

1) Non-Regressive Approaches: For a stationary time series
the simplest detection method is to manually set high and low
thresholds such that when an observation is received outside
of these bounds an anomaly is reported.

A more advanced method is to produce a mean and variance
for the historic data and with a threshold defined based upon
these measures to report anomalies which fall outside of this
range [53]. Similar to this is the box-plot approach where the
distribution of the data is split into a range of smaller cate-
gories and new observations are compared against these ranges
[54], this may be extended with a larger number of splits
which leads to a histogram approach. These techniques are
very computationally efficient requiring only a small footprint
both in terms of processor time and memory requirements,
however these approaches do not work for a majority of time
series as they mostly ignore the temporal aspects of the data
and treat it as a simple distribution over univariate data, they
are therefore unable to detect a majority of contextual and
collective anomalies.

Artificial Neural Networks have also been applied to the
problem. Autoencoder Neural Networks work by taking the
values presented in the input layer and passing them into a
number of hidden layers with fewer neurons before symmet-
rically expanding that network towards the output layer. The
ability for a trained autoencoder to reconstruct any given input
vector gives some insight into how ’normal’ that input vector
is. A higher reconstruction error suggests that there is some

information within the input data which is not expected given
the data used to train that network. Autoencoders are placed
onto resource constrained sensor devices in [55], each device
is responsible for collecting sequential data over a period of
time and detecting anomalies based upon the reconstruction
error produced by its shallow autoencoder network. Training
is performed in a daily batch method in a central cloud location
using the reported input and output vectors generated by each
sensor. This relocates the expensive training requirement away
from the constrained device and into a more suitable location
whilst also reducing power requirements caused by multiple
communications per day.

Recurrent neural networks (RNNs) utilise feedback loops
within the hidden layers in a neural network to allow certain
neurons to be affected by outputs from previous time-steps
thereby providing some level of memory within the network
itself. This allows the network to capture relationships between
observations over a period of time. Early RNNs suffered from
vanishing gradients, that is difficulty in training over large
datasets, however with the development of new arrangements
of gates such as Long Short-term Memory (LSTM) and Gated
Recurrent Units (GRUs) this problem was mitigated.

An LSTM based encoder-decoder neural network is em-
ployed in [56] on a variety of univariate time-series where
the reconstruction error of the autoencoder is used to identify
anomalous sequences within the data, their method is a semi-
supervised approach in that the initial network is trained only
with normal data. They provide a thresholding mechanism over
their computed anomaly score to allow for tuning of the system
within a supervised or human-in-the-loop setting based upon
maximising the fβ score.

2) Regression Based Approaches: Another popular ap-
proach to identifying outliers is to apply some form of
predictive modelling of the time-series. The newly received
observation is compared against the predicted value and an
assessment is made based upon the difference between the
predicted and actual values [15].

There are a variety of methods for which can be used
for the predictive portion of this approach. Autoregressive
Moving Average (ARMA)[57] builds a parametric model of
the time series. ARMA has seen widespread usage in a
number of fields however this approach has difficulty with non-
stationary datasets in particular those which display significant
seasonality or mean shift. Autoregressive Integrated Moving
Average (ARIMA) allows for management of nonstationarity
by adding a number of differencing steps during the processing
phase to move the data towards a more stationary distribution
[58], [59], [60], [61], [62], [63]. Seasonal ARMA (SARMA)
approaches account for differing levels of seasonality within
the data by generating multiple models across the different
seasonal time-lags and apply the same techniques [64].

Another approach to the predictive method is to use Arti-
ficial Neural Networks to capture the dynamics of a time se-
ries, early Multi-Layer Perceptron (MLP) approaches showed
similar predictive abilities to those demonstrated in ARMA
derivative models [65] for stationary and non-seasonal time-
series.

ARIMA models are combined with MLPs in [29] for pre-
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dictive analysis, with a simple 2σ thresholding over the error
value to identify anomalous observations. They demonstrated
their method using electricity consumption data gathered each
minute from a university office situation. A very large window
size was utilised to generate their models (4 weeks, and 8
week) however full week ahead predictions were made based
upon these data. They note that this method was very sensitive
to certain occasional use situations such as when a printer was
in use which automatically exceeded the 2σ threshold they had
selected and therefore they introduced some additional rules
into the detection engine to compensate for these activities.

With the development of RNNs [66], [67] such as LSTM
and GRU the ability for the neural network approach to better
model the variability present in complex univariate systems
has been demonstrated in [68].

An online time-series prediction approach is presented by
[69] whereby the online updating of their LSTM based neural
network is weighted by the loss value from each new data
point. Where this loss is significant the algorithm reduces its
effect on the updation of the network thereby minimising the
effect of point anomalies on the predictive capacity of the
network whilst allowing for change points to be gracefully
handled by the network. While it is not mentioned in this paper
there is the opportunity for a pipeline to be developed to allow
for these anomalies to be reported to the system operators.

Attention Based RNNs are employed within an autoencoder
in [70] to more accurately predict complex long term patterns
within data.

Malhotra et al [71] present two approaches using stacked
layers of Recurrent Sigmoid Units (RSUs) and LSTMs to
capture long term dynamics in a variety of univariate systems.
Their networks predict the expected values for a number of
time steps ahead and the resulting error values are used to
calculate a probability score that the observation at that later
time is within the expected normal range, a threshold value
is computed for this probability score and those observations
falling below this level are reported as anomalous. They note
that for systems with long term temporal dependencies the
LSTM approach significantly outperforms the RSU approach.
A similar Deep LSTM network has been applied to ECG
signals in [72] to identify a variety of different anomalous
signals, again using the multiple time-step ahead probabilistic
error measure. These approaches both use off-line training
with a semi-supervised approach.

In [73] RNNs are used for regression and two approaches
are taken to converting between the raw output and a binary
label. Their first method uses a thresholding method before
being passed into an accumulator which counts up each
time an observation is deemed to be anomalous and counts
down by a larger factor each time a ’normal’ observation
is taken, thereby detecting collective anomalies due to their
longer presentation period. Their second uses a probabilistic
approach to calculate the anomaly likelihood in the most recent
observations.

Online time-series anomaly detection using deep RNNs is
performed in [38] alongside local normalisation of the incom-
ing data and incremental re-training of the neural network to
allow the network to adapt to concept drift across a variety of

datasets showing the applicability of the approach to a variety
of domains. Their approach uses the predictive error of the
network over a number of time-steps to quantify the presence
of anomalous observations in a scoring style manner.

While RNNs have shown promise for the prediction of time-
series the detection and reporting of anomalous observations
based upon these predictions is still somewhat of a challenge.
Xie et al. [74] present a method of analysing the prediction
errors using a Gaussian Naive-Bayes model to process output
of an RNN based model.

The Greenhouse method [75] computes a vector for each
observation using a multi-step ahead predictive RNN. Their
approach uses a three-phase training method, the initial phase
fits the RNN to normal data in a typical semi-supervised
approach, the second phase fits the error vectors generated
to a distribution and the final phase calculates Mahalanobis-
distances between these error vectors to produce a scoring
method to identify outliers according to a user supplied thresh-
old. When presented with a new time-series the algorithm can
therefore label each new observation as normal or anomalous
based upon the post-processed error vector. This approach is
currently an off-line method and therefore is susceptible to
changes in the distributions of the input data.

The RNN model presented by Bontemps et al. [76] focuses
on detecting collective anomalies by defining a minimum
period for a collective anomaly and calculating error mea-
surements over time, where the average error is above a given
threshold for a period of time an anomaly is identified.

Bayesian Neural Networks are investigated in [77], by using
an LSTM based auto-encoder to perform prediction for a
number of steps ahead, followed by a MLP to perform the
final prediction steps, this construction provides not only a
prediction for later values but a level of certainty in that
prediction, when a new observation is made which falls
outside of a defined predictive interval it would be flagged
as anomalous.

A recent development within the Artificial Neural Net-
work domain is a process described as Hierarchical Temporal
Memory (HTM) [78], this process is a bio-inspired model
for processing time-series based upon the behaviours of the
Neocortex. This method is applied to sequential streamed
univariate data in [79], [80] and compared against a range
of predictive models for time-series modelling. The technique
is further applied to the anomaly detection problem in [81],
[82], [83], [84] of note is the noise resistance of the approach
as well as the ability for continual online learning allowing
for the method to adjust to changes in data distribution over
time without extensive off-line retraining.

Simple Online Regression Anomaly Detector (SORAD) is
presented in [84] which uses an initial unsupervised off-line
training phase to learn the key features of the presented time-
series and then employs an online learning method to re-
compute mean and variance values at later time-steps with
stronger weighting to newer values. The algorithm has a built
in approach to converting from predictive error to anomaly
labels whereby an online method of calcuating the series mean
and variance is used and thresholding subsequently applied.
The authors intended for their method to act as a baseline for
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comparing benchmarking methods however they identified that
it performed well compared to the contemporary methods they
compared it against, including an offline variant of the same
algorithm. They do however note the importance of online
adaptation in anomaly detection methods.

B. Anomaly Detection on Multivariate Time-series Data

It is rare for a single sensor to be able to completely capture
the complex nature of environments such as those monitored
by IoT networks, therefore it is important to investigate
approaches which combine information from multiple sources.
This may allow the anomaly detection method to build a
more accurate model of the hidden processes behind the data
it receives by utilising the additional contextual information
granted by multiple monitoring approaches [35]. Additionally
the combination of multiple spatially-related data streams
measuring the same environmental variable provides additional
noise tolerance characteristics over the single-sensor use-case.

Similarly to the univariate case the choice of model for a
multivariate system is highly dependent upon the nature of the
data being produced and the functionality of the system being
modelled, this is exacerbated by the variability on relations
between each of the measured time-series as well as their
temporal characteristics.

1) Dimensionality Reduction: When multiple sensors are
monitoring a single system there is often a relationship be-
tween the values generated by each sensor, the interrelation
between these values can be used to provide insights into the
current state of the system. Dimensionality reduction seeks
to identify and abstract the key relationships between these
attributes. By modelling the normal operation of the system
it is possible to identify irregularities in the input data by the
effect it has on these reduced representations, this lowers the
quantity of variables which must be handled by an anomaly
detection algorithm and can provide insights into hidden states
within the data.

A common method for approaching multivariate systems
where there is unknown but likely co-dependence between
variables is to employ PCA (Principal Component Analy-
sis). This approach decomposes a multivariate system into
a reduced set of independent variables, thereby reducing the
overall size of the system to be investigated. PCA was applied
to network traffic anomalies in [85] here the authors note that
the method works as intended however it faces a wide number
of limitations inherent with their PCA method such as large
temporal window sizes causing difficulty with pinpointing the
origin of the anomaly, difficulty with tuning the PCA model
to a given data distibution, as well the opportunity for a
sufficiently abnormal anomaly to contaminate the ’idea’ of
normality within the PCA approach. A recursive PCA with
clustering based detection method was applied to an IoT sensor
environment in [86] which showed the ability to correctly
identify anomalous sequences, again however they note the
computational complexity of PCA as a limitation for edge
sensor implementations.

Projection Pursuit provides another method of reducing the
dimensionality of a multivariate system. In [87] the approach

is applied to outlier detection by reducing the dimensionality
of a complex system to one in which univariate methods
may be applied. Similarly to PCA projection pursuit incurs
a significant expense in the form of computational time.

Due to the reduced length of the hidden layers with an
autoencoder these methods can be utilised in a similar manner
to PCA. Reconstruction error is used to detect anomalies using
a range of autoencoder methods over satellite telemetry and
artificial data in [88]. The authors note that hidden represen-
tation of the input data deviates significantly in anomalous
observations when compared to the ’normal’ training data.
Computational cost is compared against PCA methods and
found to be significantly lower in the autoencoder approaches.

An ensemble of autoencoders and convolutional autoen-
coders are employed on building energy data in [89] to high-
light anomalies as well as inefficiencies in control strategies
with anomalies scored based upon reconstruction errors and
the addition of date-time and other contextual data is shown
to improve functionality. This method is suited to off-line
analysis as the authors sort observations by anomaly score
and select the top-N for further investigation.

Surface mounted audio sensors are combined with con-
volutional autoencoders in [14] to detect faults in industrial
machinery again using a semi-supervised approach. They
again use the accuracy of the reconstruction of the input data to
provide a measure of normality of the input data. A threshold
value α is learnt above which the observation window is
highlighted as anomalous. A second approach is demonstrated
where boundaries are learnt around the hidden representation
in the central layer of the auto-encoder. As this is trained based
on normal operation when a value presents outside of these
boundaries an anomaly is identified.

Convolutional Variational Autoencoders (CNN-VAE) are
utilised in an IoT inspired environment in [9], here the authors
demonstrate a method of reducing the size, complexity and
training cost of the autoencoder without damaging its ability to
identity anomalous instances. This makes the Squeezed CNN-
VAE (SCVAE) more suitable for deployment in edge devices
within an IoT network.

Variational autoencoders are again employed in [90] where
they are combined with GRUs to learn temporal and rela-
tional characteristics of multivariate time-series, by applying
a threshold to the reconstruction probability reported by the
VAE phase anomalies can be detected within the system.
Kieu et al,[91] present LSTM-autoencoder and Convolutional
autoencoder approach’s which uses data enrichment during
the pre-processing phase, this allows the autoencoder a larger
feature space from which to identify the most representative
features.

An unsupervised Generative Adversarial Network is pre-
sented in [92] where LSTM are used to capture the temporal
nature of the system in both the Generator and Discriminator
portions of the network. This is used to train the discriminator
the characteristics of the normal input data and therefore it
can directly report anomalous observations when they are
encountered. The presented usecase is a Cyber Physical system
with both sensor and actuator data present. PCA is employed
to reduce the dimensionality of the input multivariate data.
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2) Clustering: Lui et al. [93], [94] presents an ensemble
method utilizing isolation trees (termed isolation forests) to
perform the anomaly detection, this is compared to a number
of other contemporary methods including ORCA [95], One-
class SVM [96], LOF [97] and Random Forests [98]. They
note that due to the computational efficiency of their approach
it could be applied to streaming data.

Multiple Kernel Anomaly Detection (MKAD) [99] is ap-
plied to aerospace data. MKAD uses kernel functions to learn
similarity measures between variables within the datastream
with a one-class SVM being applied to perform the classifi-
cation task. They compared their results against ORCA [95]
and SequenceMiner [100], noting significant gains in detection
ability across both discrete and continuous streams.

3) Other methods: A range of methods have been presented
using recurrent neural networks to capture the temporal nature
of multivariate systems [101], [102], [103]. LSTM and GRU
based neural networks are applied to aircraft flight data in
[104] where their approach is compared to the results produced
by the MKAD method acheiving greater success at identifying
a range of anomaly types within those data.

LSTM based detectors using off-line training methods are
applied to space-craft telemetry in [105] where the authors
describe near real-time performance over 700 telemetry chan-
nels. They utilise the prediction errors from prior batches as
well as including knowledge from domain experts to calculate
threshold values for detection in later batches thereby adapting
for changes in the data they are receiving over time and to
account for rare or occasional expected processes.

CNNs are combined with a trainable wavelet transform
layer in [106] for the detection of change points in synthetic
multivariate data. This method is able to identify gradual
concept drifts and changes in the distribution of the input data
over time and may provide a method of detecting anomalies
before their main presentation.

A supervised approach to anomaly detection is presented in
[44], here the authors utilise the class labels from the training
data to provide additional information for the system operator
during decision making processes. This method displays a
potential direction towards which a semi-supervised or unsu-
pervised anomaly detection method could be taken as operator
knowledge is combined with the raw anomaly data.

Dynamic Bayesian Networks (DBN) were applied to both
univariate and multivariate environmental data in [107] where
they present a number of methods attempting to perform real-
time anomaly detection over sensor data. They note that their
DBN approach improved in detection ability when multiple
related sensor streams were combined to add context to the
detection process.

A graph based method is employed in [108] to learn depen-
dencies between variables. Nodes within the graph represent
individual observations or sequences of observations, where
the weighting between nodes is low (representing a low
dependency on other nodes) that node is flagged as anomalous.

A variation on Self Organising Maps (SOMs) are utilised
in [109] where the authors demonstrate the ability for their
method to capture the seasonal temporal characteristics of
multivariate data in an unsupervised manner. The authors

also show utility for their method when applied to univariate
systems.

VI. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

Whilst anomaly detection has existed in literature and
practice for a long time [110], there are still a number of
problems which must be overcome in order to allow broad
implementation. Currently there is no single best approach
to the problem, rather a number of approaches which may
be more applicable to certain domains. Below we present a
summary of the major challenges within the field which need
to be investigated to allow for increased utility:

• Real-Time processing - As discussed in Section IV-C for
a majority of use-cases where data is being used to aid in
short term decision-making or automated decision mak-
ing (such as IIoT, smart traffic or smart energy) the ability
for an anomaly detection method to operate in real-time
or near real time is important. If a detector takes longer
to process an observation or set of observations than the
time between measurements eventually the computational
resources supplied to the detector will be exceeded and
the system will fail.

• Window or Incremental approaches - Due to the vol-
ume of data being produced it would be costly to hold
the entire dataset available for analysis especially when
analysis is performed on resource constrained devices.
Therefore as described in Section IV-C a sliding window
or incremental approach will reduce the memory and
storage requirements for the processing platform.

• Online adaptive learning - The non-stationarity of IoT
timeseries described in Section IV-A4 leads to a need
for adaptive approaches to anomaly detection. Therefore
while offline methods may be of use for the initial
deployment there should be some method for the can-
didate system to improve its model over time to adapt to
foreseen and unforeseen changes in the data distributions
without requiring extensive retraining of the system.

• Semi-supervised or Unsupervised - In real-world use
cases there will often be a severe lack of available labelled
anomaly data and it can be assumed that those data
which are available will not fully represent the range
of anomalies which could occur which we describe in
Section IV-B. Similarly due to the imbalance between
the normal data and anomalous data classical multi-
class machine learning approaches would be insufficient
to capture the nature of the data stream. Therefore an
approach which trains the candidate algorithm only on
normal data with anomalies being reported when they fall
outside of some region around this normal data would be
the most viable [9].

• Multivariate data - As shown by a number of methods
discussed in Section V-A the addition of contextual
information can improve the suitability of a given de-
tector this may be in the form of temporal information,
environmental information or additional sensor streams.
As such there is the need for anomaly detectors to operate
successfully within a multivariate setting.
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• Generalised Approach - While it is likely that no single
approach will be the best for every possible scenario,
the development of algorithms which can be applied to
multiple domains will aid in the reuseability of techniques
and the ease of deployment of anomaly detection methods
to a variety of tasks.

VII. CONCLUSION

The IoT approach offers significant opportunity for the
application of a number of analytical techniques in order to
extract useful knowledge from the large volume of data being
collected. In most cases manual analysis of these data streams
is impractical or financially infeasible and therefore automated
methods must be developed to convert from the raw data being
collected into actionable information.

In this survey we have discussed the definition of what an
anomaly is within the domain of time-series and IoT data. We
have described the use of anomaly detection as a data analysis
tool within a number of IoT specific use cases outlining the
aims and results for those approaches as well as some of the
benefits which may be derived from these applications.

We describe the major challenges (Section IV) faced while
developing an anomaly detection solution given the dynamic
and novel systems being monitored by IoT deployments and
discuss some methods which may be used to mitigate these
challenges. While there has been an historic focus on detection
of anomalous observations in univariate data (Section V-A)
the complexity of the systems being monitored by typical IoT
deployments will generally require the processing of multiple
data streams and a multivariate approach (Section V-B) to
detecting changes in the relationships between those variables.
This direction does however bring additional challenges due to
the increased complexity and computation required to manage
the larger number of dimensions within the data. Machine
learning offers some solutions to the problems encountered
however the low availability of pre-labeled data continues to
offer challenges to these methods. We finish by suggesting
a range of research challenges which may be faced when
developing novel anomaly detection systems for both case
specific and more general approaches.

As more IoT applications are developed and deployed across
the growing sectors of smart cities, the energy sector and
a variety of vertical industries we would expect to anomaly
detection play an increasingly important role in the processing
and analysis of the data being collected.
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D. López-de Ipina, and V. Catania, “Ariima: a real iot implementation
of a machine-learning architecture for reducing energy consumption,”
in International Conference on Ubiquitous Computing and Ambient
Intelligence. Springer, 2014, pp. 444–451.

[59] B. Zhu and S. Sastry, “Revisit Dynamic ARIMA Based Anomaly
Detection,” in 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Conference
on Social Computing, Oct. 2011, pp. 1263–1268.

[60] H. Z. Moayedi and M. A. Masnadi-Shirazi, “Arima model for net-
work traffic prediction and anomaly detection,” in 2008 International
Symposium on Information Technology, vol. 4, Aug. 2008, pp. 1–6.

[61] A. H. Yaacob, I. K. T. Tan, S. F. Chien, and H. K. Tan, “ARIMA
Based Network Anomaly Detection,” in 2010 Second International
Conference on Communication Software and Networks, Feb. 2010, pp.
205–209.

[62] F. Knorn and D. J. Leith, “Adaptive Kalman Filtering for anomaly
detection in software appliances,” in IEEE INFOCOM Workshops 2008,
Apr. 2008, pp. 1–6.

[63] A. M. Bianco, M. G. Ben, E. J. Martı́nez, and V. J. Yohai, “Outlier
Detection in Regression Models with ARIMA Errors using Robust
Estimates,” Journal of Forecasting, vol. 20, no. 8, pp. 565–579,
2001. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/for.768

[64] F. Kadri, F. Harrou, S. Chaabane, Y. Sun, and C. Tahon, “Seasonal
arma-based spc charts for anomaly detection: Application to emergency
department systems,” Neurocomputing, vol. 173, pp. 2102–2114, 2016.

[65] G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and
trend time series,” European journal of operational research, vol. 160,
no. 2, pp. 501–514, 2005.

[66] S. Ho, M. Xie, and T. Goh, “A comparative study of neural network
and box-jenkins arima modeling in time series prediction,” Computers
& Industrial Engineering, vol. 42, no. 2-4, pp. 371–375, 2002.

[67] M. Ghiassi, H. Saidane, and D. Zimbra, “A dynamic artificial neural
network model for forecasting time series events,” International Jour-
nal of Forecasting, vol. 21, no. 2, pp. 341–362, 2005.

[68] R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network meth-
ods for traffic flow prediction,” in Chinese Association of Automation
(YAC), Youth Academic Annual Conference of. IEEE, 2016, pp. 324–
328.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2958185, IEEE Internet of
Things Journal

[69] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Funaya, “Robust
Online Time Series Prediction with Recurrent Neural Networks,” in
2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). Montreal, QC, Canada: IEEE, Oct. 2016, pp. 816–
825. [Online]. Available: http://ieeexplore.ieee.org/document/7796970/

[70] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell, “A
Dual-Stage Attention-Based Recurrent Neural Network for Time Series
Prediction,” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, ser. IJCAI’17. AAAI Press, 2017, pp.
2627–2633. [Online]. Available: http://arxiv.org/abs/1704.02971

[71] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term
Memory Networks for Anomaly Detection in Time Series,” Computa-
tional Intelligence, p. 7, 2015.

[72] S. Chauhan and L. Vig, “Anomaly detection in ECG time signals via
deep long short-term memory networks,” in 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), Oct.
2015, pp. 1–7.

[73] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards,
“Time Series Anomaly Detection; Detection of anomalous drops with
limited features and sparse examples in noisy highly periodic data,”
arXiv:1708.03665 [cs, stat], Aug. 2017, arXiv: 1708.03665. [Online].
Available: http://arxiv.org/abs/1708.03665

[74] X. Xie, D. Wu, S. Liu, and R. Li, “IoT Data Analytics Using Deep
Learning,” arXiv:1708.03854 [cs], Aug. 2017, arXiv: 1708.03854.
[Online]. Available: http://arxiv.org/abs/1708.03854

[75] T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and S. Zdonik,
“Greenhouse: A Zero-Positive Machine Learning System for Time-
Series Anomaly Detection,” arXiv:1801.03168 [cs], Jan. 2018, arXiv:
1801.03168. [Online]. Available: http://arxiv.org/abs/1801.03168

[76] L. Bontemps, J. McDermott, N.-A. Le-Khac et al., “Collective
Anomaly Detection based on Long Short Term Memory Recurrent
Neural Network,” in International Conference on Future Data and
Security Engineering. Springer, 2016, pp. 141–152.

[77] L. Zhu and N. Laptev, “Deep and Confident Prediction for Time Series
at Uber,” in 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), Nov. 2017, pp. 103–110.

[78] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence
learning with an unsupervised neural network model,” Neural
computation, vol. 28, no. 11, pp. 2474–2504, 2016. [Online].
Available: http://arxiv.org/abs/1512.05463

[79] Y. Cui, C. Surpur, S. Ahmad, and J. Hawkins, “A comparative study
of HTM and other neural network models for online sequence learning
with streaming data,” in 2016 International Joint Conference on Neural
Networks (IJCNN), Jul. 2016, pp. 1530–1538.

[80] E. N. Osegi, “Using the Hierarchical Temporal Memory Spatial
Pooler for short-term forecasting of electrical load time series,”
Applied Computing and Informatics, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210832718301728

[81] S. Ahmad and S. Purdy, “Real-Time Anomaly Detection for Streaming
Analytics,” arXiv:1607.02480 [cs], Jul. 2016, arXiv: 1607.02480.
[Online]. Available: http://arxiv.org/abs/1607.02480

[82] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised
real-time anomaly detection for streaming data,” Neurocomputing,
vol. 262, pp. 134–147, Nov. 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0925231217309864

[83] J. Wu, W. Zeng, and F. Yan, “Hierarchical Temporal Memory
method for time-series-based anomaly detection,” Neurocomputing,
vol. 273, pp. 535–546, Jan. 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0925231217313887
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