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1. Introduction
Mathematical modelling of near-surface wave fields is of major importance for numerous

technical applications, including in particular non-destructive testing, reduction of ground

vibrations induced by high-speed trains, and earthquake protection with a fresh interest in the

design of seismic meta-surfaces (Colombi et al , 2016; Colquitt et al , 2017). It has also attracted

attention due to its relevance in the design of smart surfaces and flexible electronic devices

(Bigoni et al , 2008; Li et al , 2018; Rogers et al , 2010). A recent trend in the theory of surface

waves is concerned with development of hyperbolic-elliptic asymptotic models that capture

the contribution of surface waves to the overall dynamic response when surface tractions are

prescribed (Kaplunov and Kossovich , 2004; Kaplunov et al , 2006). Within these formulations,

the propagation of the Rayleigh wave is described by a hyperbolic equation along the surface

(more precisely a forced wave equation), with decay into the interior governed by quasi-static

elliptic equations. They are derived by perturbing the solution for the forced dynamic equations

in linear elasticity around the eigensolution, corresponding to surface waves of arbitrary profile

that have been studied by Sobolev (1937), Friedlander (1948), and Chadwick (1976) for the plane

strain case, and recently extended by Kiselev and Parker (2010) to the 3D setup. We also mention

extensions to anisotropy addressed in Achenbach (1998); Parker (2013); Prikazchikov (2013).

The approach in Kaplunov et al (2006) was later adapted for a coated half-space (Dai et al , 2010).

It also led to elegant explicit approximate solutions for the near-resonant regimes of a moving

load on an elastic half-space, see Erbas et al (2017); Kaplunov and Prikazchikov (2013). A more

systematic exposition of this methodology may be found in Kaplunov and Prikazchikov (2013,

2017). This approach is of obvious interest in the modelling of the aforementioned seismic meta-

surfaces, due to drastic simplification coming from neglecting the contribution of bulk waves,

which is usually not significant in analysing the near-surface dynamics. Some preliminary results

have been reported in Ege et al (2018), dealing with the effect of an array of oscillators attached

to the surface of an elastic half-space. At the moment, the hyperbolic-elliptic models for surface

waves are known for isotropic media, with apparently the only exception of a recent contribution,

Nobili and Prikazchikov (2018), that is restricted to a special type of orthorhombic symmetry, for

which surface waves decay exponentially with no oscillations and are thus similar to those in

the isotropic context. On the other hand, free harmonic surface waves have already been well-

studied for a variety of crystal symmetries, see e.g. Farnell (1970), with the important issue of

existence/uniqueness resolved by Stroh (1962), Barnett and Lothe (1974, 1985), and Chadwick

and Smith (1977). However, treatment of Rayleigh waves caused by surface tractions appears to

be far less straightforward. In this paper, we derive a reduced model for the surface dynamics of

a generally anisotropic elastic half-space.

The rest of this paper is organised as follows. First, in Section 2 we present a brief summary

of the state-of-the art of the surface wave theory, in particular the Stroh formalism and the

method of surface impedance matrix, for a generally anisotropic half-space. Then, in Section

3 the hyperbolic equation for the surface displacement is derived, generalising the previously

obtained ones for isotropic and orthotropic media. As in Kaplunov et al (2006), a slow-time

perturbation procedure is employed, that yields the Rayleigh wave eigenform at leading order,

and it is at the next order that we arrive at a hyperbolic equation for surface displacement by

imposing a solvability condition. Section 4 contains a discussion of the obtained formulation, and

its comparison with known results for isotropic and orthotropic media, including solution for the

Lamb problem. As non-trivial applications of our reduced model, we next consider in Section 5

a simple meta-surface model that involves a half-plane subject to a periodic array of mass-spring

oscillators. Illustrative numerical results are used to show that the reduced model can describe
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the dispersion curve accurately over a larger parameter regime than expected. Then in Section 6

we consider propagation of travelling waves in a coated elastic half-space that is also subjected

to a finite deformation. It is shown that the problem may be reduced to one involving the coating

layer only, and the branch of the dispersion curve associated with the Rayleigh type mode is well

approximated by using the reduced model when the coating layer is much softer than the half-

space. The paper is concluded in the final section with a summary and a discussion of possible

extensions of the present study.

2. Summary of the surface wave theory
We consider a generally anisotropic elastic half-space defined by

0<x2 <∞, −∞<x1, x3 <∞

relative to a rectangular coordinate system with coordinates (xi). Free surface waves are governed

by the equation of motion

cijkluk,lj = ρüi, 0<x2 <∞, (2.1)

the traction-free boundary condition

ti ≡−ci2kluk,l =0 on x2 = 0, (2.2)

and the decay condition

uk → 0 as x2 →∞, (2.3)

where cijkl are the elastic moduli, ρ is the density, ui denotes the displacement vector field, and

equation (2.2)1 serves to define the traction vector field t with components ti. Throughout this

paper, we use a comma to signify partial differentiation, a superimposed dot to denote material

time derivative, and we employ the summation convention on repeated indices.

To construct a surface wave solution, we first try a travelling-wave solution of the form

u= a eikpx2 · eikθ, θ= x1 − vt, (2.4)

where k > 0 is the wave number, v the speed, and the constant p and amplitude vector a are to

be determined. On substituting (2.4) into (2.1), we find that p and a are determined by the matrix

equation
(

p2T + p(R+RT ) +QvI
)

a= 0, (2.5)

where I is the identity matrix, the superscript “T " denotes matrix transpose, and the components

of the three matrices T,R,Qv are defined by

Tik = ci2k2, Rik = ci1k2, Qv
ik = ci1k1 − ρv2δik. (2.6)

Under the assumption that cijks satisfies the strong convexity condition, the values of p

determined by (2.5) cannot be pure real when v= 0 and they will remain complex until v= v̂

at which at least one pair of these values first become pure real. The v̂ is usually referred to as the

limiting speed (Chadwick and Smith , 1977) and surface waves with v < v̂ are said to be subsonic.

An elegant result in anisotropic elasticity is that a unique free-surface wave should normally exist

except in some special cases (Barnett and Lothe , 1974).

To characterize the free-surface wave solution, we assume that v < v̂ and denote by

p(1), p(2), p(3) the three values of p with positive imaginary parts and a(1),a(2),a(3) the associated
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solutions for a. Then a general solution that satisfies the decay condition (2.3) is

u=





3
∑

j=1

cja
(j)eikp

(j)x2



 eikθ =A〈eikpx2〉 c eikθ , (2.7)

where c1, c2, c3 are constants,

A= [a(1),a(2),a(3)], c= [c1, c2, c3]
T ,

and 〈eikpx2〉 denotes the diagonal matrix

diag {eikp
(1)x2 , eikp

(2)x2 , eikp
(3)x2}.

The boundary condition (2.2) can be written as

t≡−(RT
u,1 + Tu,2) = 0. (2.8)

On substituting the general solution (2.7) into (2.8), we obtain Bc= 0, where

B = [b(1),b(2),b(3)] =RTA+ TA〈p〉, b
(j) = (RT + p(j)T )a(j) (2.9)

without summation over j, and 〈p〉= diag {p1, p2, p3}.

At this juncture, we introduce the surface-impedance matrix M (Ingebrigtsen and Tonning ,

1969) through t= kMu at x2 =0. It can then be deduced from (2.7) and (2.8) that

M =−iBA−1. (2.10)

In terms of this matrix, the boundary condition Bc= 0 may be rewritten as

Md= 0, where d=Ac. (2.11)

We remark that it is advantageous to use M instead of B. Among the many useful properties of

M , we mention that M is Hermitian so that the secular equation detM = 0 for the surface-wave

speed is real even for the most general anisotropic material (Stroh , 1962). In the early studies

on surface waves, it was not realized that the secular equation for the wave speed could always

be written as a real equation, and as a result it was thought that existence of surface waves in

anisotropic materials could only be exceptional; see, e.g., Farnell (1970). Also, all the eigenvalues

of M are monotone decreasing functions of v (Barnett and Lothe , 1985). As a result, whenever a

surface wave exists it is unique, which is a useful property when detM =0 is solved numerically.

The surface-impedance matrix also has many applications other than in the surface-wave

theory; see, e.g., Fu (2005). There now exist very efficient methods for computing this matrix.

Firstly, this matrix has an integral representation given by

M =

(∫π
0
Tφ

−1dφ

)−1(

πI − i

∫π
0
Tφ

−1Rφ
Tdφ

)

, (2.12)

where

Tφ = cos2 φT − sinφ cos φ (R +RT) + sin2 φQv,

Rφ = cos2 φR − sin2 φRT + sinφ cos φ (T −Qv).

This integral representation was first derived by Barnett and Lothe (1973), and later re-derived

by Mielke and Fu (2004) using a different procedure. Secondly, the surface-impedance matrix can

also be computed with the aid of the matrix Riccati equation

(M − iR)T−1(M + iRT)−Qv =0, (2.13)

see Biryukov (1985), Mielke and Sprenger (1998), Fu and Mielke (2002). A new perspective on

(2.12) and (2.13) has also recently been given by Norris and Shuvalov (2010) and Norris et al
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(2013) in terms of the matrix sign function. Finally, when x3 = 0 is a plane of material symmetry,

this matrix has a simple and explicit expression (Destrade and Fu , 2006; Fu , 2005; Fu and Brookes

, 2006).

A simple method for computing the surface-wave speed v and the corresponding M is as

follows. Increase v gradually from v= 0 and at each step use (2.12) to evaluate M and hence

detM . As soon as detM changes sign, use the corresponding values of M and v as an initial

guess and solve (2.13) and detM = 0 to find M and v accurately. Such calculations can be carried

out using, for instance, the software package Mathematica (Wolfram , 1991). Alternatively, we may

solve (2.13) and detM =0 simultaneously with the use of the command NSolve on Mathematica.

Although this gives multiple solutions, the solution that satisfies our requirements must be semi-

positive definite and is unique (Fu and Mielke , 2002).

In the following, we assume that vR has been determined as the unique solution of detM = 0,

M0 denotes M evaluated at v= vR, and d the corresponding normalized non-trivial solution of

(2.11)1 (so that M0d= 0 and |d|2 = d · d̄=1). In the plane-strain case, M0 must necessarily take

the form

M0 =

(

m1 m3 + im4

m3 − im4 m2.

)

. (2.14)

We may then take

d= g/|g|, where g= (−m3 − im4,m1)
T . (2.15)

With the use of (2.11)2, the solution (2.7) may be written as

u= u(θ, x2, k) =A〈eikpx2〉A−1
d eikθ. (2.16)

We observe that this solution is only valid for k > 0. When k < 0, we would need to use p̄1, p̄2, p̄3

in the construction of the general decaying solution (2.7), where an overbar denotes complex

conjugation. As a result, when k < 0, we have

u(θ, x2, k) = Ā〈eikp̄x2〉 Ā−1
d̄ eikθ . (2.17)

It then follows that

u(θ, x2, k) = u(θ, x2,−k), for k < 0, (2.18)

and we remark that this rule of defining a k-dependent function when k is negative in terms of the

same function when k is positive applies to all k-dependent functions in our subsequent analysis.

To facilitate analysis later, we define a new vector function z through

z(k, x2) =A〈eikpx2〉A−1
d, when k > 0, (2.19)

and observe that it satisfies the differential equation

T
∂2z

∂x22
+ ik(R +RT )

∂z

∂x2
− k2Qv

z= 0, 0<x2 <∞, (2.20)

and the boundary condition

T
∂z

∂x2
+ ikRT

z= 0, x2 = 0. (2.21)

As remarked above, for k < 0 we have z(k, x2) = z(−k, x2).
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We may also rewrite (2.19) in the form

z(k, x2) = e−kx2Ed, (2.22)

where the matrix E is related to M by

E =−iA〈p〉A−1 = T−1(M + iRT ), (2.23)

see Fu and Mielke (2002). On differentiating (2.13) with respect to v, we obtain

M ′E + ĒTM ′ =−2ρvRI,

where M ′ denotes dM/dv evaluated at v= vR, and hereafter all quantities dependent on v are

also evaluated at v= vR unless otherwise stated. The solution of this Liapunov matrix equation

is given by

M ′ =−2ρvR

∫∞
0

e−sĒT

e−sEds,

from which we obtain

d̄ ·M ′
d=−2ρvR|k|

∫∞
0

z(k, x2) · z(−k, x2)dx2, (2.24)

which will be used later.

For an isotropic elastic half-space, we introduce the notations

κ=

√

λ+ 2µ

µ
, k1 =

√

1−
ρv2R

λ+ 2µ
, k2 =

√

1−
ρv2R
µ

, (2.25)

which are obviously connected by the identity (1− k22) = κ2(1− k21). It can then be shown that

p1 = ik1, p2 = ik2, and

A=

(

1 −ik2

ik1 1

)

, B = µ

(

2ik1 1 + k22
−1− k22 2ik2

)

, (2.26)

m1 =
µk1(1− k22)

1− k1k2
, m2 =

µ(1− k22)k2
1− k1k2

, m3 = 0, m4 =
µ(k22 − 2k1k2 + 1)

k1k2 − 1
.

We then have

detM =
4k1k2 − (1 + k22)

2

1− k1k2
, (2.27)

and so the secular equation determining the surface wave speed vR is given by 4k1k2 − (1 +

k22)
2 = 0.

3. Reduced dynamic model
To motivate the following analysis, we first note that the inhomogeneous ordinary differential

equation

d2x

dt2
+ ω2

0x= sinωt

governs the oscillation of a simple harmonic oscillator with natural frequency ω0 that is forced

to oscillate at frequency ω. The forced oscillation is given by x= sinωt/(ω2
0 − ω2), and when ω is

close to ω0, near-resonance occurs and the leading order term of the solution is given by

x=
1

2ω0ǫ
sin(ω0t− ǫt), ǫ≡ω0 − ω. (3.1)

It is seen that the solution is of order 1/ǫ, and the solution evolves on two time scales, represented

by t and ǫt, respectively; see Kaplunov and Prikazchikov (2017) for further details.
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When a half-space is subjected to a surface load (e.g. a high speed train) that is travelling with a

speed close to the surface wave speed, the induced surface displacement has a similar behaviour.

More generally, when the surface of a half-space is subjected to an impact, it is expected that

a surface wave front will result that corresponds to the surface wave residue when the Fourier

transform is applied to solve the impact problem. The surface wave front will also evolve in

a similar manner (Kaplunov et al , 2006). Thus, we now use the small positive parameter ǫ to

characterize the distance from the surface wave front, and we introduce a slow time variable

τ = ǫt,

so that under the transformation (x1, x2, t)→ (θ, x2, τ ) where θ= x1 ± vRt, we have

∂

∂x1
=

∂

∂θ
,

∂

∂t
=±vR

∂

∂θ
+ ǫ

∂

∂τ
,

∂2

∂t2
= v2R

∂2

∂θ2
± 2vRǫ

∂2

∂θ∂τ
+ ǫ2

∂2

∂τ2
.

For either wavefront, θ= x1 − vRt or θ= x1 + vRt, the last relation may be replaced by

∂2

∂t2
= v2R

∂2

∂θ2
+ 2ǫ

∂2

∂t∂τ
+O(ǫ2).

We now assume that a surface traction t(0) of order O(1) is applied on x2 =0, and we look for an

asymptotic solution of the form

u=
1

ǫ
u
(1)(θ, x2) + u

(2)(θ, x2) +O(ǫ). (3.2)

On substituting this expansion into (2.1) and (2.2), and equating the coefficients of ǫ−1 and ǫ0, we

obtain

Tu
(1)
,22 + (R +RT )u

(1)
,θ2 +Qv

u
(1)
,θθ

= 0, 0<x2 <∞, (3.3)

Tu
(1)
,2 +RT

u
(1)
,θ

= 0, on x2 =0, (3.4)

Tu
(2)
,22 + (R +RT )u

(2)
,θ2 +Qv

u
(2)
,θθ

=2ρu
(1)
,tτ , 0<x2 <∞, (3.5)

Tu
(2)
,2 +RT

u
(2)
,θ

=−t
(0), on x2 = 0. (3.6)

The leading order problem (3.3) and (3.4) can be solved by Fourier transform. The solution is

given by

u
(1) =

1

2π

∫∞
−∞

ũ
(1)eikθdk, (3.7)

ũ
(1) =F [u(1)]≡

∫∞
−∞

u
(1)e−ikθdθ= f(k, τ ) z(k, x2), (3.8)

where the unknown amplitude function f(k, τ ) satisfies the condition f(−k, τ ) = f(k, τ ).

Throughout this paper we use both F [g] and g̃ to denote the Fourier transform of a function

g, which is defined by the equation with “≡” in (3.8).

To solve the second-order problem, we first apply Fourier transform to (3.5) and (3.6) to obtain

T ũ
(2)
,22 + ik(R +RT )ũ

(2)
,2 − k2Qv

ũ
(2) =2ρũ

(1)
tτ , 0<x2 <∞, (3.9)

T ũ
(2)
,2 + ikRT

ũ
(2) =−t̃

(0), x2 = 0, (3.10)

where t̃(0) =F [t(0)]. We next form the dot product of the left hand side (LHS) of (3.9) with the

mode function z(−k, x2) defined by (2.19), and integrate the resulting expression from 0 to ∞.
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By integrating by parts and making use of the fact that by definition z(−k, x2) satisfies (2.20) and

(2.21) with k replaced by −k, we obtain∫∞
0

z(−k, x2) · LHS of (3.9) dx2 =−
{

z(−k, x2) ·
(

T ũ
(2)
,2 + ikRT

ũ
(2)
)}∣

∣

∣

x2=0

= z(−k, 0) · t̃(0), (3.11)

where in obtaining the second equation above use has been made of (3.10). On replacing the LHS

of (3.9) in (3.11) by the right hand side of (3.9), we obtain

2ρ

∫∞
0

z(−k, x2) · ũ
(1)
tτ dx2 = z(−k, 0) · t̃(0),

or equivalently,

2ρ
∂2f

∂t∂τ

∫∞
0

z(−k, x2) · z(k, x2)dx2 = z(−k, 0) · t̃(0). (3.12)

When k > 0, we have

z(k, x2) =A〈eikpx2〉A−1
d, z(−k, x2) = z(k, x2) = Ā〈e−ikp̄x2〉 Ā−1

d̄, (3.13)

and so ∫∞
0

z(−k, x2) · z(k, x2)dx2 =
1

k
N, (3.14)

where

N =

∫∞
0

A〈eips〉A−1
d · Ā〈e−ip̄s〉 Ā−1

d̄ds. (3.15)

When k < 0, we have

z(−k, x2) =A〈e−ikpx2〉A−1
d, z(k, x2) = z(−k, x2) = Ā〈eikp̄x2〉 Ā−1

d̄,

and so ∫∞
0

z(−k, x2) · z(k, x2)dx2 =−
1

k
N. (3.16)

Combining (3.14) and (3.16), we obtain∫∞
0

z(−k, x2) · z(k, x2)dx2 =
1

|k|
N, (3.17)

and (3.12) reduces to

2ρN
∂2f

∂t∂τ
= |k|z(−k, 0) · t̃(0). (3.18)

Denoting ǫ−1ũ(1)(k, 0, τ ) = ǫ−1f(k, τ )z(k, 0) by ṽ(k, τ ), which is the Fourier transform of the

leading-order displacement filed, we then have

2ρN ǫ
∂2ṽ

∂t∂τ
= |k|z(k, 0)(z(−k, 0) · t̃(0)) = |k| {z(k, 0)⊗ z(−k, 0)} t̃(0), (3.19)

where “⊗" denotes tensor product. Since according to (2.19), z(k, 0) is equal to d when k > 0 and

d̄ when k < 0, the above expression may be rewritten as

2ρNǫ
∂2ṽ

∂t∂τ
=

{

k(d⊗ d̄)t̃(0), if k > 0,

−k(d̄⊗ d)t̃(0), if k < 0.
(3.20)

We note that the tensor product d⊗ d̄ in the above equation can be expressed in terms of the

surface impedance tensor M0, and we have

d⊗ d̄=
M̄c

0

trM̄c
0

, (3.21)

where M̄c
0 denotes the cofactor of M̄0 (or the adjugate of M0 since M̄0 =MT

0 ) and tr M̄c
0 its trace.

The trace is equal to the second principal invariant of M0 and so is equal to the product of the
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non-zero eigenvalues of M0. The above relation (3.21) follows from the fact that M̄c
0 satisfies the

equations M̄c
0M0 =M0M̄

c
0 = 0 and must necessarily be rank-one.

Writing

d⊗ d̄=K1 + iK2 (3.22)

with K1 and K2 denoting the real and imaginary parts of the left hand side, we have

−i(d⊗ d̄) =K2 − iK1, i(d̄⊗ d) =K2 + iK1,

and so equation (3.20) may be reduced to

2ρNǫ
∂2ṽ

∂t∂τ
= (K2 − i sgn(k)K1) ik t̃

(0)

=K2F [
∂t(0)

∂x1
] +

1

π
K1F [

1

x1
]F [

∂t(0)

∂x1
], (3.23)

where use has been made of the fact that

F [
1

x1
] = p.v.

∫∞
−∞

1

x1
e−ikx1dx1 =−2i lim

a→0

∫∞
a

sin kx1
x1

dx1 =−iπ sgn(k). (3.24)

In the above equation, p.v. denotes “principal value".

On inverting (3.23), we obtain

2ρNǫ
∂2v

∂t∂τ
=K2

∂t(0)

∂x1
+

1

π
K1

1

x1
∗
∂t(0)

∂x1
, (3.25)

where the star denotes integral convolution. In terms of the original variables, this takes the form

∂2u

∂t2
− v2R

∂2u

∂x21
=

1

ρN

{

K2
∂t(0)

∂x1
+

1

π
K1

1

x1
∗
∂t(0)

∂x1

}

. (3.26)

This is the evolution equation that governs the leading-order surface elevation near the surface

wave front.

4. Validation
To validate the above evolution equation, we now specialize to the case when the elastic half-space

is isotropic. We have m3 ≡ 0 and

K1 =

(

m2
4 0

0 m2
1

)

, K2 =

(

0 −m1m4

m1m4 0

)

.

Thus, denoting the two components of −t(0) by (P1, P2), we have

−K2t
(0) = (−m1m4P2,m1m4P1)

T , −K1t
(0) = (m2

4P1,m
2
1P2)

T .

If, for instance, P1 =0, we obtain from (3.26)

v2R
∂2u1
∂x21

−
∂2u1
∂t2

=−
m1m4

ρN

∂P2

∂x1
, v2R

∂2u2
∂x21

−
∂2u2
∂t2

=
m2

1

ρNπ

1

x1
∗
∂P2

∂x1
. (4.1)

This may be compared with equation (98) in Kaplunov and Prikazchikov (2017), namely,

v2R
∂2u1
∂x21

−
∂2u1
∂t2

=
v2R(1− k42)

4µB

∂P2

∂x1
(4.2)

in the current notation, where

B =
k1
k2

(1− k22) +
k2
k1

(1− k21)− 1 + k22 .
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To this end, we first compute

m1m4

N
=−

k21k2(1− k22)
2

4k31 + k2(k
2
2 − 7)k21 + k32 + k2

. (4.3)

In view of (2.25)3, the equivalence of (4.1)1 and (4.2) then hinges on the validity of

m1m4

N
=−

(1− k22)(1− k42)

4B
.

The last identity is indeed valid because the difference of the two sides can be shown to be

proportional to 4k1k2 − (1 + k22)
2 which is zero; see (2.27).

Agreement with the result of Nobili and Prikazchikov (2018) for the orthorhombic case can be

achieved by using the fact that in this case the m3 in (2.14) is zero, and the other three components

are given by (Fu and Mielke , 2002)

m1 =

√

c66(c11 − ρv2)−
c66
c22

(

c12 + c66
1 + γ

)2

,

m2 = γ
c22
c66

m1, m4 =
γc12 − c66

1 + γ
, γ =

√

c66(c66 − ρv2)

c22(c11 − ρv2)
. (4.4)

As another validation of our general evolution equation (3.26), we now solve it subject to the

boundary condition

t
(0) = δ(x1)δ(t)g,

where g is a constant vector.

Applying Fourier transform to (3.26), we obtain

∂2ũ

∂t2
+ v2Rk2ũ=

ik

ρN
{K2gδ(t)− i sgn(k)δ(t)K1g} . (4.5)

Both ũ and ∂ũ/∂t are zero for t < 0 due to causality. It then follows that

ũ(k, 0+) = [ũ]t=0+

t=0− =0,

∂ũ

∂t
(k, 0+) =

[

∂ũ

∂t

]t=0+

t=0−
=

ik

ρN
{K2g− i sgn(k)K1g} ,

where the second jump condition is obtained by integrating (4.5) from t=0− to t= 0+. On solving

(4.5) for t > 0 subject to the two conditions above, we obtain

ũ=
i

ρNvR
{K2g − i sgn(k)K1g} sin(kvRt),

=
1

2ρNvR
{K2g − i sgn(k)K1g} [e

ikvRt − e−ikvRt]. (4.6)

Fourier inverting the above expression with the use of the shifting property and the fact that

F [δ(x)] = 1 and F [1/(iπx1)] =−sgn(k), we obtain

u=
1

2ρNvR

{

K2g [δ(x1 + vRt)− δ(x1 − vRt)] +
1

π
K1g

[

1

x1 + vRt
−

1

x1 − vRt

]}

. (4.7)

The part of this result that represents the right-travelling wavefront may be compared with

equation (22) in Maznev and Every (1997) which is rewritten in the Appendix A as equation
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(A3) in the current notation. Agreement then hinges on the establishment of the identity

Resv=vRM
−1(v) =−

K1 + iK2

2ρvRN
, (4.8)

where Res stands for “residue". This identity can be established by noting that the left hand side

is equal to

M̄c
0 Resv=vR

1

detM(v)
=

M̄c
0

(detM)′
=

M̄c
0

tr(M ′M̄c
0)

=
d⊗ d̄

d̄ ·M ′d
=−

K1 + iK2

2ρvRN
, (4.9)

where use has in turn been made of Jacobi’s identity, (3.21), (3.22), (2.24), and (3.17), and the

(detM)′ denotes differentiation of detM(v) with respect v followed by evaluation at v= vR.

To conclude this section, we point out a simple interpretation of the evolution equation (3.26).

We observe that in the Fourier space equation (3.26) reduces to

−(v2 − v2R)kũ=
1

ρN
(K1 + iK2)t̃

(0)
,

which, upon the further use of (4.8), becomes

(v + vR)(v − vR)kũ= 2vR lim
v→vR

(v − vR)M−1(v)t̃
(0)

. (4.10)

In consistency with the limit taken, this is equivalent to

(v − vR)kũ= lim
v→vR

(v − vR)M−1(v)t̃
(0)

. (4.11)

This is recognized to be the leading order expansion of

t̃
(0)

= kM(v)ũ, or equivalently, kũ=M−1(v)t̃
(0)

, (4.12)

in the limit v→ vR; see the definition of the surface impedance matrix M above (2.10).

5. A half-space coated with an array of resonators
As a non-trivial application of our reduced model, we now consider an array of flexible rods

that are clamped to the surface of the half-space. The longitudinal oscillations of the rods due to

harmonic forcing at the base are governed by

E
∂2w

∂x22
−m

∂2w

∂t2
= 0, −H <x2 < 0, (5.1)

∂w

∂x2
=

P eiωt

Eh
, x2 = 0, (5.2)

∂w

∂x2
=0, x2 =−H, (5.3)

where E, m, H and h denote the Young’s modulus, mass, height and width of each rod,

respectively, and P eiωt is the normal force exerted by the half-space.

It can easily be shown that for each vibration frequency ω, the above system admits a solution

of the form

w=−
Pc0

Ehω sinωH/c0
cos

ω

c0
(x2 +H) eiωt, (5.4)

where c0 =
√

E/m. It then follows that at the interface x2 = 0, we have

P eiωt =−
Ehω

c0
tan(

ω

c0
H)w. (5.5)

We observe that values of ω that satisfy tan( ω
c0
H) = 0 are natural frequencies of each rod with

both ends free, whereas values of ω that satisfy tan( ω
c0
H) =∞ are natural frequencies of each
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rod with the end x2 =−H free and the end x2 = 0 fixed. At the latter frequencies, the half-space

would behave as if it were clamped at the surface and no non-trivial solutions can exist since it is

well-known that a clamped elastic half-space cannot support surface wave solutions. This implies

that the surface resonators will necessarily give rise to band gaps. What remains to be done is to

characterize where and how wide they are.

Focussing now on waves whose wavelength is much larger than the gap width a between the

rods, we may assume that the above forces are continuously distributed over the surface with

density P/aeiωt. Thus, the effective traction boundary condition for the half-space is

t
(0) =

Ehω

ac0
tan(

ω

c0
H)we2, at x2 =0, (5.6)

where e2 is the basis unit vector in the x2-direction.

If we look for a solution for the half-space of the form

u= fei(kx1−ωt), (5.7)

then continuity of displacement at x2 = 0 implies that

t
(0) =

Ehω

ac0
tan(

ω

c0
H) f2e

i(kx1−ωt)
e2, at x2 =0. (5.8)

On substituting (5.7) and (5.8) into the reduced model (3.26), we obtain, by equating the

component in the x2-direction, the dispersion relation

v2Rk2 − ω2 =
ωk sgn(k)m2

1Eh

ρNc0a
tan(

ω

c0
H). (5.9)

This asymptotic dispersion relation is expected to provide a good approximation for the exact

dispersion relation near the surface wave front ω ≈ vRk. The exact dispersion relation can be

obtained by first substituting (5.8) into t(0) = kMu. This gives

m11f1 +m12f2 =0, m21f1 +m22f2 =
Ehω

ac0k
tan(

ω

c0
H) f2, (5.10)

where mij are the components of M . Existence of a non-trivial solution then requires that

1

m11
detM =

Ehω

ac0k
tan(

ω

c0
H). (5.11)

On expanding the left hand side of this exact dispersion relation around v= vR where m11 =m1

and making use of the result in (4.9) for (detM)′, we obtain

2ρvRN

m2
1

(vR − v) =
Ehω

ac0k
tan(

ω

c0
H). (5.12)

This reduces to (5.9) if the left hand side of the latter equation is first factorized as (ω + vRk)(ω −

vRk) and then the ω in the first factor is replaced by vRk.

We now compare the performance of the asymptotic dispersion relation (5.9) against its exact

counterpart (5.11). For numerical illustrations, we shall consider a representative fibre-reinforced

material with moduli given by

cijkl = λδijδkl + µt(δikδjl + δilδjk) + α(δijakal + aiajδkl) + βaiajakal

+ (µl − µt)(aiakδjl + aialδjk + ajakδil + ajalδik), (5.13)

with λ, α, β, µt, µl material constants and ai the preferred direction; see e.g., Spencer (1984).

These constants are related to the Young’s moduli El, Et and Poisson’s ratio νlt through

El = β̂ −
(α+ λ)2

λ+ µt
, Et =

4µt

(

β̂(λ+ µt)− (α+ λ)2
)

β̂(λ+ 2µt)− (α+ λ)2
, νlt =

α+ λ

2(λ+ µt)
,
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Ω

Figure 1. A typical dispersion curve when the fibres lie in the x1x2-plane and are parallel to the direction of wave

propagation. The band gaps are marked on the Ω axis using rectangles. The solid and dashed lines represent the exact

and asymptotic results, respectively, whereas the straight dotted line represents the surface wave line Ω =K .

where β̂ = λ+ 2α+ 4µl − 2µt + β. We shall take ρ=1852 kg/m3, νlt =0.324 and

(El, Et, µl, µt) = (42.7, 11.6, 4.69, 6.07) GPa, (5.14)

given by Rikards et al (1999) for a typical Glass-Epoxy composite.

For the resonantors, we take

a=2m, h=0.3m, H =14m, E =1.7GPa, ρt =450kg/m3.

We take m1 = cosφ, m2 = sin φ with φ denoting the angle between the preferred/fibre direction

(the l-direction) and the x1-axis (the direction of wave propagation). We define

Ω =
a

vR
ω, K = ak,

so that the surface impedance matrix is a function of vRΩ/K. The surface wave front corresponds

to Ω/K = 1 and (subsonic) decaying waves can only exist for vRΩ/K < v̂, that is

Ω

K
<

v̂

vR
, (5.15)

where the limiting speed v̂ is computed by using its definition (namely that it is the value of v at

which at least one pair of values of p determined by (2.5) become pure real).

A typical set of results for the dispersion curve is shown in Figure 1, corresponding to

φ= 0. The solid black lines and dashed cyan lines represent the exact and asymptotic results,

respectively, whereas the black dotted line represents the surface wave line Ω =K. We make

the following observations. First, the introduction of surface resonators gives rise to an infinite

number of band gaps. For each band gap, the upper frequency limit corresponds to the

intersection of the dispersion curve with the shear wave line Ω = (v̂/vR)K that is aways above

the surface wave front Ω =K. Except for the first branch that starts from the origin, each higher

branch of the dispersion curve would initiate at the shear wave line and asymptote to a solution

of tan(ωH/c0) =∞. This asymptotic limit defines the lower limit of each band gap. For the case
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considered in Figure 1, the first three band gaps are given by

(0.2803, 0.3017), (0.8409, 0.8624), (1.4015, 1.4230).

Second, although the asymptotic dispersion curve is only meant to be valid near the surface

wave line, it is in fact also valid when the lower limit of each band gap is approached. This is

due to the fact that this behaviour is dictated by tan(ωH/c0) tending to infinity, independent of

the model describing the half-space. We do note, however, that although not shown in Figure

1, the asymptotic dispersion relation (5.9) admits solutions violating the restriction (5.15) which

are clearly spurious. In other words, starting from the second branch, each cyan lines in Figure

1 could be extended leftwards and it would approach a solution of tan(ωH/c0) =∞ in the limit

K → 0. This corresponds to the fact that when tan(ωH/c0)→∞, the two sides of (5.9) can be

balanced in two different ways. The first way is to allow K →∞ (in which case both sides are

infinite), as discussed earlier. The other way is to allow K → 0 so that both sides remain finite.

We have also made calculations for a selection of values of φ between 0 and π/2. Qualitatively

similar dispersion curves are obtained. For instance, for φ= π/3, π/4, π/2, the first three band

gaps are given by

φ=
π

6
: (0.2779, 0.2635), (0.8048, 0.7904), (1.3318, 1.3173),

φ=
π

4
: (0.2568, 0.2506), (0.7581, 0.7519), (1.2593, 1.2532),

φ=
π

2
: (0.2918, 0.2830), (0.8578, 0.8490), (1.4237, 1.4149).

It is seen that the greatest and smallest band gaps are achieved at φ= 0 and φ= π/4, respectively.

All the dispersion curves obtained here are also of the same structure as the one computed by

Erbas et al (2017) for an isotropic half-space.

6. Dispersion relation for a coated half-space that is subject to a

finite deformation
As another application of the reduced model (3.26), we now consider wave propagation in a

coated elastic half-space that is subjected to a finite deformation. The equation of motion (2.1) is

now replaced by its incremental counterpart

χij,j = ρüi, χij ≡A1
jilkuk,l, (6.1)

where A1
jilk are the components of the first-order tensor of instantaneous elastic moduli given by

A1
jilk = J̄−1F̄jAF̄lB

∂2W

∂FiA∂FkB

∣

∣

∣

∣

F=F̄

. (6.2)

See, e.g., Chadwick and Ogden (1971). In the above definition, W is the strain-energy function, F

is the deformation gradient with F̄ denoting its value corresponding to the finite deformation and

J̄ =det F̄ . We assume that the elastic half-space is defined by 0<x2 <∞ and the coating layer

defined by −h<x2 < 0 where h is the layer thickness in the finitely deformed configuration. For

illustrative calculations, we assume that the strain-energy function is given by

W =
µ

2
(I1 − 2− 2 log J) +

µν

1− 2ν
(J − 1)2, (6.3)

where I1 is the first principal invariant of FTF , J =detF , µ is the ground-state shear modulus,

and ν is Poisson’s ratio. The above strain energy function may be referred to as a compressible

neo-Hookean material model. It recovers the classical neo-Hookean material model under the limit
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ν → 1
2 , J → 1 such that (J − 1)/(ν − 1

2 ) remains finite. In the studies of wave propagation in pre-

stressed media, it is customary to consider incompressible elastic materials to simplify analysis. To

take advantage of the results presented in Sections 2 and 3, however, we find it more convenient

to consider the above compressible material model and take the limit ν → 1/2 for the case of

incompressibility. We assume that F̄ corresponds to a plane-strain state of uni-axial compression

in the x1-direction with principal stretch λ. To simplify presentation further, we assume that the

layer and half-space have the same density and Poisson’s ratio and they only differ in their shear

moduli µ̂ and µ. Correspondingly, the elastic moduli for the layer and half-space will be written

as Â1
jilk and A1

jilk , respectively.

It is straightforward to derive the dispersion relation for traveling waves in such a coated

elastic half-space. We denote the displacement fields in the half-space and layer by u and û,

respectively, and associated traction vectors by

ti =−A1
2ilkuk,l, t̂i = Â1

2ilkuk,l.

We look for a traveling-wave solution of the form

u= z(kx2)e
ik(x1−vt), û= ẑ(kx2)e

ik(x1−vt), k > 0,

where the amplitude functions z(kx2) and ẑ(kx2) are to be determined. The conditions to satisfy

are traction-free condition at x2 =−h, displacement and traction continuity at the interface x2 =0

(namely, u= û and t=−t̂), and decay condition as x2 →∞. This problem can be reduced to a

problem for the layer only, with the conditions at x2 = 0 replaced by

− t̂= kMû, (6.4)

where k and M have the same meanings as in (2.8)– (2.10) with cijkl there replaced by A1
jilk .

For the above traveling wave solution, the reduced model (3.26) reduces to

k(v2R − v2)u=
1

ρN
(K1 + iK2)t, (6.5)

where we have replaced the leading-order traction vector t(0) by t. Displacement and traction

continuity at x2 = 0 implies that the above equation may be replaced by

k(v2R − v2)û=−
1

ρN
(K1 + iK2)t̂, (6.6)

which provides an approximation for the exact relation (6.4). Recalling the interpretation in (4.10)–

(4.12), we expect that it should provide a good approximation for the branch of the dispersion

curve that is associated with the surface wave-type mode. This is verified in Figure 2 where we

have shown the dispersion curves based on (6.4) (solid lines) and (6.6) (dashed line), respectively.

The lowest branch is associated with a surface wave-type solution. The speed tends to the surface

wave speed for the half-space in the limit kh→ 0, and to the shear wave speed for the layer in

the limit kh→∞. The example corresponds to a modulus ratio µ/µ̂=10, that is the half-space is

much harder than the layer. It is found that the approximate model (6.6) gives good results for

high values of µ/µ̂ and poor results when µ and µ̂ are comparable. Of course, when µ̂ becomes

larger than µ, the surface wave-type mode ceases to exist, and then (6.6) becomes irrelevant.
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Figure 2. Dispersion curves for a traveling waves in a coated elastic half-space with principal stretch λ=1.01, µ/µ̂=10

and ν =0.4999. Solid lines: exact results based on (6.4); dashed lines: approximate results based on the reduced model

(6.4).
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7. Conclusion
In this paper we have derived a forced wave equation governing the propagation of surface

waves in a generally anisotropic elastic half-space due to prescribed surface loading. Although

all the examples considered have simple enough exact solutions, it is hoped that our reduced

model will be useful in other situations where the exact solutions are difficult to obtain or too

involved to prevent easy interpretations. Also, since our forced wave equation may be viewed

as the equation governing the forced oscillations of a string, it is possible that using this analogy

expensive experiments involving a half-space may be carried out more cheaply on an analogous

string.

Our reduced model extends what has previously been derived for isotropic and orthorhombic

materials to the general anisotropic case. The method of derivation employed makes use of

the surface impedance matrix and differs from the previously used method that depends on

reducing the equation of motion to two scalar wave equations through the use of Helmholtz

decomposition. Although we are dealing with the generally anisotropic case, the final results are

quite compact and very easy to interpret; see, e.g., (4.10)–(4.12). Our reduced model also shares

the same interpretations and extensions as discussed in Kaplunov and Prikazchikov (2017) for

isotropic and orthorhombic materials. In particular, the surface wave front may be due to any

form of time-dependant surface traction which appears on the right hand side of (3.26) as a forcing

term; the only restriction being that the surface traction should indeed produce a surface wave

front. We observe that although our derivation was presented as a leading-order analysis, the

description of the surface wave front via (3.26) is in fact exact in the sense that if Laplace-Fourier

transform is applied to the original dynamic problem and the inverse transform is evaluated

to extract the surface displacement, then the contribution from the pole corresponding to the

surface wave speed is exactly the same as what (3.26) would give. Although the reduced model

is derived with a surface wave in mind, our last two examples concerning surface resonators and

coated half-spaces serve to demonstrate that the reduced model may also apply to many other

situations where surface wave type behaviour is involved. In particular, the recently considered

problem for an isotropic half-space subject to an array of Euler-Bernoulli beams attached to the

surface (Wootton et al , 2019) can be readily extended to the generally anisotropic case. Also

the developed model may be implemented as a short-wave limiting behaviour in the composite

hyperbolic equations for bending and extension of anisotropic strips, in a similar manner to what

has been done earlier within the isotropic context (Erbas et al , 2018, 2019). The consideration

in the paper is restricted to the surface. It is obvious that the general anisotropic case does not

assume a simple solution for the interior domain, in contrast with the isotropic setup where the

near-surface displacement field may be expressed through a single harmonic function (Kaplunov

and Prikazchikov , 2017). However, with the use of the expressions (3.8) and (3.13) the near-

surface field may still be obtained by evaluating a convolution integral. Finally, we mention that

the presented 2D framework seemingly allows a 3D generalization by using the Radon transform

as was done in (Kaplunov and Prikazchikov , 2017).

Appendix A: Exact solution of Lamb’s problem for a generally anisotropic

elastic half-space

It can be deduced from the summary in Section 1 that if

u|x2=0 = z(0)ei(kx1−ωt),
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then the required surface traction is given by

t|x2=0 = |k|M(
ω

k
)z(0)ei(kx1−ωt),

where for k < 0 the surface impedance matrix M(ω/k) should be replaced by its complex

conjugate. We have not yet defined the surface impedance matrix for |ω/k| ≥ v̂, but this is not

required in the following calculation.

Let z(0) = |k|−1M−1(ω/k)g, where g is an arbitrary column vector. Then

u|x2=0 = |k|−1M−1(
ω

k
)g ei(kx1−ωt), ⇐⇒ t|x2=0 = g ei(kx1−ωt).

This gives us the surface displacement when the surface traction is of the particular form given.

Now suppose that the traction on the boundary is given by

t|x2=0 = δ(x1)δ(t)g,

which may be rewritten as

t|x2=0 =

(

1

4π2

∫∞
−∞

dk

∫∞
−∞

eikx1−iωtdω

)

g, (A1)

then the associated surface displacement may be obtained by superposition as

u|x2=0 =

(

1

4π2

∫∞
−∞

dk

∫∞
−∞

1

|k|
M−1(

ω

k
)eikx1−iωtdω

)

g. (A2)

The coefficient of g in the above expression is the surface Green’s function with its ij-component

giving the displacement in the i-th direction when g is the unit vector in the j-direction.

Comparing this expression with equation (9) of Maznev and Every (1997) shows that their Φ(s)

corresponds to our ivM−1(v) with s= 1/v, and we have (with sR = 1/vR)

Ress=sRΦ(s) = lim
s→sR

(s− sR)Φ(s) = lim
v→vR

(
1

v
−

1

vR
)ivM−1(v) =−

i

vR
Resv=vRM−1(v).

In terms of the surface impedance matrix, the equation (22) in Maznev and Every (1997) for the

surface Green’s function then takes the form

G(x, t) =
1

π
sgn(x1)

Re[Resv=vRM−1(v)]

x1 − vRt
+ Im [Resv=vRM

−1(v)] δ(x1 − vRt), (A3)

where the sign function sgn(x1) may be deleted since the expression is only valid for the right-

travelling surface wavefront where x1 is necessarily positive.
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