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Spinal muscular atrophies (SMAs) are a heterogeneous group 
of neuromuscular disorders, clinically characterised by lower 
motor neuron loss, and muscle weakness and atrophy, but with 
varied age of symptom onset and severity of motor function 
impairments, and differential involvement of other organs. 
Spinal muscular atrophies are generally classified as either 
proximal SMA or distal SMA based on the limb region pri-
marily affected by muscle weakness. Approximately 95% of 
SMA cases are caused by homozygous functional loss of the 
survival of motor neuron 1 (SMN1) gene,1 resulting in insuffi-
cient levels of survival of motor neuron (SMN) protein. A 
minority (ie, <5%) of SMA cases involve genes other than 
SMN1, and to date, at least 30 different genes have been attrib-
uted to cases of non-SMN-related SMA (reviewed by Farrar 
and Kiernan2). Intriguingly, experimental evidence has emerged 
from our recent work3 and the work of others that proteins 
produced by several non-SMN-related SMA genes, including 
LMNA,3 UBE1,4,5 GARS,6 and SETX,7 are implicated in 
SMN-related SMA pathways.

Mutations in LMNA, the lamin A/C encoding gene, cause a 
range of neuromuscular conditions with prominent cardiac 
involvement, including an adult form of SMA,8,9 and our 
recent study also proposes a role for lamin A/C in SMN-
related SMA pathways.3 Frequent reports of cardiac abnor-
malities in SMN-related SMA patients and mouse models of 
SMN-dependent SMA10 prompted us to study the underlying 
molecular pathways using quantitative proteomics analysis. A 
key finding from this study was the identification of increased 
lamin A/C levels as a robust molecular phenotype in the heart 

of SMN-related SMA mice.3 This increase would inevitably 
increase rigidity of nuclei leading to disrupted contractile 
activity in cardiomyocytes and thereby provide a mechanism to 
explain previous reports of morphological and functional car-
diac defects in patients and SMA mice.10 Lamin A/C dysregu-
lation was also apparent in fibroblast cells from individuals 
with severe SMN-dependent SMA and in other tissues from 
SMN-dependent SMA mice, but with differing directions of 
expression change depending on the tissues examined.3

A role for lamin A/C in SMN-dependent SMA is further 
strengthened by experiments in which we demonstrated a 
mechanistic link between lamin A/C and ubiquitin-like modi-
fier activating enzyme 1 (UBA1) protein.3 Mutations in the 
UBE1 gene, which encodes the UBA1 protein, cause a form of 
X-linked infantile SMA (SMAX2),11 and involvement of 
UBA1 in SMN-dependent pathways has also been well char-
acterised across several models of SMN-dependent SMA. 
UBA1 levels were reduced in mouse4 and zebrafish models of 
SMN-dependent SMA,5 and in induced pluripotent stem cell–
derived motor neurons from individuals with severe SMN-
related SMA.5,12 Pharmacologic or genetic suppression of 
UBA1/UBE1 phenocopied the SMA motor neuron phenotype 
in zebrafish, thus demonstrating that UBA1 contributes 
directly to SMN-related SMA disease pathways.4 Systemic 
restoration of UBA1 levels increased motor performance in 
zebrafish and mouse models of SMA, as well as increased sur-
vival and improved systemic pathology in SMA mice.5

The link between lamin A/C and UBA1 is likely to involve 
β-catenin, as both lamin A/C13 and UBA1 are implicated in 
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regulating β-catenin signalling,4 and β-catenin itself contributes 
to SMN-dependent SMA pathways.4 Defective Wnt/β-catenin 
signalling, for example, was shown to contribute to the pathol-
ogy of dilated cardiomyopathy caused by mutations in the 
LMNA gene.13 Decreased expression of several components of 
Wnt/β-catenin pathway, including β-catenin, was identified in 
the heart from a mouse model of LMNA cardiomyopathy, and 
pharmacologic activation of Wnt/β-catenin signalling improved 
cardiac pathology in these mice.13 In a separate study, lamin A/C 
overexpression increased nuclear levels of β-catenin and acti-
vated the Wnt signalling pathway to promote osteoblast differ-
entiation.14 Our recent study3 further expanded on the link 
between lamin A/C and β-catenin by demonstrating that they 
interact in mouse heart extracts under normal physiological  
conditions. UBA1, on the other hand, controls the stability of 
β-catenin through the canonical ubiquitin-proteasome pathway, 
and deficiency in UBA1 protein levels leads to β-catenin accu-
mulation and neuromuscular pathology in SMN-dependent 
SMA.4 Pharmacological inhibition of β-catenin signalling, using 
quercetin, ameliorated neuromuscular pathology in Drosophila, 
zebrafish, and mouse models of SMN-dependent SMA.4

Mutations in GARS, the gene encoding glycine-tRNA 
synthetase (GARS), are responsible for Charcot-Marie-Tooth 
disease Type 2D (CMT2D), typically characterised by sensory 
impairment, but also cases of both childhood and adult forms 
of distal SMA, termed distal SMA type V.2 Studies of GARS, 
which was found to be another downstream target of UBA1 
pathways, provided further insights into the fundamental 
molecular mechanisms driving pathology in SMN-dependent 
SMA tissues.7 Increased expression of GARS in spinal cords 
from a mouse model of severe SMN-dependent SMA was 
restricted to sensory neurons and increasing the expression of 
UBA1 was sufficient to restore GARS levels and correct sen-
sory neuron defects in severe SMN-dependent SMA mice.7 
UBA1/GARS pathway dysregulation is therefore likely to be 
responsible, at least in part, for disrupted sensory neuron fate 
and altered sensory-motor connectivity in these mice.7 The 
amino acid-tRNA synthetases (ARS), of which GARS is one, 
form a multi-synthetase complex with 3 scaffold proteins called 
aminoacyl-tRNA synthetase-interacting multifunctional pro-
teins (AIMP1, AIMP2, and AIMP3). A study of the intestinal 
epithelium and tumorigenesis found evidence of enhanced 
Wnt/β-catenin signalling in mice harbouring a hemizygous 
deletion of AIMP2,15 which therefore indirectly implicates 
ARS proteins in β-catenin signalling pathways too. Further 
work would be required to confirm and verify this across other 
cells and tissues, but it does, nonetheless, raise the possibility 
that convergence on Wnt/β-catenin signalling pathways could 
well be a common mechanistic link between UBA1, lamin A/C, 
and GARS in SMN-dependent SMA (Figure 1).

Mutations in the SETX gene, which encodes the (probable 
helicase) senataxin protein, can cause several conditions includ-
ing ataxia with oculomotor apraxia type 2, a type of amyo-
trophic lateral sclerosis, and an autosomal dominant form of 

proximal spinal muscular atrophy (ADSMA).16 Like SMN, 
senataxin is involved with maintaining RNA transcriptome 
homeostasis16 and is another non-SMN-related SMA candi-
date implicated in SMN-related SMA pathways. Decreased 
senataxin protein levels were identified in fibroblasts and spinal 
cords from individuals with SMN-dependent SMA, cultured 
spinal cord neurons from a mouse model of SMN-dependent 
SMA, and in SMN-deficient HeLa cells.7 Consistent with one 
of its known functions, the decreased expression of senataxin in 
vitro coincided with increased accumulation of R-loops and 
double-strand breaks (DSBs).7 Restoration of SMN in vitro 
restored senataxin levels and decreased R-loop accumulation – 
and overexpression of senataxin alone was sufficient to decrease 
R-loop accumulation – in SMN-related SMA patient fibro-
blasts and cultured mouse spinal cord neurons.7 This evidence, 
therefore, suggests that senataxin is, at least partially, responsi-
ble for genomic instability in SMN-related SMA in vitro, most 
likely via its helicase activity. Mutations in the gene encoding 
immunoglobulin mu DNA binding protein 2 (IGHMBP2) – a 
protein with high sequence homology to the helicase domain 
of senataxin – cause a type of severe SMA with respiratory 
distress,16 which further highlights the importance of helicase 
activity in SMA disease pathways.

There is no cure for any type of SMA but significant progress 
has been made recently in the development of therapies aimed at 
raising full-length SMN protein levels for SMN-related SMA.17 
Nusinersen (Spinraza), an antisense oligonucleotide drug, is 

Figure 1. Proteins produced by several non-SMN-related SMA genes 

are implicated in SMN-related SMA pathways. Alterations to lamin A/C, 

UBA1, GARS, and SETX have been reported as downstream 

consequences of reduced SMN. Further work has shown that UBA1 is 

able to modulate lamin A/C and GARS expression independently of SMN. 

UBA1 converges on β-catenin signalling pathways in SMN-related SMA, 

and evidence from studies unrelated to SMA also implicates GARS and 

lamin A/C in the modulation of Wnt/ β-catenin signalling. Image created 

with BioRender.com.
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now widely available for children and young adults with SMA, 
and most recently, Zolgensma, an adeno-associated virus-
based gene replacement therapy, was given approval by the Food 
and Drug Administration (FDA) for the treatment of SMA 
children in the United States under 2 years of age. Despite these 
incredible advances, both strategies are extremely expensive, nei-
ther show complete efficiency,17 and the long-term outcomes 
remain unknown. In addition, where neuronal tissue is the only 
target of the treatment (ie in the case of Spinraza), peripheral 
pathologies may still be a concern. Consequently, there is a need 
for a new generation of SMA therapies that could, in combina-
tion with SMN-targeted therapy, offer maximal benefit to 
SMN-related SMA patients. Recent preclinical work has posi-
tioned four non-SMN-related SMA proteins as key players in 
SMN-related SMA disease pathways, some of which help 
explain the mechanisms of tissue-specific pathology in SMN-
related SMA. Therapeutic strategies directed at these proteins, 
or pathways on which they converge, may therefore offer a new 
approach to targeting tissue-specific pathology in SMN-related 
SMA.
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