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suspected infection, for prognosis of patients with
covid-19, and for detecting people in the general
population at risk of being admitted to hospital for
covid-19 pneumonia.
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DATA SOURCES

PubMed and Embase through Ovid, Arxiv, medRxiv,
and bioRxiv up to 24 March 2020.

STUDY SELECTION
Studies that developed or validated a multivariable
covid-19 related prediction model.

DATA EXTRACTION

At least two authors independently extracted data
using the CHARMS (critical appraisal and data
extraction for systematic reviews of prediction
modelling studies) checklist; risk of bias was
assessed using PROBAST (prediction model risk of
bias assessment tool).

RESULTS
2696 titles were screened, and 27 studies describing
31 prediction models were included. Three models

WHAT IS ALREADY KNOWN ON THIS TOPIC

The sharp recent increase in coronavirus disease 2019 (covid-19) infections
has put a strain on healthcare systems worldwide; there is an urgent need
for efficient early detection, diagnosis of covid-19 in patients with suspected
disease, and prognosis of covid-19 in patients with confirmed disease

Viral nucleic acid testing and chest computed tomography (CT) are standard
methods for diagnosing covid-19, but are time consuming

Earlier reports suggest that elderly patients, patients with comorbidities (chronic
obstructive pulmonary disease, cardiovascular disease, hypertension), and
patients presenting with dyspnoea are vulnerable to more severe morbidity and
mortality after covid-19 infection

WHAT THIS STUDY ADDS

Three models were identified that predict hospital admission from pneumonia
and other events (as proxy outcomes for covid-19 pneumonia) in the general
population

Eighteen diagnostic models were identified for detecting covid-19 infection

(13 were machine learning based on CT scans); and 10 prognostic models for
predicting mortality risk, progression to severe disease, or length of hospital stay
Proposed models are poorly reported and at high risk of bias, raising concern
that their predictions could be unreliable when applied in daily practice
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were identified for predicting hospital admission from
pneumonia and other events (as proxy outcomes for
covid-19 pneumonia) in the general population; 18
diagnostic models for detecting covid-19 infection
(13 were machine learning based on computed
tomography scans); and 10 prognostic models for
predicting mortality risk, progression to severe
disease, or length of hospital stay. Only one study
used patient data from outside of China. The most
reported predictors of presence of covid-19 in
patients with suspected disease included age, body
temperature, and signs and symptoms. The most
reported predictors of severe prognosis in patients
with covid-19 included age, sex, features derived
from computed tomography scans, C reactive protein,
lactic dehydrogenase, and lymphocyte count. C index
estimates ranged from 0.73 to 0.81 in prediction
models for the general population (reported for

all three models), from 0.81 to more than 0.99 in
diagnostic models (reported for 13 of the 18 models),
and from 0.85 to 0.98 in prognostic models (reported
for six of the 10 models). All studies were rated at high
risk of bias, mostly because of non-representative
selection of control patients, exclusion of patients
who had not experienced the event of interest by the
end of the study, and high risk of model overfitting.
Reporting quality varied substantially between
studies. Most reports did not include a description of
the study population or intended use of the models,
and calibration of predictions was rarely assessed.

CONCLUSION

Prediction models for covid-19 are quickly entering
the academic literature to support medical decision
making at a time when they are urgently needed. This
review indicates that proposed models are poorly
reported, at high risk of bias, and their reported
performance is probably optimistic. Immediate
sharing of well documented individual participant
data from covid-19 studies is needed for collaborative
efforts to develop more rigorous prediction models
and validate existing ones. The predictors identified
in included studies could be considered as candidate
predictors for new models. Methodological guidance
should be followed because unreliable predictions
could cause more harm than benefit in guiding
clinical decisions. Finally, studies should adhere to
the TRIPOD (transparent reporting of a multivariable
prediction model for individual prognosis or
diagnosis) reporting guideline.

SYSTEMATIC REVIEW REGISTRATION

Protocol https://osf.io/ehc47/, registration https://
osf.io/wy245.
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Introduction

The novel coronavirus disease 2019 (covid-19) presents
an important and urgent threat to global health. Since
the outbreak in early December 2019 in the Hubei
province of the People’s Republic of China, the number
of patients confirmed to have the disease has exceeded
775000 in more than 160 countries, and the number
of people infected is probably much higher. More than
36000 people have died from covid-19 infection (up
to 30 March 2020).' Despite public health responses
aimed at containing the disease and delaying the
spread, several countries have been confronted with
a critical care crisis, and more countries will almost
certainly follow.>* Outbreaks lead to important
increases in the demand for hospital beds and shortage
of medical equipment, while medical staff themselves
could also get infected.

To mitigate the burden on the healthcare system,
while also providing the best possible care for
patients, efficient diagnosis and prognosis of the
disease is needed. Prediction models that combine
several variables or features to estimate the risk of
people being infected or experiencing a poor outcome
from the infection could assist medical staff in
triaging patients when allocating limited healthcare
resources. Models ranging from rule based scoring
systems to advanced machine learning models (deep
learning) have been proposed and published in
response to a call to share relevant covid-19 research
findings rapidly and openly to inform the public
health response and help save lives.” Many of these
prediction models are published in open access
repositories, ahead of peer review.

We aimed to systematically review and critically
appraise currently available prediction models for
covid-19, in particular diagnostic and prognostic
models for the disease. This systematic review was
carried out in collaboration with the Cochrane
Prognosis Methods Group.

Methods

We searched PubMed and Embase through Ovid,
bioRxiv, medRxiv, and arXiv for research on covid-19
published after 3 January 2020. We used the publicly
available publication list of the covid-19 living
systematic review.® This list contains studies on
covid-19 published on PubMed and Embase through
Ovid, bioRxiv, and medRxiv, and is continuously
updated. We validated the list to examine whether it
is fit for purpose by comparing it to relevant hits from
bioRxiv and medRxiv when combining covid-19 search
terms (covid-19, sars-cov-2, novel corona, 2019-
ncov) with methodological search terms (diagnostic,
prognostic, prediction model, machine learning,
artificial intelligence, algorithm, score, deep learning,
regression). All relevant hits were found on the living
systematic review list. We supplemented this list with
hits from PubMed by searching for “covid-19” because
when we performed our intitial search this term was
not included in the reported living systematic review®
search terms for PubMed. We further supplemented
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the list with studies on covid-19 retrieved from arXiv.
The online supplementary material presents the
search strings. Additionally, we contacted authors for
studies that were not publicly available at the time of
the search,’ ® and included studies that were publicly
available but not on the living systematic review® list at
the time of our search.”*?

We initially searched databases on 13 March 2020,
with an update on 24 March 2020. All studies were
considered, regardless of language or publication
status (preprint or peer reviewed articles). We included
studies if they developed or validated a multivariable
model or scoring system, based on individual
participant level data, to predict any covid-19 related
outcome. These models included diagnostic and
prognostic models for covid-19, or those aiming
to identify people at increased risk of developing
covid-19 pneumonia in the general population. No
restrictions were made on the setting (eg, inpatients,
outpatients, or general population), prediction
horizon (how far ahead the model predicts), included
predictors, or outcomes. Epidemiological studies
that aimed to model disease transmission or fatality
rates, diagnostic test accuracy, and predictor finding
studies were excluded. Titles, abstracts, and full texts
were screened in duplicate for eligibility by pairs of
independent reviewers (from LW, BVC, and MvS), and
discrepancies were resolved through discussion.

Data extraction of included articles was done by
two independent reviewers (from LW, BVC, GSC, TPAD,
MCH, GH, KGMM, RDR, ES, LJMS, EWS, KIES, CW, and
MvS). Reviewers used a standardised data extraction
form based on the CHARMS (critical appraisal and
data extraction for systematic reviews of prediction
modelling studies) checklist'> and PROBAST (predic-
tion model risk of bias assessment tool).'* We sought
to extract each model’s predictive performance by
using whatever measures were presented. These
measures included any summaries of discrimination
(the extent to which predicted risks discriminate
between participants with and without the outcome),
and calibration (the extent to which predicted risks
correspond to observed risks) as recommended in
the TRIPOD (transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis)
statement. Discrimination is often quantified by the C
index (C index=1 if the model discriminates perfectly;
Cindex=0.5 if discrimination is no better than chance).
Calibration is often quantified by the calibration
intercept (which is zero when the risks are not
systematically overestimated or underestimated) and
calibration slope (which is one if the predicted risks
are not too extreme or too moderate).16 We focus on
performance statistics as estimated from the strongest
available form of validation. Any discrepancies in
data extraction were resolved by LW and MvS. The
online supplementary material provides details on
data extraction. We considered aspects of PRISMA
(preferred reporting items for systematic reviews
and meta-analyses)'” and TRIPOD" in reporting our
article.

doi: 10.1136/bmj.m1328 | BMJ 2020;369:m1328 | thebmyj
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Patient and public involvement

It was not appropriate or possible to involve patients or
the public in the design, conduct, or reporting of our
research. The study protocol and preliminary results
are publicly available on https://osf.io/ehc47/ and
medRxiv.

Results

We retrieved 2690 titles through our systematic
search (fig 1; 1916 on 13 March 2020 and 774
during an update on 24 March 2020). Two additional
unpublished studies were made available on request
(after a call on social media). We included a further
four studies that were publicly available but were not
detected by our search. Of 2696 titles, 85 studies were
retained for abstract and full text screening. Twenty
seven studies describing 31 prediction models met the
inclusion criteria and were selected for data extraction
and critical appraisal.”*? 838

Primary datasets

Twenty five studies used data on patients with
covid-19 from China (supplementary table 1), one
study used data on patients from Italy,>! and one
study used international data (United States, United
Kingdom, and China, among others).>> Based on 18
of the 25 studies that reported study dates, data were
collected between 8 December 2019 and 15 March
2020. The duration of follow-up was unclear in most
studies, although one reported a median follow-up of
8.4 days,'® while another reported a median follow-up
of 15 days.>” Some Chinese centres provided data to
multiple studies, but it was unclear how much these
datasets overlapped across our 25 identified studies.
One study used US Medicare claims data from 2015
to 2016 to estimate vulnerability to covid-19,® two
studies used control CT (computed tomography)
scans from the US or Switzerland,'! > and one study
used simulated data.'®All but one study** developed
prediction models for use in adults. The median age
varied between studies (from 34 to 65 years; see
supplementary table 1), as did the proportion of men
(from 41% to 61%).

Among the six studies that developed prognostic
models to predict mortality risk in people with
confirmed or suspected covid-19 infection, the
percentage of deaths varied between 8% and 59%
(table 1). This wide variation is partly because of
severe sampling bias caused by studies excluding
participants who still had the disease at the end of the
study period (that is, they had neither recovered nor
died).” %2 Additionally, length of follow-up could
have varied between studies (but was rarely reported),
and there might be local and temporal variation in how
people were diagnosed as having covid-19 or were
admitted to the hospital (and therefore recruited for
the studies). Among the 18 diagnostic model studies,
only one reported on prevalence of covid-19 infection
in people with suspected covid-19; the prevalence
was 19% (development dataset) and 24% (validation
dataset).?° One study reported that 8% of patients had
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severe disease among confirmed paediatric patients
with covid-19 infection.’* Because 16 diagnostic
studies used either case-control sampling or an unclear
method of data collection, the prevalence in these
diagnostic studies might not have been representative
of their target population.

Table 1 gives an overview of the 31 prediction models
reported in the 27 identified studies. Supplementary
table 2 provides modelling details and box 1 discusses
the availability of models in a format for use in clinical
practice.

Models to predict risk of hospital admission for
covid-19 pneumonia in general population

We identified three models that predicted risk of
hospital admission for covid-19 pneumonia in the
general population, but used admission for non-
tuberculosis pneumonia, influenza, acute bronchitis,
or upper respiratory tract infections as outcomes in a
dataset without any patients with covid-19 (table 1).
Among the predictors were age, sex, previous hospital
admissions, comorbidity data, and social determinants
of health. The study estimated C indices of 0.73, 0.81,
and 0.81 for the three models.

Diagnostic models to detect covid-19 infection in
patients with symptoms

Weidentified one study that developed amodel to detect
covid-19 pneumonia in fever clinic patients (estimated
C index 0.94)™°; one to diagnose covid-19 in patients
with suspected disease (estimated C index 0.97)°%;
one to diagnose covid-19 in patients with suspected
disease and asymptomatic patients (estimated C index
0.87)*2; and one to diagnose covid-19 by using deep
learning of genomic sequences (estimated C index
0.98).>> A further study was developed to diagnose
severe disease in paediatric inpatients with symptoms,
based on direct bilirubin and alanine transaminase
(reporting an F1 score of 1.00, indicating 100%
observed sensitivity and specificity).?* Only one study
reported assessing calibration, but it was unclear
how this was done.'? Predictors used in more than
one model were age (n=3), body temperature or fever
(n=2), and signs and symptoms (such as shortness
of breath, headache, shiver, sore throat, and fatigue,
n=2; table 1).

Thirteen prediction models were proposed to support
the diagnosis of covid-19 or covid-19 pneumonia
(and monitor progression) based on CT images. The
predictive performance varied widely, with estimated
Cindex values ranging from 0.81 to nearly 1.

Prognostic models for patients with a diagnosis of
covid-19 infection

We identified 10 prognostic models (table 1). Of these,
six estimated mortality risk in patients with suspected
or confirmed covid-19.” ¥ ¥ 21 2237 The intended use
of these models (that is, when to use them, in whom
to use them, and the prediction horizon, eg, mortality
by what time) was not clearly described. Two models
aimed to predict a hospital stay of more than 10 days
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Records identified through database searching
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(B 6)

Additional records identified through other sources

J

¥
(B 2696

Records screened

Records excluded

aD

Articles assessed for eligibility

(Il 58)

Articles excluded
26 Not a prediction model development or
validation study
> 12 Epidemiological model to estimate
disease transmission or case fatality rate
11 Commentary, editorial or letter
5 Methods paper
4 Duplicate article

A

4

Studies included in review

( ) )

Models to identify people at
risk in the general population

Diagnostic models
(13 CT imaging studies)

Prognostic models
(6 for mortality, 2 models for
progression to severe or critical
state, 2 for length of stay)

Fig 1 | PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of study inclusions

and exclusions. CT=computed tomography

from admission.’® Two models aimed to predict
progression to a severe or critical state.” >? Predictors
included in more than one prognostic model were age
(n=5), sex (n=2), features derived from CT scoring
(n=5), C reactive protein (n=3), lactic dehydrogenase
(n=3), and lymphocyte count (n=2; table 1).

Only two studies that predicted mortality reported
a C index; these studies obtained estimates of 0.90?2
and 0.98.” One study also evaluated calibration.’
When applied to new patients, their model yielded
probabilities of mortality that were too high for low risk
patients and too low for high risk patients (calibration
slope >1), despite excellent discrimination.” One
study developed two models to predict a hospital
stay of more than 10 days and estimated C indices
of 0.92 and 0.96.%° The two studies that developed
models to predict progression to a severe or critical
state estimated C indices of 0.95 and 0.85.° 32 One of
these studies also reported perfect calibration, but it
was unclear how this was evaluated.?

Risk of bias

All models were at high risk of bias according to
assessment with PROBAST (table 1), which suggests
that their predictive performance when used in
practice is probably lower than that reported. There-

fore, there is cause for concern that the predictions
of these models are unreliable. Box 2 gives details on
common causes for risk of bias for each type of model.

Eleven of the 27 studies had a high risk of bias for
the participants domain (table 2), which indicates
that the participants enrolled in the studies might not
be representative of the models’ targeted populations.
Unclear reporting on the inclusion of participants
prohibited a risk of bias assessment in eight studies.
Four of the 27 studies had a high risk of bias for the
predictors domain, which indicates that predictors
were not available at the models’ intended time
of use, not clearly defined, or influenced by the
outcome measurement. The diagnostic model studies
that used CT imaging predictors were all scored as
unclear on the predictors domain. The publications
often lacked clear information on the preprocessing
steps (eg, cropping of images). Moreover, complex
machine learning algorithms transform CT images
into predictors in an untransparent way, which makes
it challenging to fully apply the PROBAST predictors
section for such imaging studies. Most studies used
outcomes that are easy to assess (eg, death, presence
of covid-19 by laboratory confirmation). Nonetheless,
there was reason to be concerned about bias
induced by the outcome measurement in 10 studies
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because of the use of subjective or proxy outcomes (eg,
non covid-19 severe respiratory infections).

All studies were at high risk of bias for the analysis
domain (table 2). Many studies had small sample sizes
(table 1), which led to an increased risk of overfitting,
particularly if complex modelling strategies were used.
Three studies did not report the predictive performance
of the developed model, and one study reported
only the apparent performance (the performance
in exactly the same data used to develop the model,
without adjustment for optimism owing to potential
overfitting).

Four models were externally validated in the model
development study (in an independent dataset,
excluding random training test splits and temporal
splits).” ' %> 32 However, in three of these studies,
the external validation datasets are probably not
representative of the target population (box 2).” 12 %°
Consequently, predictive performance could differ
if the models were applied in the target population.
Gong and colleagues had a satisfactory predictive
performance on two unbiased but small external
validation datasets.? One study was a small (n=27)
external validation that reported satisfactory predictive
performance of a model originally developed for avian
influenza H7N9 pneumonia. However, patients who
had not recovered at the end of the study period were
excluded, which led to selection bias.?* Only three

Box 1: Availability of models in format for use in clinical practice

Twelve studies presented theirmodels in a format for use in clinical practice. However,
because all models were at high risk of bias, we do not recommend their routine use
before they are properly externally validated.

Models to predict risk of hospital admission for coronavirus disease 2019 (covid-19)
pneumonia in general population

The “COVID-19 Vulnerability Index” to detect hospital admission for covid-19
pneumonia from other respiratory infections (eg, pneumonia, influenza) is available as
anonline tool.®%

Diagnostic models

The “COVID-19 diagnosis aid APP” is available on iOS and android devices to
diagnose covid-19 in asymptomatic patients and those with suspected disease.*?
The “suspected COVID-19 pneumonia Diagnosis Aid System” is available as an online
tool.’**° The “COVID-19 early warning score” to detect covid-19 infection in adults is
available as a score chart in an article.’® A decision tree to detect severe disease for
paediatric patients with confirmed covid-19 is also available in an article.?*

Diagnostic models based on computed tomography (CT) imaging
Three of the seven artificial intelligence models to assist with diagnosis based on CT
images are available through web applications.”2¢ %13 One model is deployed in 16
hospitals, but the authors do not provide any usable tools in their study.>
Prognostic models
To assist in the prognosis of mortality, a nomogram (a graphical aid to calculate
mortality risk),” a decision tree,?* and a CT based scoring rule are available in the
articles.?> Additionally a nomogram exists to predict progression to severe covid-19
disease.*

Five studies made their source code available on GitHub.®**#3>38 Ten studies did
notinclude any usable equation, format, or reference for use orvalidation of their
prediction model.

thebmj | BMJ2020;369:m1328 | doi: 10.1136/bmj.m1328

studies assessed calibration,” *? 32 but the method
to check calibration was probably suboptimal in two
studies.!?3?

Discussion

In this systematic review of prediction models
related to the covid-19 pandemic, we identified and
critically appraised 27 studies that described 31
models. These prediction models were developed for
detecting people in the general population at risk of
being admitted to hospital for covid-19 pneumonia,
for diagnosis of covid-19 in patients with symptoms,
and for prognosis of patients with covid-19 infection.
All models reported good to excellent predictive
performance, but all were appraised to have high risk
of bias owing to a combination of poor reporting and
poor methodological conduct for participant selection,
predictor description, and statistical methods used. As
expected, in these early covid-19 related prediction
model studies, clinical data from patients with
covid-19 are still scarce and limited to data from China,
Italy, and international registries. With few exceptions,
the available sample sizes and number of events for
the outcomes of interest were limited. This is a well
known problem when building prediction models and
increases the risk of overfitting the model.** A high risk
of bias implies that these models will probably perform
worse in practice than the performance reported by the
researchers. Therefore, the estimated C indices, often
close to 1 and indicating near perfect discrimination,
are probably optimistic. Five studies carried out an
external validation,” ' 2> ?* 32 and only one study
assessed calibration correctly.”

We reviewed 13 studies that used advanced machine
learning methodology on chest CT scans to diagnose
covid-19 disease, covid-19 related pneumonia, or to
assist in segmentation of lung images. The predictive
performance measures showed a high to almost perfect
ability to identify covid-19, although these models and
their evaluations also had a high risk of bias, notably
because of poor reporting and an artificial mix of
patients with and without covid-19.

Challenges and opportunities

The main aim of prediction models is to support medical
decision making. Therefore it is vital to identify a target
population in which predictions serve a clinical need,
and a representative dataset (preferably comprising
consecutive patients) on which the prediction
model can be developed and validated. This target
population must also be carefully described so that
the performance of the developed or validated model
can be appraised in context, and users know which
people the model applies to when making predictions.
However, the included studies in our systematic review
often lacked an adequate description of the study
population, which leaves users of these models in
doubt about the models’ applicability. Although we
recognise that all studies were done under severe time
constraints caused by urgency, we recommend that
any studies currently in preprint and all future studies
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should adhere to the TRIPOD reporting guideline® to
improve the description of their study population and
their modelling choices. TRIPOD translations (eg, in
Chinese and Japanese) are also available at https://
www.tripod-statement.org.

A better description of the study population could
also help us understand the observed variability in the
reported outcomes across studies, such as covid-19
related mortality. The variability in the relative
frequencies of the predicted outcomes presents an
important challenge to the prediction modeller. A
prediction model applied in a setting with a different
relative frequency of the outcome might produce
predictions that are miscalibrated* and might need to
be updated before it can safely be applied in that new
setting.'® “® Such an update might often be required
when prediction models are transported to different
healthcare systems, which requires data from patients
with covid-19 to be available from that system.

Covid-19 prediction problems will often not present
as a simple binary classification task. Complexities

Box 2: Common causes of risk of bias in the 19 reported prediction models

Models to predict hospital admission for coronavirus disease 2019 (covid-19)
pneumonia in general population

These models were based on Medicare claims data, and used proxy outcomes to
predict hospital admission for covid-19 pneumonia, in the absence of patients with
covid-19.%

Diagnostic models

People without covid-19 (or a proportion of them) were excluded, altering the disease
prevalence.>® Controls had viral pneumonia, which is not representative of the target
population for a screening model.’? The test used to determine the outcome varied
between participants,'? or one of the predictors (fever) was part of the outcome
definition.' Predictors were dichotomised, which led to a loss of information.?*3°3¢

Diagnostic models based on computed tomography (CT) imaging

Generally, studies did not clearly report which patients had CT scans during clinical
routine, and it was unclear whether the selection of controls was made from the target
population (that s, patients with suspected covid-19).**22?***3¢ Often studies did
not clearly report how regions of interest were annotated. Images were sometimes
annotated by only one scorer without quality control,?*” the model output influenced
annotation,?® orthe “ground truth” that was used to build the model was a composite
outcome based on the same CTimages used to make the prediction, among other
factors.’® Careful description of model specification and subsequent estimation

were lacking, challenging the transparency and reproducibility of the models. Every
study used a different deep learning architecture, some were established and others
specifically designed, without benchmarking the used architecture against others.

Prognostic models

Study participants were often excluded because they did not develop the outcome
atthe end of the study period but were still in follow-up (that s, they were in hospital
but had not recovered or died), yielding a highly selected study sample.” 2>%2
Additionally, only one study accounted for censoring by using Cox regression.*’

One study developed a model to predict future severity using cross sectional data
(some participants were severely ill at inclusion)*; this implies that the timing of the
measurement of the predictors is not appropriate and the (unclearly defined) outcome
might have been influenced by the predictorvalues. Other studies used highly
subjective predictors,?? or the last available predictor measurement from electronic
health records (rather than measuring the predictorvalue at the time when the model
was intended for use).?!

RESEARCH

in the data should be handled appropriately. For
example, a prediction horizon should be specified for
prognostic outcomes (eg, 30 day mortality). If study
participants have neither recovered nor died within
that time period, their data should not be excluded
from analysis, which most reviewed studies have done.
Instead, an appropriate time to event analysis should
be considered to allow for administrative censoring.®
Censoring for other reasons, for instance because of
quick recovery and loss to follow-up of patients who
are no longer at risk of death from covid-19, could
necessitate analysis in a competing risk framework.*’

Instead of developing and updating predictions in
their local setting, individual participant data from
multiple countries and healthcare systems might
allow better understanding of the generalisability and
implementation of prediction models across different
settings and populations. This approach could greatly
improve the applicability and robustness of prediction
models in routine care."®>?

The evidence base for the development and
validation of prediction models related to covid-19 will
quickly increase over the coming months. Together
with the increasing evidence from predictor finding
studies®>*® and open peer review initiatives for
covid-19 related publications,®® data registries®®* are
being set up. To maximise the new opportunities and
to facilitate individual participant data meta-analyses,
the World Health Organization has recently released a
new data platform to encourage sharing of anonymised
covid-19 clinical data.®® To leverage the full potential
of these evolutions, international and interdisciplinary
collaboration in terms of data acquisition and model
building is crucial.

Study limitations

With new publications on covid-19 related prediction
models rapidly entering the medical literature, this
systematic review cannot be viewed as an up to date list
of all currently available covid-19 related prediction
models. Also, 24 of the studies we reviewed were only
available as preprints. These studies might improve
after peer review, when they enter the official medical
literature. We also found other prediction models that
are currently being used in clinical practice but without
scientific publications,®” and web risk calculators
launched for use while the scientific manuscript is still
under review (and unavailable on request).®® These
unpublished models naturally fall outside the scope of
this review of the literature.

Implications for practice

All 31 reviewed prediction models were found to have
a high risk of bias, and evidence from independent
external validation of these models is currently lacking.
However, the urgency of diagnostic and prognostic
models to assist in quick and efficient triage of patients
in the covid-19 pandemic might encourage clinicians
to implement prediction models without sufficient
documentation and validation. Although we cannot
let perfect be the enemy of good, earlier studies have
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Table 2 | Risk of bias assessment (using PROBAST) based on four domains across 27
studies that created prediction models for coronavirus disease 2019

Risk of bias
Authors Participants Predictors Outcome Analysis
Hospital admission in general population
DeCaprio et al® High Low High High
Diagnosis
Feng et al'® Unclear High High
Lopez-Rincon et al*® Unclear Low Low High
Meng et al'? High Low High High
Song et al*° High Unclear Low High
Yu et al* Unclear Unclear Unclear High
Diagnostic imaging
Barstugan et al’! Unclear Unclear Unclear High
Chen et al®® High Unclear Low High*
Gozes et al?® Unclear Unclear High High
Jin et al'! High Unclear Unclear Hight
Jin et al*® High Unclear High High*
Lietal® Unclear Low High
Shan et al?® Unclear Unclear High Hight
Shi et al*® High Unclear Low High
Wang et al*’ High Unclear Low High
Xu et al?’ High Unclear High High
Song et al?® Unclear Unclear Low High
Zheng et al*® Unclear Unclear High High
Prognosis
Bai et al’ Unclear Unclear High
Caramelo et al'® High High High High
Gong et al** Unclear Unclear High
Luetal® Low Low High
Qietal® Unclear Low Low High
Shi et al’” High High High High
Xie et al’ Low Low High
Yan et al?! High Low High
Yuan et al’? High Low High

PROBAST=prediction model risk of bias assessment tool.
*Risk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk

of bias would have been unclear.

tRisk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk

of bias would have been low.

shown that models were of limited use in the context
of a pandemic,®® and they could even cause more harm
than good.”® Therefore, we cannot recommend any
model for use in practice at this point.

We anticipate that more covid-19 data at the
individual participant level will soon become available.
These data could be used to validate and update
currently available prediction models.'® For example,
one model that predicted progression to severe covid-19
disease within 15 days of admission to hospital showed
promising discrimination when validated externally
on two small but unselected cohorts.>?> Because
reporting in this study was insufficiently detailed
and the validation was in small Chinese datasets,
validation in larger, international datasets is needed.
Owing to differences between healthcare systems (eg,
Chinese and European) on when patients are admitted
to and discharged from hospital, and testing criteria
for patients with covid-19, we anticipate most existing
models will need to be updated (that is, adjusted to the
local setting).

When building a new prediction model, we recom-
mend building on previous literature and expert
opinion to select predictors, rather than selecting
predictors in a purely data driven way'®; this is

thebmj | BMJ2020;369:m1328 | doi: 10.1136/bmj.m1328

especially true for datasets with limited sample size.”*
Based on the predictors included in multiple models
identified by our review, we encourage researchers to
consider incorporating several candidate predictors:
for diagnostic models, these include age, body
temperature, and (respiratory) signs and symptoms; for
prognostic models, age, sex, C reactive protein, lactic
dehydrogenase, lymphocyte count, and potentially
features derived from CT scoring. Predictors that were
included in both diagnostic and prognostic models
were albumin (or albumin/globin), direct bilirubin,
and red blood cell distribution width; these predictors
could be considered as well. By pointing to the most
important methodological challenges and issues in
design and reporting of the currently available models,
we hope to have provided a useful starting point for
further studies aiming to develop new models, or to
validate and update existing ones.

This systematic review aims to be the first stage of
a living review of this field, in collaboration with the
Cochrane Prognosis Methods Group. We will update
this review and appraisal continuously, to provide up-
to-date information for healthcare decision makers
and professionals as more international research
emerges over time.

Conclusion

Diagnostic and prognostic models for covid-19 are
available and they all appear to show good to excellent
discriminative performance. However, these models
are at high risk of bias, mainly because of non-
representative selection of control patients, exclusion
of patients who had not experienced the event of
interest by the end of the study, and model overfitting.
Therefore, their performance estimates are likely to
be optimistic and misleading. Future studies should
address these concerns. Sharing data and expertise
for development, validation, and updating of covid-19
related prediction models is urgently needed.
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