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Based on previous work for the static problem, in
this paper we first derive one form of dynamic finite-
strain shell equations for incompressible hyperelastic
materials that involve three shell constitutive relations.
In order to single out the bending effect as well as
to reduce the number of shell constitutive relations,
a further refinement is performed, which leads to
a refined dynamic finite-strain shell theory with
only two shell constitutive relations (deducible from
the given 3D strain energy function) and some
new insights are also deduced. By using the weak
formulation of the shell equations and the variation
of the 3D Lagrange functional, boundary conditions
and 2D shell virtual work principle are derived. As
a benchmark problem, we consider the extension and
inflation of an arterial segment. The good agreement
between the asymptotic solution based on the shell
equations and that from the 3D exact one gives a
verification of the former. The refined shell theory
is also applied to study the plane-strain vibrations
of a pressurized artery, and the effects of the axial
pre-stretch, pressure and fibre angle on the vibration
frequencies are investigated in detail.

1. Introduction
In recent years, biological materials have attracted a lot of
interest; see, for example, the review article by Holzapfel
and Ogden [1] on constitutive modelling of arteries.
There are two noteworthy properties of biological
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materials. One is they are very soft and can undergo large elastic deformations with finite-strain;2

the other is that the volume is preserved during the deformation. So, they are normally modelled3

as incompressible hyperelastic materials. Many biological tissues and organs are thin structures.4

Due to the complexity of the 3D formulation and the cost and ineffectiveness of 3D computations5

(in particular, for post-bifurcation solutions), often one needs to use a 2D shell model to study6

their behaviors.7

Shell theories have a long history, which date back to the pioneering work of Love [2] in 1888.8

Since then, they have been studied extensively during the past 130 years. Numerous works on9

shell theories have been done in the framework of linearized elasticity and/or linear constitutive10

relation with geometric nonlinearity. Here, the focus is on soft materials modelled by a strain11

energy function with incompressibility constraint, for which one needs to consider material12

nonlinearity. It is out of the scope of the present study to give an extensive review on linear shell13

theories or those with geometric nonlinearity, and for a selected review, we refer to Li et al. [3].14

Instead, we only give a review on derived shell theories for incompressible hyperelastic materials, for15

which, relatively speaking, there are not so many works.16

In [4], Makowski and Stumpf formulated a finite-strain shell theory for incompressible17

hyperelastic materials by assuming the material lines normal to the shell surface remain straight18

during the deformation. Itskov [5] assumed that the position vector in the deformed shell is19

linear in the thickness variable (with six parameters). The incompressibility constraint is used20

to eliminate the transverse normal strain, and based on which, a numerical shell theory with five21

parameters for a generalized orthotropic incompressible hyperelastic material was developed.22

In [6], Chapelle et al. examined whether the plane stress assumption or the asymptotic limits23

of thickness can commute with the incompressibility constraint, justifying the usages of classical24

shell models and a modified 3D shell model in the incompressible conditions. In Kiendl et al. [7], a25

shell theory for compressible and incompressible isotropic hyperelastic materials was developed26

based on the Kirchhoff-Love kinematics which includes the assumptions of zero transverse27

normal stress and straight and normal cross sections, and then an isogeometric discretization28

was introduced for numerical computation. Recently, Amabili et al. [8], for a tube (a special29

kind of shells), developed a shell theory for incompressible biological hyperelastic materials by30

assuming the in-plane displacement components are third-order polynomials of the thickness31

variable while the out-plane component is a fourth-order polynomial. Further simplification in32

that work include the dropping of certain nonlinear terms in the strain-displacement relations33

and incompressibility condition, which enables one to represent the four coefficients in the out-34

plane displacement in terms of other unknowns. As a result, a nine-parameter shell theory35

was obtained. All the above-mentioned works employ ad hoc assumptions and cross-thickness36

integrations to eliminate the thickness variable. As a result, one cannot expect that the resulting37

shell theories are consistent with the 3D field equations, top and bottom traction conditions and38

incompressibility condition in a pointwise manner. It is difficult to assess the reliability of such39

inconsistency for general loading. Also, when higher-order expansions are used, higher-order40

resultants need to be introduced but their physical meanings are not clear. Thus, it is more41

desirable to construct a shell theory without these ad hoc assumptions/simplifications, which42

is consistent with the 3D formulation (field equations and top/bottom traction condition and43

incompressibility constraint) to a proper asymptotic order in a pointwise manner.44

We also mention that by the Γ -convergence method, Li and Chermisi [9] rigorously derived45

the von Kármán shell theory for incompressible hyperelastic materials. However, this kind of46

approach depends on some a priori scaling assumptions, which cannot yield a shell theory with47

both stretching and bending effects.48

In a recent paper of Dai and Song [10], a dimension-reduction method was proposed to49

construct a consistent plate theory with both stretching and bending effects via series expansions50

with only smoothness assumption (without any ad hoc kinematic or other assumptions). The idea51

is to directly work with the 3D field equations and traction conditions on the top and bottom52

surfaces, and then to establish some recurrence relations for the expansion coefficients. Then,53
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the approach has been used to derive a dynamic plate theory [11], a static shell theory [12], a54

static plate theory for incompressible materials [13] and a static shell theory for incompressible55

materials [3].56

In this paper, we follow Dai and Song’s approach to first derive one form of dynamic shell57

theory for incompressible hyperelastic materials that involves three shell constitutive relations58

and six boundary conditions at each edge point. The completely new part is on the further59

refinement by elaborate calculations (cf. the procedure for a plate in [14]), which reduces the60

number of shell constitutive relations to two and singles out the bending term. It turns out61

that the refined shell equations alone can reveal a few new insights already. For the force62

boundary, in practice one only knows four conditions: the bending moment along the edge63

tangent direction and the three components of the cross-thickness resultant. To propose proper64

boundary conditions, we incorporate the weak form of the refined shell equations into the65

variation of the 3D Lagrange functional δL. By some elaborate calculations, which provide66

guidance on choosing the variation of the displacement vector in the 3D edge term in δL when67

specializing to a 2D shell theory, suitable shell boundary conditions and the 2D shell virtual work68

principle are obtained. A benchmark problem of an artery segment subjected to extension and69

internal pressure is considered. Finally, as an application of the refined shell theory, the plane-70

strain vibrations of a pressurized artery are studied, and the results reveal the influences of the71

axial pre-stretch, pressure, and fibre angle on the vibration frequencies.72

Notation. Throughout this paper, we use boldface letters to denote vectors and second-order73

tensors; we use curly letters to denote higher-order tensors. The summation convention for74

repeated indices is adopted. In a summation, Greek letters α, β, γ, . . . run from 1 to 2, whereas75

Latin letters i, j, k, . . . run from 1 to 3. A comma preceding indices means differentiation and a76

dot over variables indicates time derivative. The time argument in variables are usually omitted77

for brevity.78

Let R3 be the three-dimensional Euclidean space with standard basis pe1, e2,e3q. The symbol79

I :“ ei b ei is reserved for the identity tensor of R3. The notation ^ means cross product. For a80

scalar-valued function of a tensor W pF q, the derivative of the W with respect to F is defined to81

be BW
BF :“ BW

BFji
ei b ej ; higher-order derivatives are defined in a similar way. The divergence of a82

tensor S is defined by DivpSq :“
BSij

Bxi
ej . The tensor contractions are defined by83

ArBs “ trpABq :“AjiBij , A1
rAs :“ AijℓkAkℓei b ej , Ara, bs :“ Aa ¨ b “Aijajbi. (1.1)

2. Kinematics and the 3D formulation84

We consider a thin shell of constant thickness 2h composed of an incompressible hyperelastic85

material which occupies a region Ω ˆ r0, 2hs in the reference configuration. The thickness 2h of86

the shell is assumed to be small compared with the length scale of the bottom surface Ω and its87

ratio against the radius of curvature is less than 1. The position of a material point is denoted by88

X in the reference configuration and by x in the current configuration. The geometric description89

of a shell has been given in [15] and [16], and here we give a brief summary.90

The bottom surfaceΩ of shell is parameterized by two curvilinear coordinates θα, α“ 1, 2. The91

position of a point on Ω is written as r “ rpθαq. Then the tangent vectors along the coordinate92

lines are given by gα “ Br{Bθα, which form a covariant basis of the tangent plane of the bottom93

surface. Their contravariant counterparts gα, which satisfy the relations gα ¨ gβ “ δαβ , form a94

contravariant basis of the same plane. The unit normal vector n to the bottom surface is defined95

via n “ g1 ^ g2{|g1 ^ g2|, so that by setting g3 “ g3 “ n, tgiu and tgiu, i“ 1, 2, 3 form two sets96

of right-handed bases.97

In the reference configuration, the position of a material point is decomposed into98

X “ rpθαq ` Znpθαq, 0 ďZ ď 2h, (2.1)

whereZ is the coordinate of the point along the normal direction n. The change of the unit normal99

vector is captured by the curvature map, which is defined as the negative of the tangent map of100
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the Gauss map n :Ω Ñ S2 [15], where S2 denotes the two-dimensional unit sphere; thus we have101

k “ ´Bn{Br “ ´n,α b gα. We point out that the curvature tensor k is symmetric in the sense that102

k “ kT . Associated to k, the mean curvature and the Gaussian curvature are respectively defined103

by H “ 1
2 trpkq and K “ detpkq.104

The covariant base vectors at a point in the shell Ω ˆ r0, 2hs are given by105

pgα “
BX

Bθα
“

Br

Bθα
` Z

Bn

Br

Br

Bθα
“ p1 ´ Zkqgα, (2.2)

where 1 :“ I ´ n b n “ gα b gα denotes the projection onto the tangent plane of Ω; it is also the106

identity map of the same plane. Setting µ “ 1 ´ Zk, we see from (2.2) that pgα “ µgα and thus107

pgα “ µ´T gα. Note that the previous geometric assumption which asserts |2hkβα| ă 1 implies that108

the inverse µ´1 is well-defined. By change of variables formula, the volume element of the shell109

is computed by110

dV “ pxg1 ^ pg2q ¨ n dθ1dθ2dZ “ detpµqpg1 ^ g2q ¨ n dθ1dθ2dZ “ µpZq dAdZ, (2.3)

where µpZq “ detpµq “ 1 ´ 2HZ `KZ2 and dA“ |g1 ^ g2| dθ1dθ2 is the area element on the111

bottom surface.112

On the boundary BΩ, let s be the arc length variable, and let τ and ν be respectively the113

unit tangent vector and the unit outward normal vector such that pτ ,n,νq forms a right-handed114

triple (i.e., ν “ τ ^ n). Then let N , T and da be respectively the unit outward normal vector,115

unit tangent vector and the area element of the lateral surface such that pT ,n,Nq forms a right-116

handed triple. A similar argument as in (2.2) yields T “ p1 ´ Zkqτ {
?
gτ , where

?
gτ denotes the117

magnitude of vector p1 ´ Zkqτ and is given by
?
gτ “

?
1 ´ 2Zkτ ¨ τ ` Z2kτ ¨ kτ . Using change118

of variables formula again, we have N da“ µτ ds^ n dZ “ p1 ´ Zkqτ ^ n dsdZ. Then from the119

equality pkτ q ^ n “ trpkqpτ ^ nq ´ kpτ ^ nq, we deduce that120

N da“ p1 ` Zpk ´ 2H1qqν dsdZ. (2.4)

Since p1 ´ Zkqτ “
?
gτT and pT ,n,Nq forms a right-handed triple of unit vectors, we have da“121

?
gτdsdZ and

?
gτN “ p1 ` Zpk ´ 2H1qqν from the above equations.122

The deformation gradient is then calculated by123

F “
Bx

BX
“

Bx

Bθα
b pgα `

Bx

BZ
b n “ p∇xqµ´1

`
Bx

BZ
b n, (2.5)

where ∇ :“ B
Bθα gα denotes the 2D gradient operator on the base surface Ω. We remark that for124

the 2D gradient operator, one has the following Stokes’ theorem125 ∫
Ω
∇ ¨ p1aq dA“

∫
BΩ

a ¨ ν ds,

∫
Ω
∇ ¨ p1Sq dA“

∫
BΩ

STν ds (2.6)

for a vector field a and a tensor field S, respectively.126

For an incompressible material, one has the following incompressibility constraint127

RpF q “ detpF q ´ 1 “ 0. (2.7)

Assume further that the material is hyperelastic with a strain energy function W pF q. Then the128

associated elastic moduli are defined by129

Ai
pF q “

Bi`1W

BF i`1
, i“ 1, 2, . . . . (2.8)

The strain energy function is assumed to satisfy the strong-ellipticity condition: pA1pF qra b130

bsqra b bs ą 0 for a b b ‰ 0.131

Suppose that q` and q´ are the external loads applied on the top and the bottom surfaces132

of the shell respectively. The boundary BΩ of the bottom surface Ω is divided into two parts:133

the position boundary BΩ0 subjected to the prescribed position b and the traction boundary Ωq134
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subjected to the applied traction q. Then the kinetic energy K, the strain energy S, and the load135

potential V of the shell are respectively given by136

K “

∫
Ω

∫2h
0

1

2
ρ 9x ¨ 9xµpZq dZdA, S “

∫
Ω

∫2h
0
W pF qµpZq dZdA, (2.9)

V “ ´

∫
Ω

pq´
prq ¨ xpr, 0q ` q`

prq ¨ xpr, 2hqµp2hqq dA

´

∫
Ω

∫2h
0

qb ¨ xµpZq dZdA´

∫
BΩq

∫2h
0

qps, Zq ¨ xps, Zq da,

(2.10)

where ρ is the mass density of the shell, qb is the body force and da is the area element on the137

lateral surface BΩ ˆ r0, 2hs.138

By Hamilton’s principle, the 3D momentum equations are obtained when the energy139

functional E “K ` S ` V attains its minimum under the constraint condition (2.7). Therefore140

we are led to consider the Lagrange functional141

LpxpXq, ppXqq “K ` S ` V ´

∫
Ω

∫2h
0
ppXqRpF qµpZq dZdA, (2.11)

where ppXq is the Lagrange multiplier. To attain the minimum, it is necessary that the variation142

of L with respect to x is zero, and a direct calculation shows143

δL“

∫
Ω

∫2h
0

pρ:x ´ DivpSq ´ qbq ¨ δxµpZq dZdA´

∫
Ω

pSTn|Z“0 ` q´
q ¨ δxpr, 0q dA

`

∫
Ω

pSTn|Z“2h ´ q`
q ¨ δxpr, 2hqµp2hq dA`

∫
BΩq

∫2h
0

pSTN ´ qq ¨ δxps, Zq da“ 0,

(2.12)

where144

S “
BW

BF
´ p

BR

BF
(2.13)

is the nominal stress tensor of the incompressible hyperelastic material [17]. Since δx in (2.12) is145

arbitrary, we obtain the following 3D momentum equations together with boundary conditions:146

DivpSq ` qb “ ρ:x in Ω ˆ r0, 2hs, (2.14)

STn|Z“0 “ ´q´ in Ω, (2.15)

STn|Z“2h “ q` in Ω, (2.16)

STN “ qps, Zq on BΩq ˆ r0, 2hs, (2.17)

x “ bps, Zq on BΩ0 ˆ r0, 2hs, (2.18)

The above equations together with the incompressibility constraint (2.7) form the 3D dynamic147

equations for the shell structure, which contain an independent vector variable x and an148

independent scalar variable p.149

3. Refined 2D dynamic shell equations150

In this section, we shall first derive one form of consistent shell equations with three shell151

constitutive relations. Here the consistency means each term in (2.12) should be of a required152

asymptotic order, separately for the approximation. Then, a refinement is performed to reduce153

the number of shell constitutive relations from three to two. Also, the bending term is singled out.154

For the first part, the derivation is similar to that of the static case [3], but to be self-contained, we155

present the main steps.156
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(a) Derivation of one form of 2D dynamic shell equations157

We assume sufficient smoothness for the quantities involved. Then xpXq, ppXq,F pXq and SpXq158

have Taylor expansions about the bottom surface Z “ 0. From (2.5) and the nonlinear relation159

(2.13), the following relations among their expansion coefficients can be found:160

F p0q
“ ∇xp0q

` xp1q
b n, F p1q

“ ∇xp0qk ` ∇xp1q
` xp2q

b n, (3.1)

and161

Sp0q
“ A0

´ pp0qR0, Sp1q
“ A1

rF 1
s ´ pp1qR0, (3.2)

where the superscript piq denotes the ith derivative with respective to Z at Z “ 0, and162

A0
“ A0

pF p0q
q “

BW

BF

ˇ

ˇ

ˇ

F“F p0q
, R0

“ R0
pF p0q

q “
BR

BF

ˇ

ˇ

ˇ

F“F p0q
“ detpF p0q

qF p0q´1, (3.3)

R1
“ R1

pF p0q
q “

B2R

BF 2

ˇ

ˇ

ˇ

F“F p0q
, A1

“ A1
pF p0q

q “ A1
pF p0q

q ´ pp0qRp1q
pF p0q

q. (3.4)

From the above expressions, one easily checks that Spiq is linear algebraic in ppiq and xpi`1q, i“ 1163

(also true for i“ 2; for brevity the relations for F p2q and Sp2q are omitted). It is due to this linearity164

that some recurrence relations can be established for the expansion coefficients upon further using165

the field equations in the subsequent derivations.166

Remark 3.1. The expressions for Spiqpi“ 0, 1, 2q give three relations between the stress coefficients and167

the position vector coefficients. In the sequel, we abuse the terminology a little and call equations (3.2)1 and168

(3.2)2 and that for Sp2q to be shell constitutive relations. The reason is that the derived shell equations are169

represented in terms of Spiq and through these relations the unknown in the shell equations is actually the170

position vector xp0q.171

Now, we shall proceed to do the dimension reduction process by using the 3D formulation.172

First, the bottom traction condition (2.15) yields173

Sp0qTn “ pA0
´ pp0qR0

q
Tn “ ´q´. (3.5)

To ease notation, we introduce the vector y “ ypxp0qq “ Rp0qTn “ detpF p0qqF p0q´Tn “ x
p0q
,1 ^174

x
p0q
,2 {

a

|g1 ^ g2| (see [3]). Then by (3.1)1, equation (3.5) can be recast as175

pAp0q
p∇xp0q

` xp1q
b nqq

Tn “ ´q´
` pp0qy. (3.6)

Next, substituting the Taylor expansion for S into the field equation (2.14) and equating the176

coefficients of Zi (i“ 0, 1, . . . ) on both sides, we have177

∇ ¨ Sp0q
` Sp1qTn ` q

p0q

b “ ρ:xp0q, (3.7)

∇ ¨ Sp1q
` Sp2qTn ` pkgαq ¨ S

p0q
,α ` q

p1q

b “ ρ:xp1q, (3.8)

where ∇ ¨ S :“ gα ¨ S,α denotes the 2D divergence of the tensor S. Then substituting the Taylor178

expansion for F into the constraint equation (2.7) and equating the coefficients of Zi to be zero,179

we obtain180

RpF p0q
q “ y ¨ xp1q

´ 1 “ 0, (3.9)

R0
rF p1q

s “ y ¨ xp2q
` R0

r∇xp1q
` ∇xp0qks “ 0, (3.10)

where in (3.9) we have used the equality F p0q´1xp1q “ n implied by (3.1)1. By the way, we point181

out that there is a typo in p28q1 of [3].182
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With the use of (3.2)2, equation (3.7) can be simplified into183

Bxp2q
` f2 ´ pp1qy “ ρ:xp0q (3.11)

by defining184

Ba “ pA1
ra b nsq

Tn ðñ Bij “ A1
3i3j , (3.12)

f2 “ pA1
r∇xp0qk ` ∇xp1q

sq
Tn ` ∇ ¨ Sp0q

` q
p0q

b . (3.13)

From (3.10) and (3.11), we obtain185

pp1q
“

1

y ¨ B´1y
py ¨ B´1f2 ´ Rp0q

r∇xp1q
` ∇xp0qks ´ y ¨ B´1

pρ:xp0q
qq, (3.14)

xp2q
“ B´1

pρ:xp0q
` pp1qy ´ f2q. (3.15)

Note that the strong-ellipticity condition guarantees that B is positive definite and hence is186

invertible. The explicit expressions of xp3q and pp2q can be obtained similarly, whose expressions187

are omitted. The explicit expressions of xp4q and pp3q are not needed since they are intermediate188

variables. The explicit expressions for xp1q and pp0q are encoded in (3.6) and (3.9), which are189

nonlinear algebraic equations in general, so they can only be solved when the strain energy190

function is specified. Nevertheless, the strong-ellipticity condition together with the implicit191

function theorem ensures that xp1q and pp0q can be uniquely solved in terms of xp0q (cf. [13]).192

Finally, the top traction condition (2.16) states193

Sp0qTn ` 2hSp1qTn ` 2h2Sp2qTn `
4

3
h3Sp3qTn `Oph4Sp4qTnq “ q`. (3.16)

Subtracting (3.16) multiplied by µp2hq “ 1 ´ 4Hh` 4Kh2 from (3.5) and then simplifying (see194

[11] for details), we arrive at one form of a 2D dynamic vector shell equation195

∇ ¨ rS `Oph3Sp3q, h3kSp2q
q “ ρ:

rx ´ rq `Oph3 :xp3q, h3k:xpiq, h3q
p3q

b , h3kq
piq
b q, (3.17)

where i“ 1, 2 and196

rS “ p1 ` hpk ´ 2H1qqSp0q
` hp1 `

4

3
hpk ´ 2H1qqSp1q

`
2

3
h21Sp2q

“
1

2h

∫2h
0

p1 ` Zpk ´ 2H1qqS dZ `Oph3Sp3q, h3kSp2q
q,

(3.18)

rx “ p1 ´ 2hH `
4

3
h2Kqxp0q

` hp1 ´
8

3
hHqxp1q

`
2

3
h2xp2q

“
1

2h

∫2h
0

xµpZq dZ `Oph3xp3q, h3kxpiq
q,

(3.19)

rq “
µp2hqq` ` q´

2h
` rqb, (3.20)

and rqb is defined in the same way as rx.197

Remark 3.2. The quantity rS is considered as the averaged stress, and rq the averaged shell body force due198

to surface traction and 3D body force. We point out that (3.17) can be also deduced by multiplying the field199

equation (2.14) by µpZq and then integrating it with respect to Z from 0 to 2h followed by applying the200

equality201 ∫2h
0

DivpSqµpZq dZ “ ∇ ¨ p

∫2h
0

p1 ` Zpk ´ 2H1qqS dZq ` STn|Z“2hµp2hq ´ STn|Z“0, (3.21)

which is a consequence of Stokes’ theorem.202

Similar to [12], suitable edge boundary conditions can be imposed, and then it can be shown203

that each of the five terms in (2.12) is of Oph4q, which satisfies the consistency criterion. The204
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details are omitted. Also, it is clear from the derivation process that the bottom traction condition,205

the 3D field equations, the incompressibility condition and the top traction traction condition are206

all satisfied in a pointwise manner (with an error of Oph4q, see (3.16)), an important feature not207

enjoyed by shell theories based on ad hoc assumptions and/or cross-thickness integrations.208

(b) Refined 2D dynamic shell equations209

Although the above-derived shell theory is consistent, there are still a few undesirable features as210

follows. 1. There are a little too many (three) shell constitutive relations (equations (3.2)1 and (3.2)2211

and that for Sp2q). In particular, the relation between Sp2q and xp0q is very complicated and can212

cause some technical difficulties for implementation in concrete applications. 2. From the shell213

equations, one cannot tell clearly which term(s) represents the bending effect. 3. Although the214

associated weak form can be obtained from the shell equations, physically it does not represent215

the shell virtual work principle. 4. The shell equations are three coupled fourth-order PDEs for216

xp0q, which require six boundary conditions at an edge point. If one knows the displacement217

and/or stress distributions, there is no difficulty imposing them. However, in many practical218

situations for the traction edge, one only knows four conditions: the cross-thickness force resultant219

and the bending moment (with direction along the edge tangent), and one does not know how to220

impose the other two boundary conditions. For a plate theory, these issues were resolved in [14].221

Here, those ideas from this previous work will be used for a shell theory. In this subsection, we222

shall resolve the first two issues by performing some manipulations to eliminate Sp2q and to223

single out the bending term. As a price to pay, the relative errors for some problems may not be224

as good as before. We point out that one cannot simply drop 2
3h

21Sp2q in (3.18), as the bending225

effect is also dropped. So, one needs to do some elaborate calculations to extract the bending term226

first and then to drop the relative higher-order terms. The last two issues will be resolved in the227

next section.228

First, we rewrite (3.17) into two parts:229

1∇ ¨ rS `Oph3Sp3q, h3kSp2q
q “ ρ:

rxt ´ rqt `Oph3 :x
piq
t , h3k:x

piq
t , h3q

piq
bt , h

3kq
piq
bt q, (3.22)

p∇ ¨ rSq ¨ n `Oph3Sp3q, h3kSp2q
q “ ρ:

rx3 ´ rq3 `Oph3:x
p3q
3 , h3k:x

piq
3 , h3q

p3q

b3 , h
3kq

piq
b3 q, (3.23)

where 1 “ I ´ n b n “ gα b gα and the subscript t indicates the projection into the tangent230

plane; thus at :“ 1a “ a1 and St :“ 1S1 for a vector a and a tensor S respectively. Note that231

since rS satisfies the equality 1 rS “ rS (see (3.18)), we have232

rSt “ 1 rS1 “ rS1. (3.24)

Next, we want to extract terms related to in-plane stress rSt from the in-plane equation (3.22) in233

order to gain some insights as well for later use for deriving the 2D shell virtual work principle.234

For this purpose, we need the following two equalities for a tensor field S and a vector field a:235

1∇ ¨ S “ 1∇ ¨ pS1q ´ kαβS
β3gα, (3.25)

p∇ ¨ Sq ¨ a “ ∇ ¨ pSaq ´ trp∇aSq. (3.26)

To prove (3.25), it suffices to show that236

1∇ ¨ pS ´ S1q “ ´kαβS
β3gα. (3.27)

Since 1 “ I ´ n b n, we have S ´ S1 “ Sn b n. Further, we have237

1∇ ¨ pSn b nq “ 1pgβ ¨ pSn b nq,βq “ gβ ¨ pSnq,β1n ` pgβ ¨ Snq1n,β (3.28)

“ ´pgβ ¨ Snqkgβ “ ´kαβS
β3gα. (3.29)

Thus (3.25) follows. Equation (3.26) can be proved by a direct calculation starting from ∇ ¨ pSaq238

by using the definition of the 2D divergence.239
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Using (3.25), (3.26) and (3.24), and noting that ∇n “ ´k, (3.22) and (3.23) can be rewritten as240

1∇ ¨ rSt ´ kαβ rSβ3gα `Oph3Sp3q, h3kSp2q
q “ ρ:

rxt ´ rqt `Oph3 :x
p3q
t , h3k:x

piq
t , h3q

p3q

bt , h
3kq

piq
bt q,

(3.30)

∇ ¨ p rSnq ` trpk rStq `Oph3Sp3q, h3kSp2q
q “ ρrx3 ´ rq3 `Oph3:x

p3q
3 , h3k:x

piq
3 , h3q

p3q

b3 , h
3kq

piq
b3 q.

(3.31)

Now, we shall manipulate the third equation (3.31) further to single out the bending term.241

Adding (3.16) multiplied by µp2hq to (3.5), we obtain242

p1 ´ 2hH ` 2h2KqSp0qTn ` hp1 ´ 4hHqSp1qTn ` h2Sp2qTn `Oph3Sp3qTn, h3k1SpiqTnq “ m,

(3.32)

where i“ 1, 2 and m “ pµp2hqq` ´ q´q{2. To extract the bending term from (3.31), we subtract243

the 2D divergence of (3.32) multiplied by 1 from the left from (3.31) (with the substitution of244

(3.18)). Note that the focus for this manipulation is on the Sp2q terms in these two equations.245

Then, upon further using (3.5) and (3.8), we obtain246

∇ ¨ pp1 ` hpk ´ 2H1qqSp0qn ´ pp1 ´ 2hH ` 2h2Kq1 ` hkqSp0qTnq

` h∇ ¨ pp1 `
4

3
hpk ´ 2H1qqSp1qn ´ p1 ´ 4hHq1Sp1qTnq `

2

3
h2∇ ¨ p1Sp2qn ´ 1Sp2qTnq

` trpk rStq `
1

3
h2∇ ¨ p1ppkgαq ¨ S

p0q
,α qq `

1

3
h2∇ ¨ p1∇ ¨ Sp1q

q `Oph3Sp3q, h3kSpiq
q

“ ρ:
rx3 ´ rq3 `

1

3
h2∇ ¨ pρ:x

p1q
t ´ q

p1q

bt q ´ ∇ ¨ mt ` h∇ ¨ pkq´
t q `Oph3:x

p3q
3 , h3k:x

piq
3 , h3q

p3q

b3 , h
3kq

piq
b3 q.

(3.33)

We also want to extract the in-plane stress parts of the last term 1
3h

2∇ ¨ p1∇ ¨ Sq on the left-247

hand side. Observe that we have the decomposition248

Sp1q
“ ISp1qI “ p1 ` n b nqSp1q

p1 ` n b nq “ S
p1q
t ` n b 1Sp1qTn ` Sp1qn b n. (3.34)

Further, routine calculations show that249

∇ ¨ p1∇ ¨ pn b 1Sp1qTnqq “ ´∇ ¨ p2H1Sp1qTnqq, (3.35)

∇ ¨ p1∇ ¨ pSp1qn b nqq “ ´∇ ¨ ppgα ¨ Sp1qnqkgαq. (3.36)

Upon using the above three equations, (3.33) can be recast as250

∇ ¨ pp1 ` hpk ´ 2H1qqSp0qn ´ pp1 ´ 2hH ` 2h2Kq1 ` hkqSp0qTnq

` h∇ ¨ pp1 `
4

3
hpk ´ 2H1qqSp1qn ´ p1 ´ 4hHq1Sp1qTnq `

2

3
h2∇ ¨ p1Sp2qn ´ 1Sp2qTnq

` trpk rStq `
1

3
h2∇ ¨ p1∇ ¨ S

p1q
t q ´

1

3
h2∇ ¨ p2H1Sp1qTnq ´

1

3
h2∇ ¨ ppgα ¨ Sp1qnqkgαq

`
1

3
h2∇ ¨ p1ppkgαq ¨ S

p0q
,α qq `Oph3Sp3q, h3kSpiq

q

“ ρ:
rx3 ´ rq3 `

1

3
h2∇ ¨ pρ:x

p1q
t ´ q

p1q

bt q ´ ∇ ¨ mt ` h∇ ¨ pkq´
t q `Oph3:x

p3q
3 , h3k:x

piq
3 , h3q

p3q

b3 , h
3kq

piq
b3 q.

(3.37)

To eliminate Sp2q terms in a consistent manner, we shall drop any term which is relatively251

Oph2q or Ophq smaller than another term (so that the shell theory yields results with a relative252

Oph2q orOphq error). It is justified, as shown in the following simple example: forA`B ` C “ 0,253

if C “Oph2Bq or C “OphBq, the dropping of C causes at most a relative error of Oph2q or Ophq,254

no matter AąOpBq or AďOpBq. Any terms which cannot satisfy the above requirement will be255

kept.256
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We make the following observations. 1. In (3.30), 2
3h

21Sp2q in rS (cf. (3.18)) is dropped, as it257

is Oph2q smaller than 1Sp0q or Ophq smaller than h1Sp1q if Sp0q “ 0 (e.g., the bottom surface258

undergoes an inextensible rotation, for which F p0q “ R and thus Sp0q “ 0, where R is a rotation259

tensor). As it is possible that Sp1q terms become the leading ones, they should be kept. 2. The last260

three terms on the left-hand side of (3.37), h2∇ ¨ p2K1Sp0qTnq, 4
3h

2∇ ¨ ppk ´ 2H1qSp1qnq and261

h2∇ ¨ p4H1Sp1qTnq are dropped as they are Oph2q smaller than trpk rStq or either Ophq smaller262

than trpk rStq or zero if Sp0q “ 0. 3. The third term on the left-hand side of (3.37) is dropped as it263

is Oph2q smaller than ∇ ¨ p1Sp0qn ´ 1Sp0qTnq or Ophq smaller than h∇ ¨ p1Sp1qn ´ 1Sp1qTnq if264

Sp0q “ 0. 4. On the right-hand sides, 1
3h

2xp2q in rx (cf. (3.19)) is dropped , as it is Oph2q smaller265

than xp0q, and a similar treatment is made to rqb. From these observations, we have the refined 2D266

dynamic shell equations as follows:267

1∇ ¨ St ´ kαβS
β3

gα “ ρ:xt ´ qt, (3.38)

∇ ¨ pS‹n ´ ST
‹ nq ` trpkStq `

1

3
h2∇ ¨ p1∇ ¨ S

p1q
t q

“ρ:x3 ´ q3 `
1

3
h2∇ ¨ pρ:x

p1q
t ´ q

p1q

bt q ´ ∇ ¨ mt ` h∇ ¨ pkq´
t q,

(3.39)

where268

S “ p1 ` hpk ´ 2H1qqSp0q
` hp1 `

4

3
hpk ´ 2H1qqSp1q, (3.40)

S‹ “ p1 ` hpk ´ 2H1qqSp0q
` h1Sp1q, (3.41)

ST
‹ “ p1 ` hpk ´ 2H1qqSp0qT

` h1Sp1qT , (3.42)

x “ p1 ´ 2hH `
4

3
h2Kqxp0q

` hp1 ´
8

3
hHqxp1q, (3.43)

q “
µp2hqq` ` q´

2h
` qb, (3.44)

and qb is defined in the same way as x.269

From the above shell equations, one can observe some important insights. 1. For a plate (or270

a shell with |kαβ | ďOph2q) in linear elasticity, the bending term 1
3h

2∇ ¨ p1∇ ¨ S
p1q
t q becomes the271

leading term, so it should be kept although it looks like anOph2q term. 2. For the in-plane equation272

(3.38), the in-plane forces and inertia effects are resisted by two sources: the in-plane stress part273

(the first term on the left-hand side) and the out-plane shear stresses due to the curvature effect274

(the second term). 3. For the out-plane equation (3.39), the out-plane forces and inertia effects are275

resisted by three sources: (i) the out-plane shear stresses (the first term on the left-hand side) due276

to geometric and/or material nonlinearity; (ii) the in-plane stresses due to the curvature effect (the277

second term); (iii) bending effect due to the in-plane stresses (the last term). 4. Although the out-278

plane normal stress does not appear explicitly in these shell equations, it plays a role in expressing279

xp1q and pp0q in terms of xp0q (see (3.5) and (3.9)), so it should not be ignored (as in some ad hoc280

theories, which assume the out-plane component of the displacement is independent of Z). 5.281

Only two shell constitutive relations are needed, which are provided by (3.2)1 and (3.2)2. 6. These282

shell equations provide results with at most a relativeOphq error, although in some cases the error283

can be Oph2q. Note that higher-order Taylor expansions do not necessarily lead to higher-order284

correct plate/shell equations.285

After substitutions of all recurrence relations, the above shell equations become a system of286

differential equations involving xp0q only. Once it is solved, xp0q (with a relative error equal to or287

smaller than Ophq) is obtained and the position vector x can then be recovered.288
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4. Boundary conditions and shell Virtual work principle289

Now we shall resolve the last two issues mentioned in the beginning of the previous subsection.290

Actually, boundary conditions for a derived shell theory can cause considerable difficulty (see291

Steigmann [18]). Here, we shall use both the variation of the 3D Lagrange functional and the292

weak form of the shell equations to get the appropriate boundary conditions and the 2D shell293

virtual work principle.294

For the shell equations, the bottom traction condition (2.15), and the vanishing coefficients of295

the field equation (2.14) and the incompressibility constraint (2.7) are used to find the recurrence296

relations. As a result, (2.14) (up to required order) and (2.15) can be treated as identities. To obtain297

the 2D shell virtual work principle from the vanishing of the variation of 3D Lagrange functional298

(2.12), we need to specialize it to the 2D case (by using the Taylor expansions for the quantities299

involved as in deriving the shell equations). The first two terms in (2.12) can be set to be identically300

zero because of the above-mentioned two identities. Then, in order to remove δxpr, 2hq (we still301

use xpr, 2hq for the writing purpose but it means the Taylor expansion of the position vector302

at Z “ 2h) in the third integral and introduce δxpr, hq to the variation (needed for the 2D shell303

virtual work principle), we add to δL three identically zero terms (the first three terms below) to304

obtain305

δL“2h

∫
Ω
At ¨ pδxtpr, 2hq ´ δxtpr, hqq dA` 2h

∫
Ω
A3 ¨ pδx3pr, 2hq ´ δx3pr, hqq dA

` 2h

∫
Ω

p∇ ¨ Cq ¨ xpr, 2hq dA`

∫
Ω

pSTn|Z“2h ´ q`
q ¨ δxpr, 2hqµp2hq dA

`

∫
BΩq

∫2h
0

pSTN ´ qq ¨ δxps, Zq da“ 0,

(4.1)

where At “ 0, A3 “ 0 and C “ 0 correspond to equations (3.38), (3.39) and (3.32) respectively.306

Also, we remark that the last edge term is still of the 3D one and we delay to specialize it to the307

2D shell theory later. Direct calculations show that the δxpr, 2hq terms cancel each other (upon308

dropping relatively higher-order terms as in Section 3(b)), and we have309

δL“ ´ 2h

∫
Ω
At ¨ δumt dA´ 2h

∫
Ω
A3 ¨ δum3 dA`

∫
BΩq

∫2h
0

pSTN ´ qq ¨ δups, Zq da“ 0,

(4.2)

where we have used the virtual displacement δu to replace the virtual position vector and the310

subscript m denotes the middle surface Z “ h. Actually, the first two terms are just the weak311

form for the shell equations (3.38) and (3.39). We remark that when the boundary conditions are312

involved, one can only expect to obtain the leading-order results in general; thus in the sequel any313

term, which is relatively smaller than another term, will be dropped.314

To get the 2D shell virtual work principle, we shall further add two identities to the above315

equation, which are associated with the virtual work due to the moment, which is given by316

M “

∫
BΩ

∫2h
0

ppx ´ xpr, hqq ˆ STNq
?
gτ dZds. (4.3)

Then, the twist moment (along Nm direction) and the bending moment (along Tm direction) per317

unit arc length of BΩ are given by respectively318

T “

∫2h
0

ppx ´ xpr, hqq ˆ STNq ¨ Nm
?
gτ dZ “

2

3
h3Sp1qT

rν,ν ˆ xp1q
s `Oph4, h3kq, (4.4)

M “

∫2h
0

ppx ´ xpr, hqq ˆ STNq ¨ Tm
?
gτ dZ “

2

3
h3Sp1qT

rν, τ ˆ xp1q
s `Oph4, h3kq. (4.5)

It was shown in [19] (Section 2.5; the authors attributed the argument to Kirchhoff) that the319

derivative of the twisting moment with respect to the arc length T,s is equivalent to a distributed320
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shear force (along the downward thickness direction). Thus, this twist moment generates a virtual321

work per arc length: ´T,sδum3. On the other hand, the bending moment generates a virtual work322

per arc length: ´Mδαm, where αm is the rotation angle at the edge of the middle surface, which323

can be viewed as the change of the angle between the tangent vector of the intersection curve of324

the middle surface and the plane perpendicular to Tm and the vector Nm during the deformation325

and is given by (after some calculations)326

αm “ arctanp
∇mxpr, hqrNms ¨ n

∇mxpr, hqrNms ¨ Nm
q ˘ pπ “ arctanp

um3,ν

1 ` 1∇umtrν,νs
`Opk, hkqq ˘ pπ, (4.6)

where ∇m “ B
Bθα pgα|Z“h (see (2.2) for the definition of pgα) is the gradient operator on the middle327

surface and p is a natural number.328

Now, we add the two identities ´T,sδum3 ` T,sδum3 “ 0 and ´Mδαm `Mδαm “ 0 to329

equation (4.2) to obtain330

δL“ ´ 2h

∫
Ω
At ¨ δumt dA´ 2h

∫
Ω
A3 ¨ δum3 dA`

∫
BΩq

∫2h
0

pSTN ´ qq ¨ δups, Zq da

`

∫
BΩ

T,sδum3 ds´

∫
BΩ

T,sδum3 ds`

∫
BΩ

Mδαm ds´

∫
BΩ

Mδαm ds“ 0.

(4.7)

Next, substituting the expressions of At and A3 according to the shell equations (3.38) and331

(3.39) into the above equation and then doing integration by parts by Stokes’ theorem, we obtain,332

after dropping Oph4, h3kq terms,333

2h

∫
Ω

ptrpSt∇δumtq ` kαβS
β3

gα ¨ δumt ` pρ:xt ´ qtq ¨ δumtq dA

` 2h

∫
Ω

`

pS‹n ´ ST
‹ nq ¨ ∇δum3 ´ trpkStqδum3 `

1

3
h2∇ ¨ ppS

p1q
t τ ´ Sp1q

rxp1q
ˆ νsqδum3,sq

`
1

3
h2∇ ¨ pS

p1q
t νδum3,ν ´ Sp1q

rτ ˆ xp1q
sδαm‹q ´

1

3
h2 trpS

p1q
t ∇∇δum3q

´
1

3
h2pρ:x1

t ´ q
p1q

bt q ¨ ∇δum3 ` mt ¨ ∇δum3 ´ hkq´
t ¨ ∇δum3 ` pρ:x3 ´ q3qδum3

˘

dA

“2h

∫
BΩ

Stν ¨ δumt ds` 2h

∫
BΩ

`

pS‹n ´ ST
‹ nq ¨ ν `

1

3
h2p1∇ ¨ S

p1q
t ´ ρ:x

p1q
t ` q

p1q

bt q ¨ ν

´
1

3
h2pSp1qT

rν,ν ˆ xp1q
sq,s ` mt ¨ ν ´ hkq´

t ¨ ν
˘

δum3 ds´
2

3
h3

∫
BΩ

Sp1qT
rν, τ ˆ xp1q

sδαm‹ ds

´

∫
BΩq

∫2h
0

pSTN ´ qq ¨ δups, Zq da,

(4.8)

where αm‹ “ arctanpu3,ν{p1 ` 1∇umtrν,νsqq ˘ pπ. Also, we have used the decomposition334

∇δum3 “ δum3,sτ ` δum3,νν and have transformed the integrals
∫

BΩ T,sδum3 ds and
∫

BΩq
Mδαm ds335

into integrals over Ω by Stokes’ theorem. The smoothness of BΩ is also assumed.336

Remark 4.1. In (4.8), the reason for dropping Oph3kq terms is because they are relatively Oph2q smaller337

than 2h
∫

BΩ trpkStqδu3 ds. In the subsequent derivations, anyOph3kq term will be put into the reminder,338

which are droppable for the same reasoning. We also point out that, in order to make the 2D divergence of339

T,s and M well-defined, the unit vectors τ and ν have to be defined in Ω, which can be done as follows.340

The boundary BΩ can be described by an implicit function F pθαq “ 0 after eliminating the arc length341

variable. Then at the point in Ω with θα “ θα0 , τ can be defined as the unit tangent vector of the curve342

F pθαq “ F pθα0 q at the point and ν can then be defined via the formula ν “ τ ^ n.343

Now, we are ready to address the boundary conditions, which should come from the last 3D344

edge term. For the 3D case, the vanishing of this term for any δu leads to the 3D boundary345
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condition (2.17) for arbitrary Z, which, obviously, a 2D shell theory cannot satisfy. So, for a346

2D shell theory one needs to make some special choice for δu. Here, the criterion is that “q"347

should generate the virtual work; at the same time for such a choice, the remaining three terms348

on the right-hand side should give the virtual work done by the external 3D force at the edge349

so that after the vanishing of the last term, (4.8) gives the 2D shell virtual work principle350

(that is the main reason that the above calculations are about). According to this criterion, we351

choose δups, Zq “ δumt ` δu3n ` pZ ´ hqpδum3,spν ˆ xp1qq ´ δαmpτ ˆ xp1qqq on BΩq , then the352

vanishing of the last integral of (4.8) leads to353 ∫
BΩq

∫2h
0

ST
t N ¨ δumt da`

∫
BΩq

`

∫2h
0

STN ¨ n
?
gτ dZ

´ p

∫2h
0

pZ ´ hqSTN ¨ pν ˆ xp1q
q
?
gτ dZq,s

˘

δum3 ds´

∫
BΩq

∫2h
0

pZ ´ hqSTN ¨ pτ ˆ xp1q
qδαm da

“

∫
BΩq

∫2h
0

qt ¨ δumt da`

∫
BΩq

`

∫2h
0
q3

?
gτ dZ ´ p

∫2h
0

pZ ´ hqq ¨ pν ˆ xp1q
q
?
gτ dZq,s

˘

δum3 ds

´

∫
BΩq

∫2h
0

pZ ´ hqq ¨ pτ ˆ xp1q
qδαm da.

(4.9)

Next we shall examine each integral on the left-hand side of (4.9) upon using the Taylor354

expansions (i.e., specializing to the 2D shell theory) and its counterpart on the right-hand side.355

1. The first integral L1on the left-hand side of (4.9) is found to be356

L1 “ 2h

∫
BΩq

S
T
t ν ¨ δumt ds`Oph3q, (4.10)

which agrees with the first integral on the right-hand side of (4.8) over BΩq .357

The applied in-plane force per unit arc length of BΩq is pqt “
∫2h
0 qt

?
gτ dZ, so the first integral358

R1 on the right-hand side of (4.9) can be written as359

R1 “

∫
BΩq

p

∫2h
0

qt
?
gτ dZq ¨ δumt ds“

∫
BΩq

pqt ¨ δumt ds, (4.11)

which is the virtual work by the applied 3D in-plane force.360

2. The second integral L2 on the left-hand side of (4.9) is361

L2 “2h

∫
BΩq

`

pS‹n ´ ST
‹ nq ¨ ν `

1

3
h2p1∇ ¨ S

p1q
t ´ ρ:x

p1q
t ` q

p1q

bt q ¨ ν

´
1

3
h2pSp1qT

rν,ν ˆ xp1q
sq,s ` mt ¨ ν ´ hkq´

t ¨ ν
˘

δum3 ds`Oph3, h3kq

(4.12)

where use has been made of the (3.32). We see that L2 is same as the second integral on the362

right-hand side of (4.8) over BΩq .363

The applied shear force per arc length of BΩq is qs3 “
∫2h
0 q3

?
gτ dZ. The twisting moment at364

the edge about the middle surface due to the applied force q is written as365

Tq “

∫2h
0

ppx ´ xpr, hqq ˆ qq ¨ Nm
?
gτ dZ “

∫2h
0

pZ ´ hqpν ˆ xp1q
q ¨ q

?
gτ dZ `Oph3, h3kq,

(4.13)

whose derivative Tq,s with respect to the arc length variable is equivalent to a downward shear366

force. Then, the second integral R2 on the right-hand side is367

R2 “

∫
BΩq

pqs3 ´ Tq,sqδum3 ds`Oph3, h3kq “

∫
BΩq

pq3δum3 ds`Oph3, h3kq, (4.14)
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where pq3 is the total effective applied shear force per unit arc length of BΩq , and one can see R2368

is the virtual work done by the applied 3D force due to the virtual displacement δum3.369

3. The third integral L3 on the left-hand side of (4.9) is370

L3 “ ´
2

3
h3

∫
BΩq

Sp1qT
rν, τ ˆ xp1q

sδαm‹ ds`Oph4, h3kq, (4.15)

which is same as the third integral on the right-hand side of (4.8) over BΩq .371

The bending moment at the edge point about the middle surface due to the applied force q is372

pm3 “

∫2h
0

ppx ´ xpr, hq ˆ qq ¨ Tm
?
gτ dZ “

∫2h
0

pZ ´ hqpτ ˆ xp1q
q ¨ q

?
gτ dZ `Oph3, h3kq.

(4.16)

Then, the third integral R3 on the right-hand side of (4.9) can be written as373

R3 “ ´

∫
BΩq

∫2h
0

pZ ´ hqq ¨ pτ ˆ xp1q
qδαm

?
gτ dZds“ ´

∫
BΩq

pm3δαm‹ ds, (4.17)

which is the virtual work by the applied 3D force due to the virtual rotation angle.374

Finally, the equalities Li “Ri pi“ 1, 2, 3q lead to the following boundary conditions on the375

traction edge BΩq :376

2hS
T
t ν “ pqt, (4.18)

2h
`

pS‹n ´ ST
‹ nq ¨ ν `

1

3
h2p1∇ ¨ S

p1q
t ´ ρ:x

p1q
t ` q

p1q

bt q ¨ ν

´
1

3
h2pS

p1qT
t rν,ν ˆ xp1q

sq,s ` mt ¨ ν ´ hkq´
t ¨ ν

˘

“ pq3,

(4.19)

2h3

3
S

p1qT
t rν, τ ˆ xp1q

s “ pm3, (4.20)

where qt and pq3 are respectively the applied in-plane force and total effective shear force (per377

unit arc length of BΩq), and pm3 is the applied bending moment about the middle surface, which378

are supposed to be prescribed. Based on work conjugates, on the displacement edge BΩ0, the379

boundary conditions are:380

umt “ pumt, um3 “ pum3, αm‹ “ pαm ðñ
um3,ν

1 ` 1∇umtrν,νs
“ tanppαmq, (4.21)

where pum and pαm are the prescribed displacement and rotation angle of the middle surface.381

Upon using these boundary conditions for the right-hand side of (4.8), we obtain the 2D shell382

virtual work principle (as the right-hand side represents the virtual work done by the applied383

effective 3D force at the edge):384

2h

∫
Ω

ptrpSt∇δumtq ` kαβS
β3

gα ¨ δumt ` pρ:xt ´ qtq ¨ δumtq dA

` 2h

∫
Ω

`

pS‹n ´ ST
‹ nq ¨ ∇δum3 ´ trpkStqδum3 ´

1

3
h2 trpS

p1q
t ∇∇δum3q

´
1

3
h2pρ:x1

t ´ q
p1q

bt q ¨ ∇δum3 ` mt ¨ ∇δum3 ´ hkq´
t ¨ ∇δum3 ` pρ:x3 ´ q3qδum3

˘

dA

“

∫
BΩq

pqt ¨ δumt ds`

∫
BΩq

pq3δum3 ds´

∫
BΩq

pm3δαm‹ ds.

(4.22)

In obtaining the above equation, the following two terms in (4.8) have been dropped:385

2

3
h3∇ ¨ ppS

p1q
t τ ´ Sp1q

rxp1q
ˆ νsqδum3,sq, (4.23)

2

3
h3∇ ¨ pS

p1q
t νδum3,ν ´ Sp1q

rτ ˆ xp1q
sδαm‹q, (4.24)
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which can be justified as follows. From the relation xp1q “ n ` up1q, we see that (4.23) can be386

simplified as ´ 2
3h

3∇ ¨ pS
p1q
t up1qqδum3,s . Then from (4.6), the variation of αm‹ is calculated by387

δαm‹ “
p1 ` 1∇umtrν,νsqδum3,ν ´ um3,ν1∇δumtrν,νs

p1 ` 1∇umtrν,νsq2 ` pum3,νq2
“ δum3,ν `Op∇uδum3,ν ,∇u∇δumtq,

(4.25)

where the second equality is for small deformations. In (4.24), the term related to ∇δumt is388

relatively Oph2q smaller than 2h trpSt∇δumtq and can thus be dropped. For the remaining terms389

left, for large deformations, they are relatively Oph2q smaller than 2hpSn ´ ST
‹ nq∇δum3, while390

for small deformations they are of order Oph3Sp1qup1qδum3,sq and Oph3Sp1qup1qδum3,νq, which391

are smaller than ´ 2
3h

3 trpS
p1q
t ∇∇δum3q. Thus, no matter for large or small deformations they392

can be dropped.393

The 2D shell virtual work principle (4.22) supplemented by boundary conditions (4.18)-(4.20)394

and (4.21) provides a framework for implementing finite element schemes, which will be left for395

future investigations.396

5. A Benchmark problem: the extension and inflation of an397

arterial segment398

In this section, we apply the previously derived shell theory to study the extension and inflation399

of an arterial segment, for which the exact solution is available in [20]. We will compare the400

asymptotic solution obtained from the shell theory and the exact solution to show its validity.401

Following [1], we consider an artery as a thick-walled circular cylindrical tube, which in its402

reference configuration has internal and external radii A and B, respectively, and length L. So, its403

geometry may be described in terms of cylindrical polar coordinates pR,Θ,Xq by404

AďRďB, 0 ďΘď 2π, 0 ďX ďL. (5.1)

They are related to the Cartesian coordinates pX1, X2,X3q by405

X1 “R cosΘ, X2 “R sinΘ, X3 “X. (5.2)

In the notation of the shell theory, we have the corresponding relations406

θ1 “Θ, θ2 “X, Z “R ´A, 2h“B ´A. (5.3)

We choose the inner surface of the circular cylindrical tube as the base surface. Let peR, eΘ, eXq407

denote the standard basis vectors of the cylindrical polar coordinates. A direct calculation using408

(5.2) shows409

g1 “A2g1 “AeΘ, g2 “ g2 “ eX , g3 “ g3 “ eR “ n. (5.4)

Thus the 2D gradient operator is given by ∇ “ 1
A

B
BΘeΘ ` B

BX eX . The curvature tensor is410

calculated by k “ ´n,α b gα “ ´ 1
AeΘ b eΘ , which implies that H “ ´ 1

2A and K “ 0. In the411

cylindrical polar coordinates pR,Θ,Xq, the shell equations (3.38) and (3.39) take the following412
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form413

1

A

BSΘΘ

BΘ
`

BSXΘ

BX
`

1

A
SΘR “ ρ:xΘ ´

µp2hqq`
Θ ` q´

Θ

2h
´ qbΘ, (5.5)

1

A

BSΘX

BΘ
`

BSXX

BX
“ ρ:xX ´

µp2hqq`
X ` q´

X

2h
´ qbX , (5.6)

1

A
p

BS‹ΘR

BΘ
´

BST
‹ ΘR

BΘ
q `

BS‹XR

BX
´

BST
‹ XR

BX
´

1

A
SΘΘ

`
1

3
h2p

1

A2

B2S
p1q
ΘΘ

BΘ2
`

1

A

B2S
p1q
ΘX

BΘBX
`

1

A

B2S
p1q
XΘ

BΘBX
`

B2S
p1q
XX

BX2
q

“ρ:xR ´
µp2hqq`

R ` q´
R

2h
´ qbR ´ p

1

A

BmΘ

BΘ
`

BmX

BX
q ´

h

A2

Bq´
Θ

BΘ
,

(5.7)

where S,S‹,ST
‹ ,x and qb are defined below (3.39).414

In the problem of the extension and inflation of the artery, the circular cylindrical tube is415

assumed to undergo an axisymmetric and uniformly extensional deformation. Thus the deformed416

tube is described in cylindrical polar coordinates pr, θ, zq by417

aď rď b, 0 ď θď 2π, 0 ď z ď l, (5.8)

where a, b and l are the deformed counterparts of A,B and L respectively and deformation is418

given by419

r“ rpRq, θ“Θ, z “ λzX, (5.9)

where λz “ l{L is the uniform stretch in the axial direction. It follows that the deformation420

gradient is given by421

F “
r

R
eΘ b eΘ ` λzeX b eX ` r1eR b eR. (5.10)

On the inner and outer surfaces of the circular cylindrical tube, we consider the traction boundary422

conditions caused by the internal pressure P423

q´
“ PF p0q´Tn “ P

λza

A
eR, q`

“ 0. (5.11)

On its end surface, we impose a resultant axial force424

F “ 2π

∫B
A
SXXRdR ´ πa2P. (5.12)

The artery is modelled as an incompressible hyperelastic material reinforced by two425

symmetrically disposed families of fibres, which has a strain energy function [21] given by426

W pI1, I4, I6q “
c

2
pI1 ´ 3q `

k1
2k2

ÿ

i“4,6

pek2pIi´1q2
´ 1q, (5.13)

where I1 “ trpCq is the first principal invariant of the right Cauchy tensor C “ F TF , and I4 “427

M ¨ pCMq and I6 “ M 1 ¨ pCM 1q, where the unit vectors M “ cosφeΘ ` sinφeX and M 1 “428

´ cosφeΘ ` sinφeX represent the directions of the two fibres. It follows from (5.10) that I4 and429

I6 are430

I4 “ I6 “
r2

R2
cos2 φ` λ2z sin

2 φ :“ I. (5.14)

For the strain energy function (5.13), the associated nominal stress is given by431

S “ cF T
` 2k1pI4 ´ 1qek2pI4´1q2M b FM ` 2k1pI6 ´ 1qek2pI6´1q2M 1

b FM 1
´ pF´1.

(5.15)
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First, substituting (5.10) into (5.15) and doing a Taylor expansion yield432

Sp0q
“ pc

r0
A

´ p0
A

r0
` 4k1pI0 ´ 1qek2pI0´1q2 r0

A
cos2 φqeΘ b eΘ

` pcλz ´
p0
λz

` 4k1pI0 ´ 1qek2pI0´1q2λz sin
2 φqeX b eX

` pcr1 ´
p0
r1

qeR b eR,

(5.16)

Sp1q
“ pc

r1A´ r0
A2

´ p0
r0 ´ r1A

r20
´ p1

A

r0
` 4k1pp1 ` 2k2pI0 ´ 1q

2
qI1

r0
A

` pI0 ´ 1q
r1A´ r0

A2
qek2pI0´1q2 cos2 φqeΘ b eΘ

` p´
p1
λz

` 4k1p1 ` 2k2pI0 ´ 1q
2
qek2pI0´1q2I1λz sin

2 φqeX b eX

` pr2 ´
p1
r1

`
p0r2
r21

qeR b eR,

(5.17)

where ri, pi, Ii denote the ith derivatives of r, p, I with respect to Z at Z “ 0, respectively; in433

particular, we have434

I0 “ I|Z“0 “
r20
A2

cos2 φ` λ2z sin
2 φ, I1 “

BI

BZ
|Z“0 “

2r0pr1A´ r0q

A3
cos2 φ. (5.18)

Next we obtain from (3.5) and (3.9) the recurrence relation for p0 and r1:435

p0 “ c
A2

λ2zr
2
0

` P, r1 “
A

λzr0
, (5.19)

and from (3.14) and (3.15) the recurrence relation for p1 and r2:436

p1 “ ´c
pλzr

2
0 ´A2q2

λ3zAr
4
0

´ 4k1e
k2pI0´1q2 pI0 ´ 1q cos2 φ

λzA
, r2 “

λzr
2
0 ´A2

λ2zr
3
0

. (5.20)

Finally the only nontrivial shell equation (5.7) becomes437

1

A
pS

p0q
ΘΘ ` hS

p1q
ΘΘq “

q´
R

2h
“
P

2h

λzr0
A

. (5.21)

Substituting the recurrence relations (5.19) and (5.20) into the above equation, we obtain an438

equation involving r0 only as expected439

ϱ´ cλ´4
a λ´3

z pλ4aλ
2
z ´ 1q ´ 4k1e

k2pI0´1q2
pI0 ´ 1qλz

´1 cos2 φ` h˚`

ϱλ´2
a λ´1

z

` c
1

2
λ´6
a λ´4

z pλ6aλ
3
z ´ 2λ4aλ

2
z ` 3λ2aλz ´ 2q ` 2k1e

k2pI0´1q2λ´2
a λ´2

z cos2 φ

ˆ ppλ2aλz ´ 2qpI0 ´ 1q ` 2λ2apλ2aλz ´ 1qp1 ` 2k2pI0 ´ 1q
2
q cos2 φq

˘

` h˚2 1

2
ϱλ´4

a λ´2
z pλ2aλz ´ 1q “ 0,

(5.22)

where the scales are set as h˚ “ 2h{A, P “ ϱ2h{A and λa “ r0{A“ a{A. We observe from (5.22)440

that441

ϱ“ cλ´4
a λ´3

z pλ4aλ
2
z ´ 1q ` 4k1pI0 ´ 1qek2pI0´1q2λz

´1 cos2 φ`Oph˚
q. (5.23)

Substituting the above equation into the Oph˚q term of (5.22), we have442

P “ϱh˚
“ h˚

pcλ´4
a λ´3

z pλ4aλ
2
z ´ 1q ` 4k1pI0 ´ 1qek2pI0´1q2λz

´1 cos2 φq

´ h˚2`

c
1

2
λ´6
a λ´4

z pλ6aλ
3
z ` 3λ2aλz ´ 4q ` 2k1e

k2pI0´1q2λ´2
a λ´2

z cos2 φ

ˆ pλ2aλzpI0 ´ 1q ` 2λ2apλ2aλz ´ 1qp1 ` 2k2pI0 ´ 1q
2
q cos2 φq

˘

`Oph˚3
q.

(5.24)
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Then according to (4.18), the boundary condition (5.12) gives443

2hpp1 `
h

A
qS

p0q
XX ` hS

p1q
XXq “

F ` πa2P

2πA
. (5.25)

Substituting (5.24) into above equation, we have444

F˚
“h˚

pcλ´2
a λ´3

z p2λ2aλ
4
z ´ λ4aλ

2
z ´ 1q ` 4k1e

k2pI0´1q2λ´1
z pI0 ´ 1qp2λ2z sin

2 φ´ λ2a cos
2 φqq

` h˚2`

c
1

2
λ´4
a λ´4

z pλ6aλ
3
z ` 2λ4aλ

5
z ´ 2λ4aλ

2
z ´ 3λ2aλz ` 2q

` 2k1e
k2pI0´1q2λ´2

z

`

pI0 ´ 1qppλ2aλz ´ 2q cos2 φ` 2λ3z sin
2 φq

` 2pλ2aλz ´ 1qp1 ` 2k2pI0 ´ 1q
2
qpλ2a cos

4 φ´ 2λ2z sin
2 φ cos2 φq

˘˘

`Oph˚3
q,

(5.26)

where F˚ “ F {pπA2q is the normalized resultant axial force. Equations (5.24) and (5.26) form the445

asymptotic solution of the problem.446

On the other hand, the problem has an exact solution of the following form [20]:447

P “

∫λa

λb

pλ2λz ´ 1q
´1ψλ dλ, (5.27)

F “ πA2
pλ2aλz ´ 1q

∫λa

λb

pλ2λz ´ 1q
´2

p2λzψλz
´ λψλqλ dλ, (5.28)

where λb “ b{B “

b

λ´1
z ppλzλ2a ´ 1qA2{B2 ` 1q, ψλ “ Bψ{Bλ, ψλz

“ Bψ{Bλz , and ψ is given by448

ψpλ, λzq “
c

2
pλ2 ` λ2z ` λ´2λ´2

z ´ 3q `
k1
k2

pek2pλ2 cos2 φ`λ2
z sin2 φ´1q2

´ 1q, (5.29)

Doing a routine Taylor expansion, we see that449

P “ h˚λ´1
a λ´1

z ψλpλa, λzq ´ h˚2 1

2
λ´3
a λ´2

z pψλpλa, λzq ` λapλ2aλz ´ 1qψλλpλa, λzqq `Oph˚3
q,

(5.30)

F˚
“ h˚λ´1

z p2λzψλz
pλa, λzq ´ λaψλpλa, λzqq ` h˚2 1

2
λ´1
a λ´2

z

`

2λaλ
2
zψλz

pλa, λzq ´ ψλpλa, λzq

` pλ2aλz ´ 1qpλaψλλpλa, λzq ´ 2λzψλλz
pλa, λzqq

˘

`Oph˚3
q,

(5.31)

where ψλλ “ B2ψ{Bλ2 and ψλλz
“ B2ψ{BλBλz . If the expansions are carried out on the middle450

surface, then theOph˚2q terms are not present, and the errors are ofOph˚3q as well; see equations451

(6.5) and (6.6) in [22]. Using (5.29), it is easy to check that the exact solution (5.30) and (5.31) are452

the same as the asymptotic solution (5.24) and (5.26), validating the shell equations.453

To illustrate a numerical example, we set the geometrical and material parameters of the artery454

as in Table 1; these parameters are cited from [21] and are given for a carotid artery from a rabbit.455

In Figure 1, we compare the pressure P and the normalized resultant axial force F˚ given by456

the asymptotic solution and the exact solution for the artery described by the above parameters.457

It is seen that the asymptotic solution is very close to the exact one, which can be viewed as a458

numerical validation of the shell equations.

Table 1. Geometrical and material data for a carotid artery form a rabbit

A (mm) 2h (mm) c (kPa) k1 (kPa) k2 (-) φ ρ (g{cm3)
1.43 0.26 3 2.3632 0.8393 29˝ 1.19

459
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exact solution

asymptotic solution
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Figure 1. Comparison of the exact solution and the asymptotic solution (a) Variation of the inner pressure P with respect

to λa for fixed λz “ 1 (b) Variation of the normalized axial force F˚ “ F {pπA2q with respect to λz for fixed λa “ 1

6. An application: plane-strain vibrations of a pressurized artery460

As an application of the derived refined shell theory, we consider the plane-strain vibrations of461

an artery superimposed on a pressurized state considered in the previous section. The results462

may be useful in determining the material parameters of an artery. Due to the space limit, other463

vibration modes together with wave propagation will be reported in a separate paper. The shell464

equations are three nonlinear PDEs for xp0q. For deformations superimposed on a known state465

(base state), we write xp0q “ x
p0q

b ` δup0q, where the known vector xp0q

b is the position vector of466

the deformed bottom surface in the base state and δup0q is the incremental displacement vector.467

For the pressurized state, we have x
p0q

b “ r0eR ` λzXeX . For the plane-strain vibration modes,468

we set the components of δup0q to be469

δu
p0q
Θ “U exppipnΘ ´ ωtqq, δu

p0q
X “ V exppipnΘ ´ ωtqq, δu

p0q
R “W exppipnΘ ´ ωtqq, (6.1)

where pU, V,W q are constants, and ω is the angular frequency and n is the circumferential470

mode number. Substituting the above two equations into the shell equations in cylindrical polar471

coordinates (5.5)-(5.7) and linearizing, one has three linear algebraic equations for pU, V,W q in the472

form:473

¨

˚

˝

m11 0 m13

0 m22 m23

m31 0 m33

˛

‹

‚

¨

˚

˝

U

V

W

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

, (6.2)

where the coefficients m11, etc. are related to n, ω and the known quantities in the base state,474

whose expressions are omitted. For the existence of nontrivial solutions, we need the determinant475

of the coefficient matrix to be zero, which leads to D1D2 “ 0 with D1 “m22 and D2 “m11m33 ´476

m13m31. We note that this equation gives a relation between the frequency and the material477

parameters of an artery; in particular, it can be used to determine the material parameters of478

an artery, if technology is available to measure its vibration frequency. The equation D1 “ 0479

represents a purely axial motion with the only (incremental) displacement component δup0q

X that is480

also independent ofX , which is thus called the axial mode. The equationD2 “ 0 corresponds to the481

X-independent coupled motions with both circumferential and radial displacements but without482

axial displacements, which are called the circumferential-radial mode and radial-circumferential483

mode respectively. This way of naming is according to their displacement components when n484

approaches zero. Precisely, when n“ 0, the circumferential-radial mode has the circumferential485

displacement only and the radial-circumferential mode has the radial displacement only. Now, we486

examine the effects of the axial stretch, pressure and fibre angle on the frequencies for different487

mode numbers n (with the same material and geometric parameters in the previous section). The488

numerical results will be displayed in terms of the non-dimensional frequency ω˚ :“ ω2h{
a

c{ρ.489

We first investigate how the axial pre-stretch affects the frequencies of the plane-strain490

vibration modes of the pressurized artery. For fixed P “ 4.33 (kPa) and three different values491
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of the axial pre-stretch λz “ 1, 1.3, 1.6, the frequencies of the plane-strain vibration modes are492

shown in Table 2. Note that the circumferential-radial mode with n“ 1 is not shown in the table,493

as it represents a rigid body translation and thus has zero frequency. It is seen that the frequencies494

of all vibration modes increase with the axial pre-stretch and the mode number.

Table 2. The frequencies of the plane-strain vibration modes at different axial pre-stretches (a) Circumferential-radial

mode (b) Radial-circumferential mode (c) Axial mode

λz ω˚, n“ 2 ω˚, n“ 3

1 0.6710 1.2384

1.3 0.6842 1.2611

1.6 0.7098 1.2736

(a)

λz ω˚, n“ 0 ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

1 1.5528 2.3880 3.9649 5.6890

1.3 1.7255 2.6740 4.5001 6.4937

1.6 1.8198 2.8693 4.8812 7.0618

(b)

λz ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

1 0.6786 1.3572 2.0358

1.3 0.9445 1.8891 2.8336

1.6 1.2655 2.5311 3.7966

(c)

495

Next we turn to determine the influence of the pressure on the frequencies of the plane-strain496

vibration modes. For fixed λz “ 1 and three different values of the pressure P “ 0, 4.33, 7.33 (kPa),497

the frequencies of the plane-strain vibration modes are shown in Table 3. It is observed that the498

frequencies of all vibration modes increase with the pressure and the mode number.

Table 3. The frequencies of the plane vibration modes at different pressures (a) Circumferential-radial mode (b) Radial-

circumferential mode (c) Axial mode

P ω˚, n“ 2 ω˚, n“ 3

0 0.0778 0.1954

4.33 0.6710 1.2384

7.33 0.7338 1.4184

(a)

P ω˚, n“ 0 ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

0 0.4625 0.6617 1.0453 1.4599

4.33 1.5528 2.3880 3.9649 5.6890

7.33 2.1018 3.3324 5.6893 8.2332

(b)

P ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

0 0.2424 0.4848 0.7272

4.33 0.6786 1.3572 2.0358

7.33 0.8211 1.6423 2.4634

(c)

499

Finally, we check the effect of the fibre angle on the frequencies of the plane-strain vibration500

modes. For fixed λz “ 1 and P “ 4.33 (kPa) and three different values of the fibre angle φ“501

29˝, 45˝, 62˝, the frequencies of the plane-strain vibration modes are shown in Table 4. Among502

the three vibration modes, it is seen that the frequencies of the axial mode increases with the fibre503

angle, while the frequencies of the other two modes decrease with the fibre angle, as opposed to504

that of the axial mode. In addition, the frequencies of all vibration modes increase with the mode505

number.506

7. Concluding Remarks507

A consistent static finite-strain shell theory is available in literature (see [3]), which involves508

three shell constitutive relations (deducible from the 3D constitutive relation) and six boundary509
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Table 4. The frequencies of the plane-strain vibration modes at different fibre angles (a) Circumferential-radial mode (b)

Radial-circumferential mode (c) Axial mode

φ ω˚, n“ 2 ω˚, n“ 3

29˝ 0.6710 1.2384

45˝ 0.5928 1.0916

62˝ 0.1953 0.3950

(a)

φ ω˚, n“ 0 ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

29˝ 1.5528 2.3880 3.9649 5.6890

45˝ 1.4594 2.2101 3.6893 5.3189

62˝ 1.2775 1.8271 3.1127 4.5337

(b)

φ ω˚, n“ 1 ω˚, n“ 2 ω˚, n“ 3

29˝ 0.6786 1.3572 2.0358

45˝ 0.9096 1.8193 2.7289

62˝ 1.0643 2.1286 3.1929

(c)

conditions at each edge point. This work first presents a consistent dynamic finite-strain shell510

theory for incompressible hyperelastic materials in parallel. Novel aspect of our current study511

include: 1. The derivation of the refined shell equations through elaborate calculations which512

single out the bending effect with only two shell constitutive relations. 2. Much insights can513

be deduced from the refined shell equations. 3. It is not an easy task to get the proper number514

and proper form of physically meaningful boundary conditions in a shell theory. Here, by using515

the weak form of the shell equations and the variation of the 3D Lagrange functional, four shell516

boundary conditions at each edge point are derived. 4. The 2D shell virtual work principle is517

obtained. A major advantage of this new shell theory is that its derivation does not involve518

any ad hoc kinematic or scaling assumptions (as almost all the existing derived shell theories for519

incompressible hyperelastic materials do). Due to its consistency with the 3D formulation in an520

asymptotic sense, one does not need to worry about its reliability in predicting the behaviors of521

incompressible hyperelastic shells for various loading conditions. In contrast, for assumptions-522

based shell theories some defects are evident. For example, some such shell theories involve523

higher-order stress resultants, whose physical meanings are not clear, and one does not know524

how to impose the proper boundary conditions for them. Another example is the Donnell shell525

theory, for which the traction from the top and bottom surfaces is assumed to be imposed on526

the middle surface, and if the shear traction on the top and bottom surfaces has the equal527

magnitude and opposite sign, that shell theory does not work. Another simple example is that528

some shell theories use the assumption that the thickness does not change, which is obviously529

not valid when a large tensile load is applied at the edge (e.g., large uniform extension of a tube).530

Due to the simplicity of some assumptions-based shell theories, if, for particular applications,531

experiences/intuitions indicate that the assumptions involved do not cause a big error, by all532

means, they can be used. So, at least in theory, there are two differences between the present533

shell theory and those assumptions-based ones: prediction reliability (or confidence level) and534

generality. This shell theory is also tested against a benchmark problem: the extension and535

inflation of an arterial segment. Good agreement with the exact solution to a suitable asymptotic536

order gives a verification of this shell theory. As an application to a dynamic problem, the plane-537

strain vibrations in a pressurized artery is considered, and the results reveal the influences of the538

axial pre-stretch, pressure and fibre angle on the vibration frequencies, which may be useful for539

determining the artery parameters.540

Due to the space limit, we only present one application. In subsequent works, we intend to541

develop a general incremental shell theory by linearizing the present shell theory around a known542

base state. Then, we shall study wave propagation in an infinitely-long pressurized artery and543

vibrations in all mode types in a finitely-long pressurized artery with suitable edge conditions.544

Analytical and numerical studies based on this shell theory for determining some post-bifurcation545

behaviors of incompressible hyperelastic shells will be left for future investigations.546
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