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Abstract An asymmetric three-layered laminate with prescribed stresses along
the faces is considered. The outer layers are assumed to be much stiffer than the
inner one. The focus is on long-wave low-frequency anti-plane shear. Asymp-
totic analysis of the original dispersion relation reveals a low-frequency har-
monic supporting a slow quasi-static (or static at the limit) decay along with
near cut-off wave propagation. In spite of asymmetry of the problem, the lead-
ing order shortened polynomial dispersion relation factorises into two simpler
ones corresponding to the fundamental mode and the aformentioned harmonic.
The associated 1D equations of motion derived in the paper are also split into
two second-order operators in line with the factorisation of the shortened dis-
persion relation. Asymptotically justified boundary conditions are established
using the Saint-Venant’s principle modified by taking into account the high-
contrast properties of the laminate.

Keywords Sandwich · Asymptotic · Saint-Venant · Long wave · Low
frequency · Boundary Conditions

1 Introduction

Thin multi-layered structures have always been among main focuses in struc-
tural and solid mechanics. There is a substantial literature on the subject,
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including in particular advanced research monographs [1] and [2] as well as
most recent review articles [3–5], and insightful papers [6–8], to name a few.
Modern industrial applications provide additional motivation to studying lam-
inates, especially with high contrast geometric and physical properties of the
layers, see for example [9–12] for photovoltaic panels and laminated glass, [13]
for components of lightweight vehicles, [14] for sandwich panels in building con-
struction. Modelling of such structures is of clear practical importance, and
numerous efforts have already been made to establish various methodologies,
see e.g. [15–18] and references therein, along with the citations above.

The asymptotic methods proved to be most efficient for thin elastic plates
and shells, see e.g. [19–24], can also be applied to structures with high contrast
properties, see [25–30]. In particular, in [28] multi-parametric nature of the
problem for a symmetric sandwich plate with traction free faces was revealed
with the emphasis on the effect of extra problem parameters , i.e. the ratios of
thickness, densities and stiffness of the layers. In the cited paper the conditions
on these parameters are obtained ensuring the lowest shear cut-off frequency
to become asymptotically small, see also [31,32]. As a result, the range of
validity for the classical plate bending theory may become rather restricted
motivating derivation of two-mode approximations involving the first shear
harmonic along with the fundamental bending mode.

A more explicit insight into asymptotic phenomena, observed for the plane-
strain problem studied in [28], has been produced for its less technical anti-
plane counterpart in [29] dealing with the antisymmetric motion with respect
to the mid-surface. Such motion does not support a symmetric fundamental
mode, while wave propagation occurs above the smallest cut-off frequency with
its value tending to zero at the high contrast setups considered in the paper.
In addition to shortened polynomial dispersion relations, the associated 1D
equations of motion for long-wave low-frequency vibrations were also derived.

In this paper we generalise the approach developed in [28] and [29] for anti-
plane shear of a three-layered asymmetric laminate with traction free faces.
We restrict ourselves with the high contrast scenario in which outer layers
are stiff, while middle one is relatively soft. The considered scalar problem is
apparently the most explicit example in mechanics demonstrating a two-mode
long-wave low-frequency behaviour involving the first harmonic along with the
fundamental mode.

In Section 3 we study the exact dispersion relation presented in Section
2 at the long-wave low-frequency limit. It is shown that the leading order
shortened polynomial equation (a rather sophisticated asymptotic behaviour
of its coefficients is evaluated in Appendix 1) can be factorised into two ones
corresponding to the fundamental mode and harmonic. In this case, the latter
equation also covers a slow quasi-static (and static at zero frequency) decay
below the small cut-off frequency in question, when the associated harmonic
becomes evanescent. The factorisation of the asymptotic dispersion relation
seems to be counter-intuitive since the coupling of two studied modes could
be expected due to the asymmetry of the laminate. In fact, the assumed high
contrast in problem parameters makes such coupling asymptotically negligible.
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Next, in Section 4 we adapt a preliminary asymptotic insight coming from
analysis of the dispersion relation for deriving 1D equations of motion gen-
eralising the technique established in [29], see also [20,21]. As might be ex-
pected, the derived partial differential operator can also be factorised into two
second-order operators corresponding to the fundamental mode and the low-
est harmonic. As above, the operator governing the harmonic describes a slow
decaying behaviour below the cut-off. In Section 5, following the long-term
tradition in the theory for thin elastic structures, e.g. see [33], the obtained
governing equations are re-written in terms of stress resultants, stress couples
and also the average displacement and the angle of rotation.

In Section 6 we apply the Saint-Venant’s principle [34] combined with
asymptotic considerations for formulating of boundary conditions extending
the powerful procedure developed for homogeneous plates and shells, e.g. see
[19,35–37]. We start with the so-called decay conditions for a semi-infinite
three-layered strip in case of its static equilibrium subject to homogeneous
boundary conditions along the faces and prescribed anti-plane shear stresses
at the edge, see for example [35,38,39]. In contrast to the conventional ap-
proach, we require a ‘strong’ decay of the boundary layer, resulting in local-
isation of the induced stress field over the narrow vicinity of the edge, with
a typical length of the same order as the strip thickness. In this case slowly
decaying solutions, characteristic of high-contrast laminates, e.g. see [40], are
not counted as boundary layers.

Two decay conditions are formulated in this section. The first of them
is given by an exact formula which expresses the self-equilibrium of the pre-
scribed shear stress in agreement with the classical Saint-Venant’s principle.
The second decay condition is of asymptotic nature. Fortunately, it takes an
explicit form for the considered high contrast case. This condition is tested by
comparison with the calculations for a symmetric sandwich using the Laplace
transform technique, see Appendix 2.

The derived decay conditions immediately lead to the inhomogeneous bound-
ary conditions at the edge of a finite length laminate using straightforward
scheme. It consists in inserting the deviation between the given edge stress
and that calculated from 1D governing equations into the decay conditions,
see for greater detail [41]. It is also worth mentioning that two boundary
conditions in Section 6 do not imply coupling of the solutions to the related
second-order equations.

2 Statement of the problem

Consider a three-layered asymmetric laminate with the isotropic layers of
thickness h1, h2 and h3, see Fig. 1. The Cartesian coordinate system is chosen
in such a way that the axis x1 goes through the mid-plane of the core layer.
In what follows two outer layers have the same material parameters.

For the antiplane shear motion the only non-zero displacement is orthog-
onal to the x1x2 plane. Hence, the equations of motion for each layer can be
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written as
∂σq13
∂x1

+
∂σq23
∂x2

− ρq
∂2uq
∂t2

= 0, q = 1, 2, 3, (1)

with

σqi3 = µq
∂uq
∂xi

, i = 1, 2, (2)

where σqi3 are shear stresses, uq = uq(x1, x2, t) are out of plane displacements,
t is time, µq are Lamé parameters, and ρq are mass densities. As we have
already mentioned, µ3 = µ1 and ρ3 = ρ1.

h1

h2

h3

0 x1

x2

Fig. 1: A three-layered asymmetric plate

The continuity and boundary conditions at the upper and lower faces are
given by

u1 = u2, σ1
23 = σ2

23 at x2 =
h2
2
,

u2 = u3, σ2
23 = σ3

23 at x2 = −h2
2
,

(3)

and

σ1
23 = F1 at x2 =

h2
2

+ h1,

σ3
23 = F3 at x2 = −h2

2
− h3,

(4)

respectively. Here F1 and F3 are prescribed forces.
Let us seek the solution of the formulated problem (1)-(4) in the form of a

travelling wave ei(kx1−ωt), where k is the wave number and ω is frequency. For
a homogeneous problem F1 = F3 = 0, this results in the dispersion relation

µα1

(
tanh(h12α1) + tanh(h32α1)

)
+ µ2α2 tanh(α2)+

+ α1
2 tanh(h12α1) tanh(h32α1)

tanh(α2)

α2
= 0,

(5)
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where

α1 =

√
K2 − µ

ρ
Ω2, α2 =

√
K2 −Ω2,

and

K = kh2, Ω =
ωh2
c22

, µ =
µ2

µ1
, ρ =

ρ2
ρ1
, h12 =

h1
h2
, h32 =

h3
h2
,

with c22 =
√
µ2/ρ2.

Consider the contrast in the material parameters corresponding to stiff
outer layers and a relatively soft core one, defined as

µ� 1, ρ ∼ µ, h12 ∼ 1, h32 ∼ 1. (6)

This formula drastically simplifies further analysis due to the reduction of the
number of the problem parameters. To certain extent it might be adapted for
laminated glass [42] and also seemingly holds for sandwich panels with several
types of magnetorheological cores [2,43].

First, setting K = 0 in dispersion relation (5), we have for the cut-off
frequencies

√
µρ

(
tan

(
h12

√
µ

ρ
Ω

)
+ tan

(
h32

√
µ

ρ
Ω

))
+ µρ tan (Ω)

− tan

(
h12

√
µ

ρ
Ω

)
tan

(
h32

√
µ

ρ
Ω

)
tan (Ω) = 0.

(7)

For this type of contrast, we have two cut-off frequencies over the low-frequency
range of interest (Ω � 1), namely, Ω = 0 and the extra small one

Ω2 = Ω2
sh ≈

h12 + h32
h12h32

ρ ∼ µ� 1. (8)

Next, setting Ω = 0, we deduce from (5) the static equation for K

K2
(
µ
(

tanh(h12K) + tanh(h32K)
)

+ µ2 tanh(α2)+

+ tanh(h12K) tanh(h32K) tanh(K)
)

= 0.
(9)

We have an obvious rootK = 0, associated with rigid body motion and another
small one, given by

K2 = K2
bl ≈ −

h12 + h32
h12h32

µ, (10)

The latter is associated with slowly decaying boundary layers (|K2
bl| ∼ µ� 1)

specific of high contrast laminates only, e.g. see [40].
Fig. 2 demonstrates dispersion curves for two sets of material parameters.

In particular, Fig. 2 (a) is plotted for a laminate without contrast, while Fig.
2 (b) corresponds to a laminate with high contrast in material properties
of the layers. The values of Ωsh and Kbl are calculated using (8) and (10),
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respectively, for each set of parameters. It can easily be observed that for the
laminate with no contrast these values are of order 1, while for a high-contrast
laminate they become small.
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Fig. 2: Numerical solution of dispersion relation (5) for h12 = 1.0, h32 = 1.5
and (a) µ = 1.0 and ρ = 2.0, (b) µ = 0.01 and ρ = 0.02.

3 Asymptotic analysis of dispersion relation

Expand all trigonometric functions in (5) in asymptotic Taylor series over the
low-frequency long-wave range (Ω � 1 and K � 1) assuming that relations
(6) hold. We arrive at a polynomial dispersion relation, which can be written
as

γ1K
2 + γ2Ω

2 + γ3K
4 + γ4K

2Ω2 + γ5Ω
4 + γ6K

6

+ γ7K
4Ω2 + γ8K

2Ω4 + γ9Ω
6 + · · · = 0,

(11)

where the coefficients γi are given in Appendix 1.
From (68) we observe that γ1 ∼ γ2 ∼ µ, and γi ∼ 1, i = 3, . . . , 9. As a

result, the leading order two-mode approximation takes the form

γ01K
2 + γ02Ω

2 + γ03K
4 + γ04K

2Ω2 + γ05Ω
4 = 0.

It can be also factorised as(
K2ρ0 −Ω2

) {
h12h32

(
K2ρ0 −Ω2

)
+ µρ0(h12 + h32)

}
= 0. (12)

Fig. 3 demonstrates a good agreement between two exact dispersion curves
calculated from transcendental relation (5) and polynomial approximation (12)
for the chosen set of parameters. In this figure Ωsh ≈ 0.18 and |Kbl| ≈ 0.13,
according to asymptotic formulae (8) and (10), respectively.
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For the fundamental non-dispersive mode and the first harmonic we have

Ω2 = ρ0K
2 (13)

and
Ω2 =

ρ0
h12h32

{
µ(h12 + h32) + h12h32K

2
}
, (14)

respectively. It is worth mentioning that approximation (13) is valid at least
over the whole range K ∼ Ω � 1. We also note that if K = 0 in (14) then
we arrive at the expression for the cut-off frequency (8), which is of order√
µ. Alternatively, setting Ω = 0 in this equation, we get (10) for K. Hence,

asymptotic formula (14) is valid for both quasi-static (Ω � √µ) and near
cut-off (Ω ∼ K ∼ √µ) behaviour. Moreover, at

√
µ � K � 1 it coincides at

leading order with (13).
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Fig. 3: Numerical solution of dispersion relation (5)(solid line) together with
asymptotic expansions (12) (dashed line) for h12 = 1.0, h32 = 1.5, µ = 0.01
and ρ = 0.02.

4 Derivation of 1D equations of motion

Introduce local dimensionless thickness variables ξ2i, i = 1, 2, 3 in such a way
that they change from 0 to 1 across each layer

ξ21 =
1

h1

(
x2 −

h2
2

)
,

h2
2
< x2 <

h2
2

+ h1,

ξ22 =
1

h2

(
x2 +

h2
2

)
, − h2

2
< x2 <

h2
2
, (15)

ξ23 =
1

h3

(
x2 +

h2
2

+ h3

)
, − h3 −

h2
2
< x2 < −

h2
2
.
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From (13) Ω ∼ K. At the same time, (14) implies that Ω ∼ K ∼ √µ. In
the latter case both (13) and (14) are valid. Motivated by this observation, we
introduce the scaling

x1 =
h2√
µ
ξ1, t =

h2
c22
√
µ
τ. (16)

Then, the displacements and stresses can be normalised as

uq = h2v
q, σq13 = µq

√
µSq13, σq23 = µ2S

q
23, q = 1, 2, 3. (17)

The dimensionless form of the equations in the previous section for layers 1
and 3 (q = 1, 3) can be written as

hq2
∂Sq13
∂ξ1

+
∂Sq23
∂ξ2q

− hq2
ρ0

∂2vq

∂τ2
= 0, (18)

Sq13 =
∂vq

∂ξ1
, (19)

µhq2S
q
23 =

∂vq

∂ξ2q
, (20)

while for layer 2 we get

µ
∂S2

13

∂ξ1
+
∂S2

23

∂ξ22
− µ∂

2v2

∂τ2
= 0, (21)

S2
13 =

∂v2

∂ξ1
, (22)

S2
23 =

∂v2

∂ξ22
. (23)

The continuity and boundary conditions become, respectively

v1
∣∣
ξ21=0

= v2
∣∣
ξ22=1

, v2
∣∣
ξ22=0

= v3
∣∣
ξ23=1

,

S1
23

∣∣
ξ21=0

= S2
23

∣∣
ξ22=1

, S2
23

∣∣
ξ22=0

= S3
23

∣∣
ξ23=1

,
(24)

and

S1
23

∣∣
ξ21=1

=
F1

µ2
= f1(ξ1, τ), S3

23

∣∣
ξ23=0

=
F3

µ2
= f3(ξ1, τ). (25)

Now expand displacements and stresses into asymptotic series in small
parameter µ

vq = vq0 + µvq1 + . . . ,

Sqj3 = Sqj3,0 + µSqj3,1 + . . . , q = 1, 2, 3; j = 1, 2.
(26)
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At leading order we have for q = 1, 3

hq2
∂Sq13,0
∂ξ1

+
∂Sq23,0
∂ξ2q

− hq2
ρ0

∂2vq0
∂τ2

= 0, (27)

Sq13,0 =
∂vq0
∂ξ1

, (28)

∂vq0
∂ξ2q

= 0, (29)

and for q = 2

∂S2
23,0

∂ξ22
= 0, S2

13,0 =
∂v20
∂ξ1

, S2
23,0 =

∂v20
∂ξ22

. (30)

Continuity relations (24) together with boundary conditions (25) become

v10
∣∣
ξ21=0

= v20
∣∣
ξ22=1

, v20
∣∣
ξ22=0

= v30
∣∣
ξ23=1

, (31)

S1
23,0

∣∣
ξ21=0

= S2
23,0

∣∣
ξ22=1

, S2
23,0

∣∣
ξ22=0

= S3
23,0

∣∣
ξ23=1

, (32)

S1
23,0

∣∣
ξ21=1

= f1, S3
23,0

∣∣
ξ23=0

= f3. (33)

Next, we derive

v10 = w1(ξ1, τ), v30 = w3(ξ1, τ), v20 = w2ξ22 + w3,

where
w2 = w1 − w3,

resulting in equations

w2 = f1 + h12

(
∂2w1

∂ξ21
− 1

ρ0

∂2w1

∂τ2

)
,

w2 = f3 − h32
(
∂2w3

∂ξ21
− 1

ρ0

∂2w3

∂τ2

)
.

(34)

Using above, we can derive an equation for wq, q = 1, 3(
ρ0
∂2wq
∂ξ21

− ∂2wq
∂τ2

)
(ρ0(h12 + h32)wq−

h12h32

(
ρ0
∂2wq
∂ξ21

− ∂2wq
∂τ2

))
= 0,

(35)

which supports the same dispersion relation as (12) as might be expected.
In terms of stresses we can derive equations

S2
23,0 = f1 + h12

(
∂S1

13,0

∂ξ1
− 1

ρ0

∂2w1

∂τ2

)
,

S2
23,0 = f3 − h32

(
∂S3

13,0

∂ξ1
− 1

ρ0

∂2w3

∂τ2

)
,

(36)
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where

Sq13,0 =
∂wq
∂ξ1

, q = 1, 3, (37)

S2
23,0 = w2. (38)

Thus,

∂S2
13,0

∂ξ22
= S1

13,0 − S3
13,0. (39)

In what follows we also need the equations

∂

∂ξ1

(
h12S

1
13,0 + h32S

3
13,0

)
− 1

ρ0

∂2

∂τ2
(h12w1 + h32w3) = f3 − f1,

∂2S2
13,0

∂ξ1∂ξ22
−
(

1

h12
+

1

h32

)
S2
23,0 −

1

ρ0

∂2w2

∂τ2
= − f3

h32
− f1
h12

,

(40)

obtained as a linear combination of the equations in (36). Here, the first equa-
tion corresponds to the outer stiff layers, while the second one governs the
motion of the soft middle layer.

5 Equations of motion in stress resultants and stress couples

As usual for thin plates and shells [21], [33], we define, starting from (17) and
(26)

N =

∫ h2/2+h1

h2/2

σ1
13dx2 +

∫ −h2/2

−h2/2−h3

σ3
13dx2

≈ µ1
√
µ
(
h1S

1
13,0 + h3S

3
13,0

)
,

T =

∫ h2/2

−h2/2

σ2
23dx2 ≈ h2µ2S

2
23,0,

G =

∫ h2/2

−h2/2

σ2
13x2dx2 ≈ µ2

√
µh22

∫ 1

0

S2
13,0

(
ξ22 −

1

2

)
dξ22

=
µ2
√
µh22

12

∂S2
13,0

∂ξ22
,

(41)

where stress resultant N corresponds to stiff layers, while the stress resultant T
and stress couple G are associated with the soft layer. Introducing the average
displacement U and the angle of rotation φ as

U =
h1u1 + h3u3
h1 + h3

≈ h2(h1w1 + h3w3)

h1 + h3
, φ =

u1 − u3
h2

≈ w2, (42)
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we can re-write above equations (40) in terms of integral quantities defined in
(41) and (42)

∂N

∂x1
− ρ1(h1 + h3)

∂2U

∂t2
= F3 − F1,

12

h2µ

∂G

∂x1
−
(

1

h1
+

1

h3

)
T − ρ1h22

∂2φ

∂t2
= −h2

(
F3

h3
+
F1

h1

)
.

(43)

Forces T , N and G at leading order can be expressed in terms of U and φ as

T = h2µ2φ,

N = µ1 (h1 + h3)
∂U

∂x1
,

G =
µ2h

3
2

12

∂φ

∂x1
.

(44)

Finally, equations (43) can be presented as

µ1(h1 + h3)
∂2U

∂x21
− ρ1(h1 + h3)

∂2U

∂t2
= F3 − F1,

µ1h2
∂2φ

∂x21
− µ2

(
1

h1
+

1

h3

)
φ− ρ1h2

∂2φ

∂t2
= −

(
F3

h3
+
F1

h1

)
.

(45)

6 Derivation of boundary conditions

First consider static equilibrium of a semi-infinite three-layered strip (0 6
x1 < +∞, −h3−h2/2 6 x2 6 h2/2+h1) with the geometrical and mechanical
properties specified in Section 2. Let the strip faces are traction free, while its
left edge x1 = 0 is subject to prescribed stress p(x2)

σq13
∣∣
x1=0

= p(x2), q = 1, 2, 3. (46)

Our goal is to find the so-called decay conditions on the function p when

σq13
∣∣
x1=+∞ = 0, q = 1, 2, 3. (47)

Moreover, we require the related boundary layer to be localised over the narrow
vicinity of the edge of width h (h ∼ h1 ∼ h2 ∼ h3), which does not depend on
the small contrast parameter µ, defined above. Thus, we assume

∂

∂x1
∼ ∂

∂x2
∼ 1

h
. (48)

Let us start from the static counterpart of the equations (1), i.e.

∂σq13
∂x1

+
∂σq23
∂x2

= 0, q = 1, 2, 3, (49)
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subject to homogeneous boundary conditions along the faces (4), setting F1 =
F3 = 0 and continuity conditions (3), together with (46) and (47). Integrating
the equation of motion for the upper layer (q = 1) over the domain 0 6 x1 <
+∞ and h2 6 x2 6 h2 + h1 and applying the aforementioned continuity and
boundary conditions, we obtain∫ +∞

0

∫ h2/2+h1

h2/2

(
∂σ1

13

∂x1
+
∂σ1

23

∂x2

)
dx1dx2 =∫ h2/2+h1

h2/2

σ1
13

∣∣∣+∞
x1=0

dx2 +

∫ +∞

0

σ1
23

∣∣∣h2/2+h1

x2=h2/2
dx1 =

−
∫ h2/2+h1

h2/2

p(x2)dx2 −
∫ +∞

0

σ1
23

∣∣∣
x2=h2/2

dx1 = 0.

(50)

Hence, ∫ +∞

0

σ1
23

∣∣∣
x2=h2/2

dx1 = −
∫ h2/2+h1

h2/2

p(x2)dx2 (51)

Similarly, for the bottom layer (q = 3) we derive∫ +∞

0

∫ −h2/2

−h2/2−h3

(
∂σ3

13

∂x1
+
∂σ3

23

∂x2

)
dx1dx2 =

−
∫ −h2/2

−h2/2−h3

p(x2)dx2 +

∫ +∞

0

σ3
23

∣∣∣
x2=−h2/2

dx1 = 0,

(52)

therefore, ∫ +∞

0

σ3
23

∣∣∣
x2=−h2/2

dx1 =

∫ −h2/2

−h2/2−h3

p(x2)dx2. (53)

For the middle layer (q = 2) we first integrate the associated equation of
motion, resulting in∫ +∞

0

∫ h2/2

−h2/2

(
∂σ2

13

∂x1
+
∂σ2

23

∂x2

)
dx1dx2 =

−
∫ h2/2

−h2/2

p(x2)dx2 +

∫ +∞

0

σ2
23

∣∣∣
x2=h2/2

dx1 −
∫ +∞

0

σ2
23

∣∣∣
x2=−h2/2

dx1 = 0.

(54)

Now, we substitute (51) and (53) into the latter, taking into account the conti-
nuity conditions. As might be expected, the following exact result corresponds
to the conventional decay condition, expressing the classical formulation of the
Saint-Venant principle. It manifests self-equilibrium of the external load and
is given by ∫ h2/2+h1

−h2/2−h3

p(x2)dx2 = 0. (55)
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Next, we multiply the equation of motion for the middle layer by x2 and
integrate again over its area. We obtain∫ +∞

0

∫ h2/2

−h2/2

x2

(
∂σ2

13

∂x1
+
∂σ2

23

∂x2

)
dx1dx2 =∫ h2/2

−h2/2

x2σ
2
13

∣∣∣+∞
x1=0

dx2 +

∫ +∞

0

∫ h2/2

−h2/2

x2
∂σ2

23

∂x2
dx1dx2 =

−
∫ h2/2

−h2/2

x2p(x2)dx2 +

∫ +∞

0

(
x2σ

2
23

∣∣∣h2/2

x2=−h2/2
−
∫ h2/2

−h2/2

σ2
23dx2

)
dx1 =

−
∫ h2/2

−h2/2

x2p(x2)dx2 +
h2
2

∫ +∞

0

(
σ2
23

∣∣∣
x2=h2/2

+ σ2
23

∣∣∣
x2=−h2/2

)
dx1

−
∫ +∞

0

∫ h2/2

−h2/2

σ2
23dx2dx1 ≈

−
∫ h2/2

−h2/2

x2p(x2)dx2 +
h2
2

∫ +∞

0

(
σ2
23

∣∣∣
x2=h2/2

+ σ2
23

∣∣∣
x2=−h2/2

)
dx1 = 0,

(56)

where we have neglected the asymptotically small O(µ) term∫ +∞

0

∫ h2/2

−h2/2

σ2
23dx2dx1 = µ2

∫ +∞

0

u2

∣∣∣h2/2

x2=−h2/2
dx1 ∼ µ. (57)

This is due to the effect of contrast, resulting in a sort of squeezing of the softer
middle layer by the stiff outer layers. In fact, we may readily deduce that in

the last formula σ2
23 ∼ p while u2(x1, h2/2) = u1(x1, h2/2) ∼ hσ1

23

µ1
∼ hp

µ1
and

u2(x1,−h2/2) = u3(x1,−h2/2) ∼ hσ3
23

µ1
∼ hp

µ1
. These asymptotic estimations

follow from the aforementioned condition on the boundary layer given by (48).
Next, substituting (51) and (53) into (54) we obtain the second decay condition
on the prescribed edge load p∫ h2/2

−h2/2

x2p(x2)dx2 +
h2
2

∫ h2/2+h1

h2/2

p(x2)dx2 −
h2
2

∫ −h2/2

−h2/2−h3

p(x2)dx2 = 0,

(58)
which is, in contrast with the first ”exact” condition (55), is of an asymp-
totic nature and holds only for high contrast laminates. At h1 = h3 and
p(−x2) = −p(x2) the last formula reduces to decay conditions (88) derived in
the Appendix 2 using Laplace transform technique.

It can be easily shown, see e.g. [39], that obtained decay conditions (55)
and (58) are also valid at leading order for the low-frequency setup considered
in the paper (∂/∂t � h

√
ρk/µk, k = 1, 2). Let us then adopt the latter

for deriving the leading order boundary conditions at the edge x1 = 0 of the
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laminate governed by formulae (1)-(4), subject to an arbitrary low-frequency
loading P (x2, t), i.e.

σq13
∣∣
x1=0

= P (x2, t), q = 1, 2, 3. (59)

It is obvious that the function P (x2, t) is not assumed to satisfy two decay
conditions above in contrast to the function p(x2).

As usual, see [19,37,41] for greater detail, insert the discrepancy of the
prescribed edge load P and stresses σq13, resulting from the equations of motion
established in Section 5, into the decay conditions. Neglecting asymptotically
secondary stress σ2

13, see formula (17), we set in (55) and (58)

p = P − σ1
13,

h2
2
< x2 <

h2
2

+ h1, (60)

p = P, − h2
2
< x2 <

h2
2
, (61)

p = P − σ3
13, − h3 −

h2
2
< x2 < −

h2
2
, (62)

having∫ h2/2+h1

h2/2

(P − σ1
13)dx2 +

∫ h2/2

−h2/2

Pdx2 +

∫ −h2/2

−h3−h2/2

(P − σ3
13)dx2 = 0, (63)

and∫ h2/2

−h2/2

x2Pdx2 +
h2
2

∫ h2/2+h1

h2/2

(P − σ1
13)dx2 −

h2
2

∫ −h2/2

−h2/2−h3

(P − σ3
13)dx2 = 0,

(64)
Finally, expressing σ1

13 and σ3
13 in (63) throughN by formulae (41), first bound-

ary condition becomes

N =

∫ h2/2+h1

−h3−h2/2

Pdx2. (65)

Similarly, expressing second condition (64) through approximate formulae for
N and G together with equation (39), we obtain∫ h2/2

−h2/2

x2Pdx2 +
h2
2

∫ h2/2+h1

h2/2

Pdx2 −
h2
2

∫ −h2/2

−h2/2−h3

Pdx2

− h2
2

(
h1 − h3
h1 + h3

N +
24h1h3

µh22(h1 + h3)
G

)
= 0. (66)

Finally, using (65) we arrive at the second boundary condition

G =
µh22(h1 + h3)

24h1h3

(
2

h2

∫ h2/2

−h2/2

x2Pdx2 +

∫ h2/2+h1

h2/2

Pdx2

−
∫ −h2/2

−h2/2−h3

Pdx2 −
h1 − h3
h1 + h3

∫ h2/2+h1

−h2/2−h3

Pdx2

)
.

(67)
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Derived boundary conditions (65) and (67) correspond to the first and second
equations in (43), respectively. They can be also expressed through the average
displacement U and the angle of rotation φ using (44).

7 Concluding remarks

The consideration in the paper is seemingly the optimal toy scalar problem
for elucidating the effect of high contrast. In spite asymmetry of the laminate,
the leading order shortened equations governing the fundamental mode and
the low-frequency harmonic, (13) and (14), are not coupled. The findings in
the paper facilitate asymptotic analysis of various more sophisticated formu-
lations for strongly inhomogeneous thin structures, including vector problems
for multi-layered laminates with a variety of contrast types.

It is demonstrated that the harmonic of interest describes both a static
(and quasi-static) slow decay and near cut-off long wave propagation, see (14).
In this case the associated ‘weak’ boundary layer, observed earlier in statics
of high-contrast laminates, e.g. see [40], can be naturally embedded into the
low-dimensional theory for the interior domain, see the second 1D equation in
(43).

For the first time, asymptotically justified boundary conditions (65) and
(67) are established using the Saint-Venant principle adapted for a high-
contrast laminate. It is remarkable that the extra approximate decay condition
(58) isn’t directly related to the overall equilibrium as the conventional ‘exact’
decay condition (55).
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Appendix 1

Coefficients γi in (11) are given by

γ1 = µ (h12 + h32 + µ) ,

γ2 = −µ
2

ρ
(h12 + h32 + ρ) ,

γ3 = h12h32 −
µ

3

(
h312 + h332 + µ

)
,

γ4 =
2µ

3ρ

(
h312µ+ h332µ− 3h12h32 + µρ

)
,

γ5 = − µ2

3ρ2
(
h312µ+ h332µ− 3h12h32 + ρ2

)
,

γ6 =
2µ

15

(
h512 + h532 + µ

)
− h12h32

3

(
h212 + h232 + 1

)
,

γ7 = − 1

15ρ

(
6µ2

(
h512 + h532 + ρ

)
− 5h12h32

(
3h212µ+ 3h232µ+ 2µ+ ρ

))
,

γ8 =
µ

15ρ2
(
6µ
(
h512µ+ h532µ+ ρ2

)
− 5h12h32

(
3h212µ+ 3h232µ+ µ+ 2ρ

))
,

γ9 = − µ2

15ρ3
(
2
(
h512µ

2 + h532µ
2 + ρ3

)
− 5h12h32

(
h212µ+ h232µ+ ρ

))
.

At leading order coefficients γi are given below

γ01 = (h12 + h32)µ,

γ02 = −h12 + h32
ρ0

µ,

γ03 = h12h32,

γ04 = −2h12h32
ρ0

,

γ05 =
h12h32
ρ20

,

γ06 = −h12h32
3

(
h212 + h232 + 1

)
,

γ07 =
h12h32

3ρ0

(
3h212 + 3h232 + ρ0 + 2

)
,

γ08 = −h12h32
3ρ20

(
3h212 + 3h232 + 2ρ0 + 1

)
,

γ09 =
h12h32

3ρ30

(
h212 + h232 + ρ0

)
,

(68)

where ρ0 = ρ/µ .
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Appendix 2

Let us find decay conditions for a symmetric three-layered plate (h1 = h3) with
traction free faces using Laplace transform technique. We restrict ourselves
with the motion for which the displacements of the laminate are odd functions
in x2, i.e. u2(x1,−x2) = −u2(x1, x2), u3(x1,−x2) = u1(x1, x2). Let functions
Uq(s, x2) denote Laplace transform of displacements uq, q = 1, 2, 3, i.e.

Uq(s, x2) =

∫ ∞
0

uq(x1, x2)e−sx1dx1, (69)

where s is Laplace transform parameter. Transforming equilibrium equations
(49), we get

∂2Uq
∂x22

+ s2Uq = Rq, (70)

where Rq(s, x2) are defined through

Rq(s, x2) = suq
∣∣
x1=0

+
∂uq
∂x1

∣∣∣∣
x1=0

= suq
∣∣
x1=0

+
p(x2)

µq
. (71)

Solving equations (70) for odd displacements we have

U1 = A1(s) sin sx2 +A2(s) cos sx2 +
1

s

∫ x2

0

R1(s, x′2) sin s(x2 − x′2)dx′2, (72)

and

U2 = B1(s) sin sx2 +
1

s

∫ x2

0

R2(s, x′2) sin s(x2 − x′2)dx′2, (73)

where unknown functions A1, A2 and B1 are determined from the transformed
boundary and continuity conditions and given by

A1(s) = D−1(s)
{
− C1

(
h1 +

h2
2

)(
µ cos2

sh2
2

+ sin2 sh2
2

)
+

(
S2

(
h2
2

)
− S1

(
h2
2

))
µ sin

(
sh1 +

sh2
2

)
cos

sh2
2

+

(
C1

(
h2
2

)
− µC2

(
h2
2

))
sin

(
sh1 +

sh2
2

)
sin

sh2
2

}
,

(74)

A2(s) = D−1(s)
{
C1

(
h1 +

h2
2

)
(µ− 1) sin

sh2
2

cos
sh2
2

+

(
S2

(
h2
2

)
− S1

(
h2
2

))
µ cos

(
sh1 +

sh2
2

)
cos

sh2
2

+

(
C1

(
h2
2

)
− µC2

(
h2
2

))
cos

(
sh1 +

sh2
2

)
sin

sh2
2

}
,

(75)
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and

B1(s) = D−1(s)
{
− C1

(
h1 +

h2
2

)
+

(
S2

(
h2
2

)
− S1

(
h2
2

))
sin sh1

+

(
C1

(
h2
2

)
− µC2

(
h2
2

))
cos sh1

}
,

(76)

where

D(s) = s

(
µ cos sh1 cos

sh2
2
− sin sh1 sin

sh2
2

)
, (77)

and

Cq(s, x2) =

∫ x2

0

Rq(x
′
2) cos s(x2 − x′2)dx′2, (78)

Sq(s, x2) =

∫ x2

0

Rq(x
′
2) sin s(x2 − x′2)dx′2, q = 1, 2. (79)

The sought for displacements are expressed through Mellin integrals as

uq(x1, x2) =
1

2πi

∫ δ+i∞

δ−i∞
U(s, x2)esx1ds (80)

for δ > 0. These integrals can be found using the residue theory

uq(x1, x2) =

∞∑
n=0

Ressn{Uq(s, x2)esx1}, (81)

where only small poles sn, corresponding to unwanted slow decay are of the
concern, see also [38,39].

At µ� 1 and s� 1 the leading order asymptotic behaviour of denomina-
tor (77) is given by

D(s) = −2s(h1h2s
2 − µ), (82)

resulting in two small non-zero roots

s± = ±
√

2µ

h1h2
. (83)

The associated residues are

Ress± {U1(s, x2)esx1} = Ress±
{
D−1(s) (A1(s) sin sx2 +A2(s) cos sx2) esx1

}
,

Ress± {U2(s, x2)esx1} = Ress±
{
D−1(s)B1(s) sin sx2e

sx1
}
,

(84)

where D(s) is defined in (82).
Expanding now the numerators in these relations at µ � 1 and s ∼ √µ

and using the formula

R2 = su2
∣∣
x1=0

+
p(x2)

µµ1
, (85)
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we obtain at leading order

Ress± = ±
√

2h2

4µ1

√
h1
√
µ

(∫ h2/2+h1

h2/2

p(x2)dx2 +
2

h2

∫ h2/2

0

p(x2)x2dx2

)
, (86)

and

Ress± = ±
√

2x2

2µ1

√
h1h2

√
µ

(∫ h2/2+h1

h2/2

p(x2)dx2 +
2

h2

∫ h2/2

0

p(x2)x2dx2

)
,

(87)
for u1 and u2, respectively.

These residues diminish at∫ h2/2+h1

h2/2

p(x2)dx2 +
2

h2

∫ h2/2

0

p(x2)x2dx2 = 0, (88)

ensuring strong decay of the boundary layer.
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