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Abstract. Given a finite group G, we study certain regular subgroups of the

group of permutations of G, which occur in the classification theories of two

types of algebraic objects: skew left braces with multiplicative group isomor-

phic to G and Hopf-Galois structures admitted by a Galois extension of fields

with Galois group isomorphic to G. We study the questions of when two such

subgroups yield isomorphic skew left braces or Hopf-Galois structures involv-

ing isomorphic Hopf algebras. In particular, we show that in some cases the

isomorphism class of the Hopf algebra giving a Hopf-Galois structure is deter-

mined by the corresponding skew left brace. We investigate these questions

in the context of a variety of existing constructions in the literature. As an

application of our results we classify the isomorphically distinct Hopf algebras

that give Hopf-Galois structures on a Galois extension of degree pq for p > q

prime numbers.

1. Introduction

Let G be a finite group and let Perm(G) denote the group of permutations of

G. A subgroup N ≤ Perm(G) is said to be regular if |N | = |G|, the action of N on

G is transitive, and the stabilizer in N of every σ ∈ G is trivial (any two of these

conditions guarantees the third). One example of a regular subgroup of Perm(G) is

the image of G under the left regular representation λ : G ↪→ Perm(G). This map

also yields an action of G on Perm(G) by σπ = λ(σ)πλ(σ)−1, and this paper is

concerned with regular subgroups N ≤ Perm(G) that are stable under this action.

These subgroups are of interest because they occur in the classification theories of

two types algebraic objects.

On one hand, there is a correspondence (although not a bijection) between G-

stable regular subgroups of Perm(G) and skew left braces with multiplicative group

isomorphic to G. Each of these yields a set theoretic solution to the Yang-Baxter

equation on the underlying set G, each of which extends naturally to a solution on

the vector space K[G] (for a given field K). Two regular G-stable subgroups can

correspond to isomorphic skew left braces, and so we obtain a partition of the set

of regular G-stable subgroups of Perm(G). In terms of the Yang-Baxter equation,

the solutions arising from isomorphic braces are equivalent up to a change of basis

of K[G].

On the other hand, by a theorem of Greither and Pareigis G-stable regular sub-

groups of Perm(G) correspond bijectively with Hopf-Galois structures admitted by
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a Galois extension of fields L/K with Galois group isomorphic to G, each consist-

ing of a K-Hopf algebra and a certain K-linear action of H on L. Applications of

Hopf-Galois structures include the formulation of variants of the Galois correspon-

dence and the study of integral module structure in extensions of local or global

fields. Two distinct Hopf-Galois structures can involve isomorphic Hopf algebras

(alternatively, we might view this as two distinct actions of a single Hopf algebra

on L); it is possible to detect when this occurs in purely group theoretic terms, and

so we obtain another partition of the set of regular G-stable subgroups of Perm(G).

In this paper we address the natural question of comparing the two notions of

isomorphism discussed above via the corresponding partitions of the set of regular

G-stable subgroups of Perm(G). In Section 2 we discuss the connection between

skew left braces and Hopf-Galois structures in more detail, and in Section 3 we recall

and reformulate existing criteria for two regular G-stable subgroup of Perm(G) to

correspond to isomorphic skew left braces or to Hopf-Galois structures involving

isomorphic Hopf algebras. We find that neither of these notions implies the other

in general, but in Sections 4 - 7 we show that they have rich interactions with

various existing constructions, including regular G-stable subgroups arising from

abelian maps, as studied by Childs in [7] and generalized by the first named author

in [16], and the notions of opposite Hopf-Galois structures and skew left braces, as

studied by the authors in [20]. Finally, in Section 8 we undertake a detailed study

of the case in which |G| = pq with p > q prime numbers. The classifications of

G-stable regular subgroups, skew left braces, and Hopf-Galois structures are known

in this case; by applying our techniques we identify the isomorphically distinct Hopf

algebras that occur.

2. Hopf-Galois structures and Skew left braces

In this section we describe the connections between Hopf-Galois structures, G-

stable regular subgroups of Perm(G), and skew left braces. For more detailed

summaries we refer to the reader to [20, Section 2] and [24, Appendix A]

2.1. Hopf-Galois structures. A Hopf-Galois structure on a finite extension of

fields L/K consists of a cocommutative K-Hopf algebra H and an action of H on L

making L into an H-module algebra and such that the K-linear map j : L⊗H →
EndK(L) given by j(x⊗ h)(y) = x(h · y) for all h ∈ H and all x, y ∈ L is bijective

(see [6, Definition 2.7]). We say that two Hopf-Galois structures (H, ·) and (H ′, ·′)
on L/K are isomorphic if there is an isomorphism of Hopf algebras θ : H → H ′

such that θ(h) · x = h · x for all h ∈ H and all x ∈ L.

Greither and Pareigis [12] classify the Hopf-Galois structures admitted by a fi-

nite separable extension of fields in group theoretic terms. Specializing to the case

in which L/K is a Galois extension with Galois group G, their theorem states

that there is a bijection between (isomorphism classes of) Hopf-Galois structures

admitted by L/K and regular G-stable subgroups of Perm(G). Given such a sub-

group N , the Hopf algebra giving the Hopf-Galois structure corresponding to N

is HN := L[N ]G, where G acts on L as Galois automorphisms and on N via
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ση = λ(σ)ηλ(σ)−1 (the assumption that N is G-stable ensures that this is indeed

an action of G on N). The theorem of Greither and Pareigis also specifies the

action of HN on L, but we shall not need this information in what follows.

Example 2.1. The image of the right regular representation ρ : G → Perm(G) is

a regular subgroup of Perm(G), and is G-stable since we have σρ(τ) = ρ(τ) for all

σ, τ ∈ G. The corresponding Hopf-Galois structure is given by the Hopf algebra

K[G], along with its natural action on L. We call this the classical Hopf-Galois

structure on L/K.

Example 2.2. The image of the left regular representation λ : G→ Perm(G) is a

regular subgroup of Perm(G), and is G-stable since we have σλ(τ) = λ(στσ−1) for

all σ, τ ∈ G. If G is nonabelian then λ(G) 6= ρ(G), and so λ(G) corresponds to a

different Hopf-Galois structure on L/K, with Hopf algebra L[λ(G)]G. This example

is considered in [12, Theorem 5.2 et seq.], and is sometimes called the canonical

nonclassical Hopf-Galois structure on L/K.

In each of these examples the regular subgroup N is isomorphic to G. However,

this need not be the case:

Example 2.3. Let L/K be a Galois extension with Galois group

G = 〈σ, τ | σ3 = τ2 = 1, τστ−1 = σ−1〉 ∼= D3.

For c = 0, 1, 2 let Nc = 〈λ(σ), ρ(σcτ)〉. We find ([18, Lemma 1] or a routine

verification) that each Nc is a distinct cyclic regular subgroup of Perm(G), and is

also G-stable: both generators of G act trivially on ρ(σcτ), and we have σλ(σ) =

λ(σ) and τλ(σ) = λ(σ−1). Thus the dihedral extension L/K admits three Hopf-

Galois structures for which the corresponding regularG-stable subgroup of Perm(G)

is cyclic.

In Example 2.3 we have described the cyclic groups Nc using two generators,

following [4] and [1]; we will continue to adopt this slightly unconventional notation

in order to relate our results to the results of those papers.

If N is a regular G-stable subgroup of Perm(G) then we refer to the isomorphism

class of N as the type of the corresponding Hopf-Galois structure. For example:

the previous example provides us with Hopf-Galois structures of cyclic type on a

dihedral extension of degree 6.

In [3] Byott shows that the question of determining all regular G-stable sub-

groups of Perm(G) that are isomorphic to a given group N is closely related to

the question of determining all regular subgroups of the holomorph Hol(N) of N ,

where Hol(N) = N o Aut(N), that are isomorphic to G; the latter is often an

easier problem since Hol(N) is a smaller group that Perm(G). Various authors

have enumerated and described the Hopf-Galois structure admitted by a Galois

extension with prescribed Galois group G; see for example [21], [4], [15]. Others

have developed more general methods for creating or describing families of regular

G-stable subgroups of Perm(G): see for example [7], [10], [20]. We will describe

some of these constructions in more detail in subsequent sections.
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2.2. Skew left braces. A skew left brace is a triple B = (B, ·, ◦) such that (B, ·)
and (B, ◦) are finite groups whose operations satisfy the brace relation

x ◦ (y · z) = (x ◦ y) · x−1 · (x ◦ z) for all x, y, z ∈ B, (2.1)

where x−1 denotes the inverse of x in the group (B, ·).
A consequence of the brace relation (2.1) is that (B, ·) and (B, ◦) share the same

identity element, but in general the inverse of an element x in the group (B, ◦)
(denoted x) is not equal to x−1.

We call the groups (B, ·) the dot group, and (B, ◦) the circle group of the skew

left brace B (elsewhere in the literature these are sometimes called the additive

group and multiplicative group of B). To ease notation, we write x · y = xy where

there is no danger of confusion. A homomorphism of skew left braces is a map that

respects both of the binary operations, and an isomorphism of skew left braces is a

bijective homomorphism. For brevity, we shall henceforth refer to a skew left brace

simply as a brace, but we note that in the historical development of the subject this

term originally applied to skew left braces with abelian dot group.

Example 2.4. Let (B, ·) be a finite group and let x ◦ y = x · y for all x, y ∈ B.

Then B = (B, ·, ◦) is a brace, called the trivial brace for (B, ·).

Example 2.5. Let (B, ·) be a finite group and let x ◦ y = y · x for all x, y ∈ B.

Then B = (B, ·, ◦) is a brace, called the almost trivial brace for (B, ·).

In each of these examples the dot and circle groups of B are isomorphic to each

other. However, this need not be the case:

Example 2.6. Let (B, ·) be a cyclic group of order 6, presented using two gener-

ators:

(B, ·) = 〈x, y | x3 = y2 = 1, yxy−1 = x〉,

and let

xiyj ◦ xky` = xi+(−1)jkyk+`.

It is routine to verify that (B, ◦) is a group in which x has order 3, y has order 2,

and y ◦ x ◦ y = x, whence (B, ◦) ∼= D3. Moreover, B = (B, ·, ◦) is a brace.

In [13, Proposition 1.11], Guarnieri and Vendramin show that, given groups N,G

of the same order, braces B = (B, ·, ◦) with (B, ·) ∼= N and (B, ◦) ∼= G correspond

with bijective 1-cocycles G→ N . In [24, Appendix A] this correspondence is refor-

mulated in terms of regular subgroups of Hol(N) that are isomorphic to G. Since

our focus is on G-stable regular subgroups of Perm(G) rather than regular sub-

groups of Hol(N), we reformulate the correspondence in this framework, as follows:

Firstly, let B = (B, ·, ◦) be a brace with (B, ◦) ∼= G. For each x ∈ B, the map

ηx : B → B defined by ηx(y) = x·y is a permutation of B, and since (B, ·) is a group

the set NB = {ηx | x ∈ B} is a regular subgroup of Perm(B). By using the brace

relation (2.1), it can be shown that NB is a (B, ◦)-stable subgroup of Perm(B).

Identifying (B, ◦) with G, we obtain a regular G-stable subgroup of Perm(G).
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Conversely, let N be a regular G-stable subgroup of Perm(G). The regularity

of N implies that the map a : N → G defined by a(η) = η[1G] for all η ∈ N is a

bijection. Define a new binary operation on N by

η ◦ π = a−1(a(η)a(π)) for all η, π ∈ N,

where the multiplication inside the brackets takes place in G. Then (N, ◦) is a

group isomorphic to G and, since N is a G-stable subgroup of Perm(G), the brace

relation (2.1) is satisfied. Therefore BN = (N, ·, ◦) is a brace with (N, ◦) ∼= G. In

[11] this construction is referred to as transport of structure.

Alternatively, we may define a new binary operation on G by

σ · τ = a(a−1(σ)a−1(τ)) for all σ, τ ∈ G,

where the multiplication inside the brackets takes place in N . Then (G, ·) is a group

isomorphic to N , and (G, ·, ◦) is a brace, isomorphic to the brace BN constructed

above via a−1.

In Section 3 we will discuss precise criteria for twoG-stable subgroups of Perm(G)

to yield isomorphic braces.

Example 2.7. We have seen in Example 2.1 that the image of the right regular

representation ρ : G → Perm(G) is a regular G-stable subgroup of Perm(G). The

corresponding bijection a : ρ(G)→ G is given by a(ρ(σ)) = σ−1, and the resulting

circle operation is given by

ρ(σ) ◦ ρ(τ) =
(
ρ(σ)−1ρ(τ)−1

)−1
= ρ(τ)ρ(σ).

Thus the subgroup ρ(G) corresponds to the almost trivial brace for G (see Example

2.5).

Example 2.8. We have seen in Example 2.2 that the image of the left regular

representation ρ : G → Perm(G) is a regular G-stable subgroup of Perm(G). The

corresponding bijection a : λ(G) → G is given by a(λ(σ)) = σ, and the resulting

circle operation is simply λ(σ) ◦ λ(τ) = λ(στ). Therefore the corresponding brace

is the trivial brace for G (see Example 2.4).

Example 2.9. Let G ∼= D3 as in Example 2.3, and consider the regular G-stable

subgroup N0 ≤ Perm(G) constructed in that example. Let η = λ(σ) and π = ρ(τ).

The corresponding bijection a : N0 → G is given by a(ηiπj) = σiτ−j = σiτ j (since

τ has order 2). The resulting circle operation is given by

ηiπj ◦ ηkπ` = a−1(σiτ jσkτ `)

= a−1(σiσk(−1)
j

τ jτ `)

= ηi+k(−1)
j

πj+`.

Therefore the corresponding brace is the brace constructed in Example 2.6. By

similar calculations it can be shown that the subgroups N1, N2 of Example 2.3 also

correspond to this brace. We shall see a more illuminating explanation of this fact

in Section 4.
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3. Brace equivalence and Hopf algebra isomorphisms

In our discussion of the relationship between G-stable regular subgroups N of

Perm(G) and braces B = (B, ·, ◦) with (B, ·) ∼= N and (B, ◦) ∼= G (Subsection 2.2)

we noted that multiple such subgroups can correspond to the same brace. This

is made precise in [13, Proposition 4.3] and [24, Appendix A] in terms of regular

subgroups of Hol(N) that are isomorphic to G. We prefer to formulate this concept

in terms of regular G-stable subgroups of Perm(G), since we feel this framework is

more suitable for comparing it with the notion of Hopf algebra isomorphism men-

tioned in Section 1, and discussed in detail later in this section. Our approach

is similar to [15, Proposition 2.1], but we give a self-contained proof for the con-

venience of the reader. We fix an identification of G with (B, ◦); this identifies

Perm(G) with Perm(B), Aut(G) with Aut(B, ◦), and regular G-stable subgroups

of Perm(G) with regular (B, ◦)-stable subgroups of Perm(B).

Proposition 3.1. Let B = (B, ·, ◦) be a brace and let NB = {ηx | x ∈ B} be the

corresponding regular (B, ◦)-stable subgroup of Perm(B). Then:

(1) a regular (B, ◦)-stable subgroup M of Perm(B) yields a brace isomorphic to

B if and only if M = ϕ−1Nϕ for some ϕ ∈ Aut(B, ◦);

(2) we have ϕ−1Nϕ = N if and only if ϕ ∈ AutBr(B), the group of brace

automorphisms of B.

Proof. (1) First let ϕ ∈ Aut(B, ◦), and define a new binary operation on B by

x ·ϕ y = ϕ−1(ϕ(x) · ϕ(y)) for all x, y ∈ B. (3.1)

Then Bϕ = (B, ·ϕ, ◦) is a brace, and ϕ : B→ Bϕ is a brace isomorphism.

The regular (B, ◦)-stable regular subgroup of Perm(B) corresponding to

Bϕ is Nϕ = {ηϕx | x ∈ B}, where ηϕx (y) = x ·ϕ y for all x, y ∈ B. Now we

have

ηϕx [y] = x ·ϕ y
= ϕ−1(ϕ(x) · ϕ(y))

= ϕ−1ηϕ(x)[ϕ(y)]

=
(
ϕ−1ηϕ(x)ϕ

)
[y],

and so Nϕ = ϕ−1Nϕ.

Conversely, suppose thatM is a regular (B, ◦)-stable subgroup of Perm(B),

let C = (B, ?, ◦) be the brace corresponding to M , and suppose that

ϕ : C→ B is a brace isomorphism. Then ϕ ∈ Aut(B, ◦) and

ϕ(x ? y) = ϕ(x) · ϕ(y),

so

x ? y = ϕ−1 (ϕ(x) · ϕ(y))

= x ·ϕ y,

where the binary operation ·ϕ is defined as in Equation (3.1). Therefore

M = ϕ−1Nϕ for some ϕ ∈ Aut(B, ◦).
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(2) First suppose that ϕ ∈ AutBr(B). Then we have

x ·ϕ y = ϕ−1(ϕ(x) · ϕ(y)) = x · y for all x, y ∈ B,

so ηϕx = ηx for all x ∈ B, and so Nϕ = N .

Conversely, suppose that Nϕ = N . Then for all x ∈ B there exists

x′ ∈ B such that ηϕx = ηx′ . That is:

x ·ϕ y = x′ · y for all y ∈ B.

Setting y = 1B we obtain x = x′ immediately. Therefore

ϕ(x) · ϕ(y) = ϕ(x · y) for all x, y ∈ B,

and so ϕ ∈ AutBr(B).

�

As a corollary, we recover [15, Corollary 2.4]:

Corollary 3.2. A given brace B = (B, ·, ◦) yields

|Aut(B, ◦)|
|AutBr(B)|

distinct regular (B, ◦)-stable subgroups of Perm(B).

We now return to our original formulation, and consider regular G-stable sub-

groups of Perm(G).

Definition 3.3. We say that two regular, G-stable subgroups N,M of Perm(G)

are brace equivalent if they yield isomorphic braces (i.e., braces between which there

is a bijection respecting the dot and circle operations).

Brace equivalence is an equivalence relation, so we have the notion of a brace class

of regular, G-stable subgroups, and the brace classes partition the set of regular

G-stable subgroups of Perm(G). By Proposition 3.1, the brace class of a regular

G-stable subgroup N of Perm(G) is {ϕ−1Nϕ | ϕ ∈ Aut(G)}, and this brace class

has size |Aut(G)|/|AutBr(B)|, where B is the brace corresponding to N .

Example 3.4. Let G be a finite group, and let N = λ(G) as in Example 2.4,

thereby giving rise to the trivial brace. Any automorphism of (λ(G), ◦) will also

preserve ·, hence the brace class containing λ(G) is precisely {λ(G)}.

Example 3.5. Let G be a finite group, and let N = ρ(G) as in Example 2.5,

thereby giving rise to the almost trivial brace. Any automorphism of (ρ(G), ◦) will

also preserve ·, hence the brace class containing ρ(G) is precisely {ρ(G)}.

Now we turn to another natural partition of the set of G-stable regular subgroups

of Perm(G). Recall from Subsection 2.1 that each regular G-stable subgroup N of

Perm(G) corresponds to a Hopf-Galois structure on a Galois extension of fields L/K

with Galois group G. It is possible for two distinct Hopf-Galois structures to involve

isomorphic Hopf algebras (note that this is weaker than the notion of isomorphism of

Hopf-Galois structures discussed in Subsection 2.1). This phenomenon has recently

been studied in papers such as [17], [18], and [25], and can be formulated in purely
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group theoretic terms: [9, Section 2.3] or [18, Theorem 2.2] shows that if N,M are

regular G-stable subgroups of Perm(G) then HN
∼= HM as Hopf algebras if and only

if there is an isomorphism θ : N → M such that σθ(η) = θ(ση) for all η ∈ N and

σ ∈ G. In this case we say that N,M are G-isomorphic. Clearly G-isomorphism is

an equivalence relation on the set of regular G-stable subgroups of Perm(G), and

so we obtain a second partition of this set.

It is also possible to detect Hopf algebra isomorphisms via regular subgroups

of Hol(N) that are isomorphic to G: see [18, Theorem 2.11]. However, we feel

that this concept is more transparent in the Perm(G) setting, and will continue to

employ this point of view.

It is natural to ask whether there is a connection between brace equivalence

and G-isomorphism of regular G-stable subgroups. Our first observations are that

neither implies the other in general:

Example 3.6. (Brace equivalence does not imply G-isomorphism) Let

L/K be a Galois extension with Galois group

G = 〈σ, τ | σ4 = 1, τ2 = σ2, τστ−1 = σ−1〉 ∼= Q8.

It is known [25, Lemma 2.5] that L/K admits 6 Hopf-Galois structures of dihedral

type. The corresponding regular subgroups of Perm(G) are

Ds,λ = 〈λ(s), λ(t)ρ(s)〉 and Ds,ρ = 〈ρ(s), λ(s)ρ(t)〉,

where in each case s, t are distinct elements of the set {σ, τ, στ}, and the choice of

t does not affect the definition of the subgroups. It is also known [25, Lemma 3.5]

that the subgroups described above are pairwise non G-isomorphic.

We can use Proposition 3.1 to show that the subgroups Ds,ρ are all brace equivalent.

For ϕ ∈ Aut(G) and g ∈ G we have

ϕ−1ρ(σ)ϕ[g] = ϕ−1[ϕ(g)σ−1]

= gϕ(σ)−1

= ρ(ϕ(σ))[g],

so ϕ−1ρ(σ)ϕ = ρ(ϕ(s)). Similarly, ϕ−1λ(σ)ρ(τ)ϕ = λ(ϕ(σ))ρ(ϕ(τ)), and so ϕ−1Dσ,ρϕ =

Dϕ(σ),ρ. Since there exist automorphisms of G that send σ to each of σ, τ, στ ,

Proposition 3.1 implies that the subgroups Ds,ρ are all brace equivalent.

This example also shows that the subgroups Ds,ρ exhaust their brace class.

Similarly, the subgroups Ds,λ are brace equivalent, and form a second brace class.

We could prove this by the methods employed above, but we shall see a more

illuminating proof in Section 7.

Example 3.7. (G-isomorphism does not imply brace equivalence) Let L/K

be a Galois extension with Galois group

G = 〈σ, τ | σ4 = τ2 = 1, τστ−1 = σ−1〉 ∼= D4.

Let η = λ(σ)ρ(τ) and π = λ(τ), and let N = 〈η, π〉 ⊆ Perm(G). Using the fact

that the elements of λ(G) and ρ(G) commute inside Perm(G), we see that N ∼= G
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and that N acts regularly on G. In fact, N is G-isomorphic to λ(G): the map

θ : λ(G)→ N defined by

θ(λ(σ)) = η, θ(λ(τ)) = π

is a G-isomorphism. Therefore N corresponds to a Hopf-Galois structure on L/K

whose Hopf algebra HN is isomorphic to Hλ. However, we have already observed

that the brace class of the regular G-stable subgroup λ(G) contains only one ele-

ment, so N cannot be brace equivalent to λ(G).

However, if two regular G-stable subgroups are G-isomorphic then the elements

of their respective brace classes can be arranged into G-isomorphic pairs:

Proposition 3.8. Suppose that N,M are G-isomorphic regular G-stable subgroups

of Perm(G). Then, for ϕ ∈ Aut(G), Nϕ,Mϕ are G-isomorphic.

Proof. Let θ : N →M be a G-isomorphism. Define θϕ : Nϕ →Mϕ by

θϕ(ϕ−1ηϕ) = ϕ−1θ(η)ϕ.

Then θϕ is an isomorphism and for σ ∈ G we have

θϕ
(
σ
(
ϕ−1ηϕ

))
= θϕ(ϕ−1

(
ϕ(σ)η

)
ϕ)

= ϕ−1θ
(
ϕ(σ)η

)
ϕ

= ϕ−1 ϕ(σ)θ (η)ϕ

= σ
(
ϕ−1θ (η)ϕ

)
= σθϕ

(
ϕ−1ηϕ

)
.

Hence Nϕ,Mϕ are G-isomorphic. �

4. Inner automorphisms and ρ-conjugate subgroups

In this section we assume that G is nonabelian and explore the consequences of

conjugating a G-stable regular subgroup N of Perm(G) by an inner automorphism

of G.

Proposition 4.1. Let G be a nonabelian group and let N be a regular G-stable

subgroup of Perm(G). Let σ ∈ G, and let C(σ) denote the inner automorphism of

G arising from σ. Then:

(1) C(σ)NC(σ)−1 = ρ(σ)Nρ(σ)−1, where ρ : G → Perm(G) is the the right

regular representation of G;

(2) the subgroups N and C(σ)NC(σ)−1 are G-isomorphic.

Proof. (1) We may write C(σ) = ρ(σ)λ(σ), and so

C(σ)NC(σ)−1 = ρ(σ)λ(σ)Nλ(σ)−1ρ(σ)−1.

But N is G-stable, so λ(σ)Nλ(σ)−1 = N , and so

C(σ)NC(σ)−1 = ρ(σ)Nρ(σ)−1,

as claimed.
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(2) Consider the isomorphism θ : N → ρ(σ)Nρ(σ)−1 defined by θ(η) = ρ(σ)ηρ(σ)−1

for all η ∈ N . Using the fact that elements of λ(G) and ρ(G) commute in-

side Perm(G) we have θ(τη) = τθ(η) for all η ∈ N and τ ∈ G, so θ is a

G-isomorphism.

�

We shall say that two regular G-stable subgroups N,M of Perm(G) are ρ-

conjugate if M = ρ(σ)Nρ(σ)−1 for some σ ∈ G. This concept also appears in

[17, Example 2.7]. We record some immediate corollaries of Proposition 4.1:

Corollary 4.2. If N,M are ρ-conjugate regular G-stable subgroups of Perm(G)

then they are brace equivalent.

Corollary 4.3. If G has only inner automorphisms then, for regular G-stable sub-

groups of Perm(G), brace equivalence implies G-isomorphism.

Example 4.4. Let G ∼= D3 as in Example 2.3, and consider the regular G-stable

subgroups Nc = 〈λ(σ), ρ(σcτ)〉 of Perm(G) constructed there. It is not hard to see

that these subgroups are ρ-conjugate, which implies that they are brace equivalent,

as stated at the end of Example 2.9 and G-isomorphic.

5. Abelian endomorphisms

An endomorphism ψ : G→ G is called abelian if ψ(στ) = ψ(τσ) for all σ, τ ∈ G,

and fixed-point-free if ψ(σ) = σ only when σ = 1G. In [7] Childs shows that, given a

Galois extension of fields L/K with nonabelian Galois group G, abelian fixed-point-

free endomorphisms can be used to construct families of regular G-stable subgroups

of Perm(G) that are isomorphic to G. In [16] the first named author generalizes

this construction by removing the fixed-point-free hypothesis; a consequence of this

is that resulting subgroups of Perm(G) are not necessarily isomorphic to G. In

this section we study the braces corresponding to subgroups arising from abelian

endomorphisms.

First we summarize the results of [16]. Suppose that ψ : G → G is an abelian

endomorphism, and define a map αψ : G → Perm(G) by αψ(σ) = λ(σ)C(ψ(σ−1))

for all σ ∈ G, where C(ψ(σ)) denotes the inner automorphism arising from ψ(σ).

It is easy to see that αψ is a homomorphism, so that Nψ = αψ(G) is a subgroup of

Perm(G), and [16, Theorem 3.1] shows that this subgroup is regular and G-stable.

Now we study the relationships between braces corresponding to regular G-

stable subgroups arising via this construction. Write Ab(G) for the set of abelian

endomorphisms of G.

Proposition 5.1. If ψ ∈ Ab(G) and ϕ ∈ Aut(G) then ϕ−1ψϕ ∈ Ab(G).

Proof. It is clear that ϕ−1ψϕ is an endomorphism of G; we need to show that it is

abelian. For σ, τ ∈ G we have

ϕ−1ψϕ(στ) = ϕ−1ψ(ϕ(σ)ϕ(τ)) (ϕ is an automorphism)

= ϕ−1ψ(ϕ(τ)ϕ(σ)) (ψ is abelian)

= ϕ−1ψϕ(τσ).
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Therefore ϕ−1ψϕ is abelian, and hence ϕ−1ψϕ ∈ Ab(G). �

Proposition 5.2. If ψ ∈ Ab(G) and ϕ ∈ Aut(G) then Nϕ−1ψϕ = ϕ−1Nψϕ.

Proof. Let σ ∈ G. Then for all τ ∈ G we have

ϕ−1αψ(σ)ϕ[τ ] = ϕ−1λ(σ)C(ψ(σ−1))ϕ[τ ]

= ϕ−1(σψ(σ−1)ϕ(τ)ψ(σ))

= ϕ−1(σ)ϕ−1(ψ(σ−1))τϕ−1(ψ(σ))

= λ(ϕ−1(σ))C(ϕ−1(ψ(σ−1)))[τ ]

= λ(ϕ−1(σ))C(ϕ−1ψϕ(ϕ−1(σ−1)))[τ ]

= αϕ−1ψϕ(ϕ−1(σ))[τ ].

Therefore ϕ−1αψ(σ)ϕ = αϕ−1ψϕ(ϕ−1(σ)) for all σ ∈ G, and so ϕ−1Nψϕ = Nϕ−1ψϕ.

�

To ease notation, if ψ ∈ Ab(G) then we write Bψ rather than BNψ for the brace

corresponding to Nψ. However, we caution the reader that two different elements of

Ab(G) can yield the same subgroup, so Bψ = Bψ′ does not imply that ψ = ψ′. We

also note that this construction may yield a different brace from the construction

in [19].

Proposition 5.3. If ψ ∈ Ab(G) and ϕ ∈ Aut(G) then Bψ
∼= Bϕ−1ψϕ. Further-

more, if Bψ
∼= Bψ′ for some ψ′ ∈ Ab(G) then there exists ϕ ∈ Aut(G) such that

ψ′ = ϕ−1ψϕ.

Proof. By Proposition 5.2 we have Nϕ−1ψϕ = ϕ−1Nψϕ; hence Bψ
∼= Bϕ−1ψϕ by

Proposition 3.1. If Bψ
∼= Bψ′ for some ψ′ ∈ Ab(G) then by Proposition 3.1 Nψ′ =

ϕ−1Nψϕ for some ϕ ∈ Aut(G); by Proposition 5.2 we have ϕ−1Nψϕ = Nϕ−1ψϕ,

and so Nψ′ = Nϕ−1ψϕ. �

Proposition 5.4. If ψ ∈ Ab(G) and N is a regular G-stable subgroup of Perm(G)

that is brace equivalent to Nψ then N = αψ′(G) for some ψ′ ∈ Ab(G).

Proof. Since N is brace equivalent to Nψ there exists ϕ ∈ Aut(G) such that N =

ϕ−1Nψϕ. Applying Proposition 5.2 we have N = Nϕ−1ψϕ, so N = αψ′(G) with

ψ′ = ϕ−1ψϕ. �

If we impose the additional assumption that ψ is fixed-point-free (as in [7]) then

[16, Section 4] shows that Nψ ∼= G and that there exists another fixed-point-free

abelian endomorphism Ψ such that Nψ = {λ(σ)ρ(Ψ(σ)) | σ ∈ G}; following [7] we

then see that the isomorphism θ : λ(G)→ Nψ defined by θ(λ(σ)) = λ(σ)ρ(Ψ(σ)) is

a G-isomorphism. Thus we have:

Corollary 5.5. If ψ ∈ Ab(G) is fixed-point free and N is a regular G-stable sub-

group of Perm(G) that is brace equivalent to Nψ then N is G-isomorphic to λ(G).



12 ALAN KOCH AND PAUL J. TRUMAN

6. λ-points and ρ-points

The prototypical examples of regular G-stable subgroups of Perm(G) are the

subgroups λ(G) and ρ(G). A general regular G-stable subgroup N may intersect

nontrivially with one or both of these; in this section we show that studying these

intersections can yield useful information about the brace and Hopf-Galois structure

that correspond to N .

Definition 6.1. Let N a regular G-stable subgroup of Perm(G). The λ-points of

N are the elements of the set ΛN = N ∩ λ(G). The ρ-points of N are the elements

of the set PN = N ∩ ρ(G).

It is clear that ΛN and PN are both subgroups of N .

Example 6.2. Let L/K be a Galois extension with Galois group G ∼= Q8, as in Ex-

ample 3.6, and consider the regular G-stable subgroups Ds,λ and Ds,ρ constructed

there. Then the λ-points of Ds,λ are λ(1), λ(s), λ(s2), λ(s3), and the ρ-points of

Ds,λ are ρ(1) and ρ(s2), since s2 ∈ Z(G). The results for Ds,ρ are analogous.

First we study the behaviour of λ-points and ρ-points with respect to brace

equivalence:

Proposition 6.3. Let N,M be regular G-stable subgroups of Perm(G) and suppose

that N,M are brace equivalent. Then:

(1) ΛN ∼= ΛM ;

(2) PN ∼= PM .

Proof. Since N,M are brace equivalent, there exists ϕ ∈ Aut(G) such that M =

ϕ−1Nϕ. To prove (1), define θ : ΛN → M by θ(λ(σ)) = ϕ−1(λ(σ))ϕ. Then for all

τ ∈ G we have

θ(λ(σ))[τ ] = ϕ−1(λ(σ))ϕ[τ ] = ϕ−1(σϕ(τ)) = ϕ−1(σ)τ = λ(ϕ−1(σ))[τ ].

Hence θ is actually a map from ΛN to ΛM , which is clearly an isomorphism. The

proof of (2) is similar. �

Proposition 6.3 provides a useful necessary condition for two regular G-stable

subgroups to be brace equivalent, which we shall apply in Section 8.

In fact, the isomorphisms established in Proposition 6.3 are G-isomorphisms. More

generally, ρ-points interact well with G-isomorphism:

Proposition 6.4. Let N,M be regular G-stable subgroups of Perm(G) and suppose

that θ : N →M is a G-isomorphism. Then PN = θ(PM ).

Proof. We may characterize ρ(G) as the centralizer of λ(G) in Perm(G): thus a

permutation η ∈ Perm(G) lies in ρ(G) if and only if ση = η for all σ ∈ G. Now let

η ∈ PN ; then for all σ ∈ G we have

σθ(η) = θ(ση) since θ is a G-isomorphism

= θ(η) since η ∈ PN .

Hence θ(η) ∈ PM . Reversing the roles of N,M yields the result. �
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Proposition 6.4 provides a useful necessary condition for two regular G-stable

subgroups to be G-isomorphic. However, the analogous result for λ-points is not

true:

Example 6.5. Let L/K be a Galois extension with Galois group G ∼= D4, as in

Example 3.7, and recall from that example that N = 〈η, π〉, with η = λ(σ)ρ(τ)

and π = λ(τ), is a G-stable regular subgroup of Perm(G) that is G-isomorphic to

λ(G). Obviously every element of λ(G) is a λ-point, but the λ-points of N are

λ(1), λ(τ), λ(σ2), λ(σ2τ).

7. Opposite braces

In Greither and Pareigis’s original paper characterizing Hopf-Galois structures

on separable field extensions [12] they observe that if N is a regular G-stable sub-

group of Perm(G), then so too is Nopp = CentPerm(G)(N); this construction, and

the corresponding Hopf-Galois structures on a Galois extension with Galois group

G, have subsequently been studied in, for example, [22], [26], and [20]. The no-

tation Nopp reflects the fact that this subgroups can be naturally identified with

the opposite group of N ; in [20] the authors referred to the Hopf-Galois structure

corresponding to Nopp as the opposite of the one corresponding to N . We showed

that this construction leads naturally to the notion of the opposite of a brace, as

follows: given a brace B = (B, ·, ◦), we define a new binary operation on B by

x ·′ y = y · x for all x, y ∈ B. Then Bopp := (B, ·′, ◦) is a brace, called the opposite

of the brace B. This concept is also developed independently by Rump [23]. If N

is a regular G-stable subgroup of Perm(G), with corresponding brace BN , then the

brace corresponding to the opposite subgroup Nopp is then BNopp = (BN )
opp

. If

B = (B, ·, ◦) is a brace and N is the regular (B, ◦)-stable subgroup of Perm(B) aris-

ing from the dot operation in B then the subgroup arising from the dot operation

in Bopp is Nopp.

The notion of opposite extends to brace classes:

Proposition 7.1. Let N be a regular G-stable subgroup of Perm(G), and let Nopp

be the opposite subgroup to N . Then for each ϕ ∈ Aut(G) we have
(
ϕ−1Nϕ

)opp
=

ϕ−1Noppϕ.

Proof. Let η′ ∈ Nopp, so that ϕ−1η′ϕ ∈ ϕ−1Noppϕ. Then for all η ∈ N we have(
ϕ−1η′ϕ

) (
ϕ−1ηϕ

)
=

(
ϕ−1η′ηϕ

)
=

(
ϕ−1ηη′ϕ

)
=

(
ϕ−1ηϕ

) (
ϕ−1η′ϕ

)
.

Hence ϕ−1Noppϕ ⊆
(
ϕ−1Nϕ

)opp
. But these groups have equal order, so in fact

they are equal. �

Corollary 7.2. The brace class of Nopp consists precisely of the opposites of the

subgroups in the brace class of N . In particular, these brace classes are of equal

size.
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Example 7.3. Let L/K be a Galois extension with Galois group G = 〈σ, τ〉 ∼= Q8,

as in Example 3.6, and consider the regular G-stable subgroups Ds,λ and Ds,ρ

described in that example. We saw there that the subgroups Ds,ρ are brace equiva-

lent and exhaust their brace class. It is routine to verify that Dopp
s,ρ = Ds,λ for each

s; thus the subgroups Ds,λ are brace equivalent and exhaust their brace class, as

stated at the end of that example.

Corollary 7.4. Let N,M be G-stable regular subgroups of Perm(G), and suppose

that N,M are ρ-conjugate. Then Nopp,Mopp are ρ-conjugate.

As pointed out in [20, Section 6], it is possible for BN and BNopp to be isomor-

phic; when this occurs, the brace classes of N and Nopp coincide.

On the other hand, if N,M are regular G-stable subgroups of Perm(G) that are

G-isomorphic, it does not necessarily follow that Nopp and Mopp are G-isomorphic:

Example 7.5. Let L/K be a Galois extension with Galois group G ∼= D4, as in

Example 3.7, and recall from that example that N = 〈η, π〉, with η = λ(σ)ρ(τ)

and π = λ(τ), is a G-stable regular subgroup of Perm(G) that is G-isomorphic to

λ(G). However, we have λ(G)opp = ρ(G), and no other regular G-stable subgroup

of Perm(G) can be G-isomorphic to ρ(G). Therefore Nopp is not G-isomorphic to

λ(G)opp.

8. Braces of order pq and Hopf-Galois structures of degree pq

Let p, q be prime numbers with p > q. In [4] Byott classifies the Hopf-Galois

structures admitted by Galois extensions of fields of degree pq; building upon these

results, the braces of order pq are classified in [1] and [5, Subsection 2.9].

In this section we consider in turn each of the isomorphically distinct braces

B = (B, ·, ◦) of order pq. Writing N = (B, ·) and G = (B, ◦), we recover all of the

G-stable regular subgroups of Perm(G) that are isomorphic to N , and hence the

Hopf-Galois structures of type N on a Galois extension of fields with Galois group

G. We use the tools developed in the earlier sections to arrange these subgroups

into G-isomorphism classes, which is equivalent to determining the Hopf algebra

isomorphism classes of the Hopf algebras giving the Hopf-Galois structures. The

classifications of braces in [1] and [5, Subsection 2.9] are organized by fixing a

presentation of the dot group and allowing the circle group to vary. Here it is

more convenient to reverse this organization; where necessary, we state maps that

reconcile our descriptions with those in loc. cit.

If p 6≡ 1 (mod q) then N and G must both be isomorphic to C, the cyclic group

of order pq; if p ≡ 1 (mod q) then each of these groups is isomorphic to either C

or to M , the metacyclic group of order pq. We describe both these groups via two

generators σ, τ , using the underlying set

B = {σiτ j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},

where σ has order p and τ has order q. To obtain C we impose the relation

τστ−1 = σ; to obtain M we fix an integer g whose multiplicative order modulo p is

q and impose the relation τστ−1 = σg. We also fix notation for the automorphisms
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of these groups: we have Aut(C) = {ϕt | gcd(t, pq) = 1}, where ϕt(σ) = σt and

ϕt(τ) = τ t, and Aut(M) = 〈φ, ψ〉, where φ(στ) = σdτ with d a primitive root

modulo p and φ(τ) = τ , and ψ(σ) = σ and ψ(τ) = στ .

The case G ∼= N ∼= C : Up to isomorphism, there is a unique brace B with N ∼=
G ∼= C, which is the trivial brace for C [1, Proposition 3.1]. The regular G-stable

subgroup of Perm(G) obtained from the dot operation in B is simply ρ(G). More-

over, every automorphism of G is automatically an automorphism of B; hence

ρ(G) is the unique regular G-stable subgroup of Perm(G) that is isomorphic to N

[4, (4.1)]. There are no G-isomorphism questions to consider in this case.

As mentioned above, if p 6≡ 1 (mod q) then every group of order pq is cyclic,

and so this case is the only one that can occur. For the remainder of this section

we assume that p ≡ 1 (mod q).

The case G ∼= C, N ∼= M : There are two isomorphically distinct braces with these

properties. The first is the brace Aq constructed in [1, part (iii) of the second bullet

point of the main theorem]. In our notation this takes the form B = (B, ·, ◦), where

σiτ j · σkτ ` = σi+kg
j

τ j+`

σiτ j ◦ σkτ ` = σi+kτ j+`.

The second brace with these properties is constructed in [1, part (ii) of the second

bullet point of the main theorem]. We obtain it by taking the opposite to the brace

B above: we have Bopp = (B, ·′, ◦), where

σiτ j ·′ σkτ ` = σk+ig
`

τ j+`

σiτ j ◦ σkτ ` = σi+kτ j+`.

To reconcile this description with the one given in loc. cit. we apply the map

σiτ j 7→ τ jσi.

The regular G-stable subgroup of Perm(G) obtained from the dot operation in

B is N = 〈η, π〉, where

η(σkτ `) = σ · σkτ ` = σk+1τ `

π(σkτ `) = τ · σkτ ` = σkgτ `+1.

We determine all of the regular G-stable regular subgroups of Perm(G) that are

brace equivalent to N . For each t coprime to pq we conjugate the generators of N

by the automorphism ϕt:

ϕ−1t ηϕt(σ
kτ `) = σk+t

−1

τ ` = ηt
−1

(σkτ `)

ϕ−1t πϕt(σ
kτ `) = σkgτ `+t

−1

= πt(σ
kτ `),

say (with π = π1). The automorphism ϕt respects · if and only if t ≡ 1 (mod q),

and so by Proposition 3.1 the subgroups Nt = 〈η, πt〉 are a family of q − 1 regular

G-stable subgroups of Perm(G). This is the family of subgroups described in [4,

Lemma 5.2, Equation (5.8)].
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The regular G-stable subgroup of Perm(G) obtained from the dot operation in

Bopp is Nopp = 〈η′, π′〉, where

η′(σkτ `) = σ ·′ σkτ ` = σk+g
`

τ `

π′(σkτ `) = τ ·′ σkτ ` = σkτ `+1.

We determine all of the regular G-stable regular subgroups of Perm(G) that are

brace equivalent to Nopp. Proceeding as above we have

ϕ−1t η′ϕt(σ
kτ `) = σk+t

−1gt`τ ` = η′t(σ
kτ `)

ϕ−1t π′ϕt(σ
kτ `) = σkτ `+t

−1

= (π′)t
−1

(σkτ `),

say (with η′ = η′1). The automorphism ϕt respects ·′ if and only if t ≡ 1 (mod q),

and so the subgroups Nopp
t = 〈η′, π′t〉 are a family of q−1 regular G-stable subgroups

of Perm(G). This is the family of subgroups described in [4, Lemma 5.1, Equation

(5.3)]. The subgroups Nt and N ′t account for all of the G-stable regular subgroups

of Perm(G) that are isomorphic to M .

Proposition 8.1. The subgroups Nt are mutually G-isomorphic. The subgroups

Nopp
t are pairwise non G-isomorphic, and none are G-isomorphic to any of the

subgroups Nt.

Proof. For 1 ≤ t ≤ q − 1 the action of G on the subgroup Nt is given by

ση = η, τη = η,
σπt = η1−gπt,

τπt = πt.

Hence the natural isomorphismN1 → Nt defined by ηiπj1 7→ ηiπ
j
t is aG-isomorphism,

and so the subgroups Nt are mutually G-isomorphic.

On the other hand for 1 ≤ t ≤ q − 1 the action of G on the subgroup Nopp
t is

given by

ση′t = η′t,
τη′t = (η′t)

g−t ,
σπ′ = π′, τπ′ = π′.

Now if θ : Nopp
t1 → Nopp

t2 is a G-isomorphism then θ(ηt1) = ηvt2 for some v =

1, . . . , p− 1, since ηt1 has order p. Taking the G action into account, we have

θ( τηt1) = θ(ηg
−t1

t1 ) = ηvg
−t1

t2

and τθ(ηt1) = τηvt2 = ηvg
−t2

t2 .

Since v 6≡ 0 (mod p), this implies that g−t1 ≡ g−t2 (mod p), and since g has order

q modulo p this implies that t1 = t2.

Finally note that since G is abelian the notions of λ-point and ρ-point coin-

cide. The subgroups of the form Nt have p ρ-points, namely the elements ηi. The

subgroups of the form Nopp
t have q ρ-points, namely the elements (π′)j . By Propo-

sition 6.4 no subgroup of the form Nt can be G-isomorphic to a subgroup of the

form Nopp
t . Therefore the G-isomorphisms amongst these subgroups are as in the

statement of the proposition. �
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The case G ∼= M, N ∼= C : Up to isomorphism there is a unique brace with these

properties, which is constructed in [1, part (ii) of the first bullet point of the main

theorem]. In our notation this takes the form B = (B, ·, ◦), where

σiτ j · σkτ ` = σi+kτ j+`

σiτ j ◦ σkτ ` = σi+kg
j

τ j+`.

The regular G-stable subgroup of Perm(G) obtained from the dot operation in B

is N = 〈η, π〉, where

η(σkτ `) = σ · σkτ ` = σk+1τ `

π(σkτ `) = τ · σkτ ` = σkτ `+1.

We determine all of the regular G-stable regular subgroups of Perm(G) that are

brace equivalent to N . The automorphism φ respects ·, but the automorphism ψ

does not; thus the subgroups Ns = ψ−sNψs, with 0,≤ s ≤ p − 1, form a family

of p regular G-stable subgroups of Perm(G) that are isomorphic to N . This is

the family described in [4, Lemma 4.1, Equation (4.3)], and accounts for all of the

G-stable regular subgroups of Perm(G) that are isomorphic to C.

Proposition 8.2. The subgroups Ns are ρ-conjugate and mutually G-isomorphic.

Proof. Let C(σ) be the inner automorphism of G arising from σ. Then C(σ)(σ) = σ

and C(σ)(τ) = σ1−gτ . It follows that for each m ∈ N we have C(σ)m(τ) =

σ(1−g)mτ . Since 1−g is coprime to p, there exists m ∈ N such that C(σ)m(τ) = στ ,

and hence ψ is an inner automorphism of G. Now Proposition 4.1 implies that the

subgroups Ns are ρ-conjugate and mutually G-isomorphic. �

The case G ∼= N ∼= M : There are two distinguished braces with these properties

and two further families, each of size q− 2. The distinguished braces are the trivial

brace for M and the almost trivial brace for M (which is isomorphic to the opposite

of the trivial brace). Assuming q > 2, the first family consists of the braces At (for

2 ≤ t ≤ q − 1) constructed in [1, part (iii) of the second bullet point of the main

theorem]. (We have already seen that the brace Aq of loc. cit. has cyclic circle

group.) We present these as Bt = (B, ·, ◦) where

σiτ j · σkτ ` = σi+kg
jt

τ j+`

σiτ j ◦ σkτ ` = σi+kg
j

τ j+`

To reconcile this presentation with that give in loc. cit. we apply the map σiτ j 7→
σiτ jt

−1

.

The second family consists of the braces At (for 2 ≤ t ≤ q − 1) constructed in

[1, part (iv) of the second bullet point of the main theorem]. (We have already

seen that the brace Aq of loc. cit. is isomorphic to the almost trivial brace for M .)

We obtain these braces by taking the opposites to the braces Bt above: we have

Bopp
t = (B, ·′, ◦), where

σiτ j ·′ σkτ ` = σk+ig
`t

τ j+`

σiτ j ◦ σkτ ` = σi+kg
j

τ j+`
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To reconcile this presentation with that give in loc. cit. we apply the map σiτ j 7→
σiτ jt.

We determine all of the regular G-stable regular subgroups of Perm(G) that yield

each of these braces. We know that λ(G) yields the trivial brace on G and that

ρ(G) yields the almost trivial brace on G, and that each of these in a brace class

by itself.

Assuming q > 2, the regular G-stable subgroup of Perm(G) obtained from the

dot operation in Bt is Nt = 〈η, πt〉, where

η(σkτ `) = σ · σkτ ` = σk+1τ `

πt(σ
kτ `) = τ · σkτ ` = σkg

t

τ `+1.

Now considering automorphisms of G we see that in all cases the automorphism

φ respects ·, but the automorphism ψ does not; we write Nt,u = ψ−uNtψ
u for

0 ≤ u ≤ p− 1. Allowing t, u to vary we obtain a family of p(q− 2) regular G-stable

subgroups of Perm(G) that are isomorphic to N . We note that these subgroups

have p λ-points, namely the elements ηi; it follows that these subgroups coincide

with the family described in [4, Lemma 5.2, Equation (5.7)].

The G-stable regular subgroup of Perm(G) obtained from the dot operation in

Bopp
t is Nopp

t = 〈ηt, π〉, where

ηt(σ
kτ `) = σ ·′ σkτ ` = σk+g

`t

τ `

π(σkτ `) = τ ·′ σkτ ` = σkτ `+1.

As above we find that φ respects ·′, but ψ does not; we write Nopp
t,u = ψ−uNopp

t ψu

for 0 ≤ u ≤ p − 1, and obtain a family of p(q − 2) regular G-stable subgroups of

Perm(G) that are isomorphic to N . We note that these subgroups have q ρ-points,

namely the elements πj ; it follows that these subgroups coincide with the family

described in [4, Lemma 5.4, Equation (5.12)]. Together with the subgroups ρ(G)

and λ(G), the subgroups of the form Nt,u and Nopp
t,u account for all of the G-stable

regular subgroups of Perm(G) that are isomorphic to N .

Proposition 8.3. The subgroups Nt,u are mutually G-isomorphic. The G-isomorphism

classes amongst the subgroups Nopp
t,u are determined by t. No subgroup of the form

Nt,u is G-isomorphic to a subgroup of the form Nopp
t,u .

Proof. To establish the first claim we show that the subgroups Nt,u arise via abelian

fixed point free endomorphisms of G (see Section 5). For fixed t consider the

subgroup Nt = 〈η, πt〉 obtained from the dot operation in Bt. It is clear that

η = λ(σ), where λ denotes the left regular representation of G. Similarly, letting r

denote the inverse of t modulo q, we have

πrt (σ
kτ `) = σkg

rt

τ `+r

= σkgτ `+r

= τσkτ `τ r−1

= λ(τ)ρ(τ1−r)(σkτ `),

where ρ denotes the right regular representation of G. Hence πrt = λ◦(τ)ρ◦(τ
1−r).

Now consider the function ψ : G → G defined by ψ(σkτ `) = τ `(1−r). This is
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an abelian abelian fixed-point-free endomorphism (see [19]), and the corresponding

regular G-stable subgroup Nψ of Perm(G) is generated by λ◦(σ) and λ(τ)ρ(ψ(τ)) =

πrt . Thus Nψ = Nt, and applying Corollary 5.5 we see that Nt is G-isomorphic to

λ(G). Since this holds for all t, the subgroups Nt are mutually G-isomorphic.

Finally, applying Proposition 5.2 we see that all of the subgroups Nt,u arise via

abelian fixed point free endomorphisms, and so are mutually G-isomorphic.

Next we consider the subgroupsNopp
t,u . For each fixed t we haveNopp

t,u = ψ−uNopp
t ψu

for 0 ≤ u ≤ p− 1, and we saw in the proof of Proposition 8.2 that ψ is an inner au-

tomorphism of G; hence by Proposition 4.1 the subgroups Nopp
t,u are all ρ-conjugate

and G-isomorphic. To show that there are no further G-isomorphisms within this

family, it is sufficient to show that no two of the subgroups Nopp
t are G-isomorphic.

We calculate the action of τ on ηt:

τηt(σ
kτ `) = τηt(τ

−1σkτ `)

= τηt(σ
kg−1

τ `−1)

= τ(σkg
−1g(`−1)t

τ `−1)

= σkg
(`−1)t

τ `)

= ηg
−t

t (σkτ `).

Hence τηt = ηg
−t

t . Now if θ : Nopp
t1 → Nopp

t2 is a G-isomorphism then θ(ηt1) = ηvt2
for some v = 1, . . . , p− 1, since ηt1 has order p. Taking the G action into account,

we have

θ( τηt1) = θ(ηg
−t1

t1 ) = ηvg
−t1

t2

and τθ(ηt1) = τηvt2 = ηvg
−t2

t2 .

Since v 6≡ 0 (mod p), this implies that g−t1 ≡ g−t2 (mod p), and since g has order

q modulo p this implies that t1 = t2. Therefore the G-isomorphisms amongst the

subgroups Nopp
t,u are as described in the statement of the proposition.

The final claim follows from Proposition 6.4 since each of the subgroups Nopp
s,t

has q ρ-points, whereas each of the subgroups Ns,t has none. �
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