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Abstract

The high order homogenization techniques potentially generate the
so-called in�nite order homogenized equations. Since long ago, the
coe�cients at higher order derivatives in these equations have been
calculated within various re�ned theories for both periodic composites
and thin structures. However, it was not always clear, what is a well-
posed mathematical formulation for such equations. In the present
paper we discuss two techniques for constructing a second order ho-
mogenized equation. One of them is concerned with the projection of
a weak formulation of the original problem on an "ansatz subspace".
The second one corresponds to the traditional two scale asymptotic
expansion using representation of a second order corrector via the so-
lution of the classical (leading order) homogenized equation.

1 Introduction

High order homogenized equations often arise both in mechanics of thin
structures and composite models as a particular feature of re�ned theories
involving higher derivatives (gradients) of the unknown function, for exam-
ple, displacement, e.g. see [1, 2, 3, 4, 5, 6]. These theories are usually ex-
pected to be more precise than their classical counterparts, since the former
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take into consideration more delicate physical properties, such as dispersion.
The aforementioned theories have been initially derived using ad hoc phe-
nomenological approach. Later, substantial e�orts have been focused on the
asymptotic justi�cation of high order models. For the conductivity and elas-
tostatics of periodic composite materials various homogenized models have
been established in [7], see also [8] for more details.

Leading order 2D asymptotic models for thin elastic plates and shells,
derived from 3D equations in linear elasticity have been known since long ago
[9], [10], [11]; see also [12], [13] for a rigorous mathematical justi�cation and
error estimation. Associated higher order 2D models have been developed in
[14], [15]. It is crucial, that these have been reduced to the partial di�erential
equations of the same order as those of the leading order approximations.
The most accurate high order asymptotic solution of the static 3D boundary
value problem for a homogeneous thin elastic plate has been apparently
obtained in [16] and [17], see also the previous considerations on the subject
in [18], [19] and references therein.

High order asymptotic formulations for thin heterogeneous structures
appear to be closely related to homogenization for periodic composites, gov-
erned for a broad range of problems by high order homogenized equations
proposed in [7], [8]. This approach has been then extended to thin structures
in [20], [21], [22] and [23], for which it has common features with the earlier
developed asymptotic methodology for plates and shells, e.g. see [18], [24].
More recently, the analogy of the homogenization models for thin structures
and periodic media has been addressed in [25] within the general dynamic
context.

The approach in [7] leads to in�nite order homogenized equations, which
formally are pseudo-di�erential equations with small coe�cients at higher
order derivatives. This equation has not been interpreted mathematically
although there were a number of physical interpretations of in�nite order
equations and related coe�cients. In particular, the variational properties
of the in�nite order formally homogenized equations have been analysed in
[23], numerous publications have been studied the sign of coe�cients, e.g.
see [26] and [27]. The possibility of truncation of this equation has been
addressed in [28]. The point is that the sign of the coe�cient at the highest
derivative in a truncated equation may appear to be erroneous with regard
to the well-posedness of this equation. For the equation de�ned over the
whole space a well-posed truncation procedure was proposed in [29]. It cor-
responds to a certain projection of the variational formulation on an "ansatz
space". This technique automatically brings into the truncated equation
small stabilizing terms. Asymptotically justi�ed boundary conditions for
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high order homogenized equations have been studied in [30], see also [31]
using a di�erent methodology.

In the present paper we discuss two techniques for constructing of a sec-
ond order homogenized equation. The �rst of them is related to the projec-
tion of a weak formulation of the original problem on an "ansatz subspace".
The second one is based on the conventional two scale asymptotic expansion
in which a second order corrector is expressed through the solution of the
leading order homogenized equation. The goal of the paper is to illustrate
these two approaches to high order homogenization by analysing a "toy"
scalar problem modelling conductivity of a three-layered laminate. A zoom
is on the well-posedness of the derived high order equation.

2 Statement of the problem

Consider a 2D scalar equation over a thin stripGε = {x = (x1, x2) ∈ R2| x2 ∈
(− ε

2 ,
ε
2)}, see Figure 1, given by

div
(
A
(x2
ε

)
∇uε

)
= f(x1), (2.1)

with Neumann's boundary condition along x2 = ±ε/2

A
(x2
ε

)∂uε
∂x2

= 0, (2.2)

where ε is a small positive parameter, A is a piecewise constant function,
de�ned as

A(η) =

{
1, η ∈ (−1/4, 1/4),

a, η ∈ (−1/2, 1/2)\(−1/4, 1/4), (2.3)

a > 0 and f is a T−periodic function from C∞(R) with
∫ T
0 f(x1)dx1 = 0.
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Figure 1: A three-layered laminate.

We seek a T−periodic in x1 solution of problem (2.1) and (2.2). For
the formulated toy problem we demonstrate below two methods for deriving
high order homogenized equations and compare the obtained approximate
solution with the exact one.

3 High order homogenization

Let us consider the ansatz (i.e. asymptotic expansion) of the solution of
(2.1)-(2.2), which has been introduced and justi�ed in [22]:

u(J)(x) =
J∑
l=0

ε2lN2l

(x2
ε

)
D2lvε(x1), (3.1)

where N2l are the solutions of so called cell problems, D2l are derivatives of
order 2l and vε(x1) is a 1D approximation, e.g. an averaged characteristic
of the solution.

Plug ansatz (3.1) into equation (2.1). Denoting Lεu
(J) = div

(
A
(
x2
ε

)
∇u(J)

)
and collecting terms of the same order, we get

Lεu
(J) =

J∑
l=0

ε2l−2H2l(ξ2)D
2lvε(x1) + ε2JA(ξ2)N2JD

2l+2vε(x1), (3.2)

with ξ2 = x2/ε, ξ2 ∈ (−1/2, 1/2). In the above

H2l =
∂

∂ξ2

(
A(ξ2)

∂N2l

∂ξ2

)
+A(ξ2)N2l−2

and N2l are the solutions of the cell problems
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∂
∂ξ2

(
A(ξ2)

∂N2l
∂ξ2

)
= −A(ξ2)N2l−2 + 〈AN2l−2〉,

∂N2l

∂ξ2
(±1/2) = 0,

(3.3)

where 〈F 〉 =
∫ 1/2
−1/2 F (ξ2)dξ2 and N0 = 1. Here and below the terms with a

negative su�x vanish. In particular, for N2 ( l = 1) we have

∂

∂ξ2

(
A(ξ2)

∂N2
∂ξ2

)
= −A(ξ2) + 〈A〉,

∂N2

∂ξ2
(±1/2) = 0.

(3.4)

Then

Lεu
(J) =

J∑
l=0

ε2l−2h2lD
2lvε(x1) + ε2JA(ξ2)N2JD

2l+2vε(x1), (3.5)

where h2l = 〈AN2l−2〉, l > 0, and h0 = 0. In this case, a traditional high
order homogenized equation can be obtained by equating a truncated series
(3.5) to the right-hand side in (2.1), i.e.

J∑
l=1

ε2l−2h2lD
2lvε(x1) = f(x1). (3.6)

In particular, taking J = 1, we arrive at the homogenized equation

〈A〉v′′ε + ε2〈AN2〉v′′′′ε = f(x1). (3.7)

An asymptotic solution of (3.6) can be constructed in the form

v(2J)ε (x1) =
J∑
j=0

ε2jv2j(x1), (3.8)

where v2j satisfy the equations

〈A〉v′′2j = f(x1)δj,0 −
∑

p+q=j,p>0

h2p+2D
2+2pv2q. (3.9)
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As in [8] it can be proved that for asymptotic expansion (3.8) and

u(J)(x) =

J∑
l=0

ε2lN2l

(x2
ε

)
D2lv(2J)ε (x1), (3.10)

the estimate

‖∇
(
uε − u(J)

)
‖L2((−T/2,T/2)×(−ε/2,ε/2)) = O(ε2J+3/2) (3.11)

holds.
However, within this approach the sign of the coe�cient of the senior

derivative h2J is not necessarily (−1)J , i.e. the homogenized equation of
interest may be not coercive. As each function N2l is de�ned up to an
additive constant, the sign of the coe�cient 〈AN2l〉 depends on the choice
of this constant, guided by certain additional reasons. In particular, if v is
interpreted as an average temperature, then the constant is determined from
the condition

〈N2l〉 = δl0, (3.12)

or, if it is the mid-plane temperature, then

N2l(0) = δl0, (3.13)

where δij is the Kronecker's delta. We remark that for a similar antiplane
problem in elasticity v is a laminate displacement, e.g. see [34] and [35].

At l = 1 we have

N2(ξ2) =

{
a−1
4 ξ22 , |ξ2| ∈ [0, 1/4],

a−1
4a (−ξ22 + |ξ2|+ a−3

16 ), |ξ2| ∈ [1/4, 1/2],
(3.14)

provided (3.13) holds. Then, inserting (2.3) and (3.14) into (3.7), we arrive
at

a+ 1

2
v′′ + ε2

a2 − 1

128
v′′′′ = f(x1), (3.15)

with a positive coe�cient at the fourth order derivative at a > 1.
It can be also shown that under condition (3.12) problem (3.3) yields at

l = 1

〈AN2〉 = 〈A〉〈N2〉+ 〈A
(∂N2

∂ξ2

)2
〉 > 0, a 6= 1, (3.16)
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due to vanishing of the �rst term in the right hand side.
Within the same asymptotic error the fourth order equation (3.15) can

be reduced to a second order one, given by

v′′ε =
2

a+ 1
f − ε2 (a− 1)

32(a+ 1)
f ′′. (3.17)

This approach is widely used in the theory for thin elastic plates and
shells, e.g. see [14], [15], [32]. The asymptotic procedure in this theory
has a lot in common with the homogenization technique adapted in this pa-
per, see also [25] commenting on the similarities of dynamic homogenization
procedures for thin and periodic structures. In fact, they di�er from each
other in non signi�cant details, in particular condition (3.12) is typical for
the homogenization theory, while (3.13) is often adapted in plate and shell
theories. In addition, we mention the fundamental contributions [16] and
[17], concerned with the derivation of the three-term asymptotic expansions
for static boundary value problems in thin elastic plates. Although these
papers do not explicitly operate with the di�erential equations with a per-
turbed right-hand side, e.g. see (3.17), they incorporate such higher order
corrections virtually in the same manner.

However, it is not always possible to reduce the order of the homoge-
nized equation as simple as it has been done for the considered toy problem.
Therefore, we often need to deal with non coercive equations like (3.15) at
a > 1. For making such equation coercive, we develop below an alternative
approach based on regularization.

Let us �rst set a variational formulation for problem (2.1)-(2.2) over the
strip Gε. Denoting by H1

per(Gε) the space of T−periodic in x1 functions
from H1

per(Gε∩{x1 ∈ (−R,R)}) for any R > 0, we seek uε ∈ H1
per(Gε), such

that, for all functions ϕ ∈ H1
per(Gε),

−
∫ T/2

−T/2

∫ ε/2

−ε/2
A
(x2
ε

)
∇uε ·∇ϕdx1dx2 =

∫ T/2

−T/2

∫ ε/2

−ε/2
f(x1)ϕdx1dx2. (3.18)

Now consider the subspace of functions H1
per(Gε) de�ned as

Hdec = {ϕ ∈ H1
per(Gε)|ϕ(x) =

J∑
l=0

ε2lN2l

(x2
ε

)
D2lψ(x1); ψ ∈ H2J+2

per (R)},

(3.19)
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whereHn
per(R) is the space of T−periodic functions of one variable fromHn

loc.
It is assumed here that N2l are piecewise polynomial functions of degree 2l,
which is the case i� a 6= 1, ensuring that Hdec is complete.

Using the ideas of [29] and [33], consider the projection of (3.18) on
Hilbert subspace Hdec, i.e. �nd uε,dec ∈ Hdec, such that, for all functions
ϕ ∈ Hdec,

−
∫ T/2

−T/2

∫ ε/2

−ε/2
A
(x2
ε

)
∇uε,dec · ∇ϕdx1dx2 =

∫ T/2

−T/2

∫ ε/2

−ε/2
f(x1)ϕdx1dx2.

(3.20)

This variational formulation generates the coercive equation for vε given by

2J+2∑
l=1

ε2l−2h̃2lD
2lvε(x1) = f(x1), (3.21)

where

h̃2l =
∑
j+p=l

〈A(ξ)
(∂N2j

∂ξ2

∂N2p

∂ξ2
+N2j−2N2p−2

)
〉, l < J+1; h̃2J+2 = 〈A(ξ)N2

2J〉.

(3.22)

In particular, taking J = 1, we get a regularized homogenized equation in
the form

〈A〉v′′ε + ε2〈AN2〉v′′′′ε + ε4〈AN2
2 〉v(6)ε = f(x1), (3.23)

where for condition (3.13) the coe�cients at the second and fourth derivatives
are the same as in the associated equation (3.15) and

〈AN2
2 〉 =

(a2 − 1)(a− 1)(15a+ 8)

122880a
. (3.24)

Below we show that this equation has a solution which is unique up to
an additive constant.

4 Comparison of the exact solution and the solution

of the second order homogenized equation

Consider �rst the right-hand side in (2.1) in the form of f(x1) = sin kx1,
where k (k 6= 0) is a multiple of 2π/T , and assume that J = 1 and N2
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satis�es condition (3.13). Then, the exact solution of the original problem
(2.1)-(2.2) becomes (up to an additive constant)

uε(x) =


(
α
(
cosh kx2 − tanh(kε/2) sinh k|x2|

)
− 1

ak2

)
sin kx1, |x2| ∈ [ε/4, ε/2],(

αa
(
1− tanh(kε/2)

tanh(kε/4) cosh kx2 −
1
k2

)
sin kx1, |x2| ∈ [0, ε/4],

(4.1)

where

α =
1− a

k2a cosh(kε/4)

(
1− tanh(kε/2) tanh(kε/4)− a

(
1− tanh(kε/2)

tanh(kε/4)

))−1
.

The solutions of equations (3.15) and (3.23) are given respectively by
formulae (up to an arbitrary additive constant)

vε(x1) =

(
−k2 (a+ 1)

2
+ ε2k4

(a2 − 1)

128

)−1
sin kx1 (4.2)

and

vε(x1) =

(
−k2 (a+ 1)

2
+ ε2k4

(a2 − 1)

128
− ε4k6 (a

2 − 1)(a− 1)(15a+ 8)

122880a

)−1
sin kx1.

(4.3)

It can be easily veri�ed that, to within the error of O(ε4), formulae (4.2)
and (4.3) coincide with the asymptotic behaviour of the exact solution (4.1)
along the midline x2 = 0, calculated by expanding the hyperbolic functions
in Taylor series at small ε.

The results of numerical comparison of exact and asymptotic solutions
are presented in Figure 2 at k = 1 and a = 0.5. The function B(ε) =
−3vε(x1)/(4 sinx1) is plotted. Along with the formulae (4.2), (4.3) and (4.1),
in which we set uε(x1, 0) = vε(x1), the leading order asymptotic solution
given by B(ε) = 1 is also displayed. Expansions (4.2) and (4.3) are in fact of
the same order of accuracy, although the latter one corresponds to a coercive
equation.
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Figure 2: Comparison of exact solution (4.1) (solid line) with approximations
(4.2) (dashdotted line) and (4.3) (dotted line). Leading order B(ε) = 1 is
shown with a dashed line.

Consider now an arbitrary C∞-smooth 2π-periodic function f with van-
ishing mean value over the period. Expand f in Fourier series

f(x1) =

∞∑
k=1

(ak cos kx1 + bk sin kx1). (4.4)

Then, we have from (3.23)

vε(x1) =
∞∑
k=1

(
−k2〈A〉+ε2k4〈AN2〉−ε4k6〈AN2

2 〉
)−1

)(ak cos kx1+bk sin kx1).

(4.5)

Note that due to the Cauchy-Schwarz-Buniakowsky inequality, 〈AN2〉2 ≤
〈AN2

2 〉〈A〉. The latter is strict at a 6= 1. Thus,

ε4k4〈AN2
2 〉 − ε2k2〈AN2〉+ 〈A〉 ≥ (4〈AN2

2 〉〈A〉 − 〈AN2〉2)/(4〈AN2
2 〉) ≥

3/4〈A〉 > 0.
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As a result, for an in�nitely smooth function f we prove the existence and
uniqueness of the solution up to an additive constant. In addition, we have
a priori estimate

‖vε‖Hn+2((−π,π)) ≤ Cn‖f‖Hn((−π,π)), (4.6)

where constant Cn > 0 is independent of ε.
Then, the asymptotic expansion of the solution can be written as

v(2N)
ε (x1) =

2N∑
j=0

ε2jv2j(x1), (4.7)

where v2j are 2π-periodic solutions of the equations

〈A〉v′′2j + 〈AN2〉v′′′′2j−2 + 〈AN2
2 〉v

(6)
2j−4 = f(x1)δj0.

It should be noted that these equations take the same form for v0 and v2
as for the asymptotic solution of equation (3.6). Therefore, estimate (3.11)
is still valid for J = 1, i.e.

‖∇
(
uε − vε − ε2N2v

′′
ε

)
‖L2((−π,π)×(−ε/2,ε/2)) = O(ε7/2) (4.8)

with vε denoting the solution of (3.23).

5 Conclusions

Two alternative approaches for formulating well posed high order homoge-
nized equations are illustrated by a toy scalar problem for a thin three-layered
laminate. The �rst of them assumes asymptotic reduction in the order of
the derived fourth order homogenized equation (3.7) corresponding to a two-
term asymptotic expansion of the original 2D problem, see �nal second order
equation (3.17). Conversely, the second approach suggests the increase of the
order of aforementioned equation (3.7), resulting in a sixth order one, see
(3.23). In this case, a coercive equation (3.23) follows from a weak formu-
lation (3.20) developed in the paper. The uniqueness and existence of the
solution of (3.23) over an in�nite strip is also addressed. In addition, the
two-term asymptotic formulae derived from equations (3.17) and (3.23) with
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a sinusoidal right hand side are compared with the associated exact solution
on the midline.

In the present paper we consider the periodic boundary conditions. It is
worth noting that for other types of boundary conditions even coercive higher
order equations, e.g. (3.17) at a > 1 and (3.23) have spurious particular
solutions, for which asymptotic ansatz (3.1) is violated, see the discussion in
[24], [15] for greater detail. In the latter case the treatment of boundary value
problems may need a rather delicate treatment to suppress the contribution
of spurious patterns, see also [31],[30].
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