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Abstract. We provide an analytic derivation of the bifurcation conditions for localized bulging in
an inflated hyperelastic tube of arbitrary wall thickness and axisymmetric necking in a hyperelastic
sheet under equibiaxial stretching. It has previously been shown numerically that the bifurcation
condition for the former problem is equivalent to the vanishing of the Jacobian determinant of
the internal pressure P and resultant axial force N , with each of them viewed as a function of
the azimuthal stretch on the inner surface and the axial stretch. This equivalence is established
here analytically. For the latter problem for which it has recently been shown that the bifurcation
condition is not given by a Jacobian determinant equal to zero, we explain why this is the case and
provide an alternative interpretation.
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1. Introduction

We revisit here the problem of localized bulging in a hyperelastic tube of arbitrary wall thickness sub-
ject to axial loading and internal pressure, and the problem of axisymmetric necking in a hyperelastic
sheet under equibiaxial stretching. Studies on the former problem date back as early as Mallock [1],
and much progress has been made since then [2–9], but misconceptions also persisted that prevented
a thorough understanding of this important prototypical localization problem. For instance, localized
bulging of inflated rubber tubes was thought to have some connection with the pressure versus vol-
ume curve having a maximum (the so-called limiting point instability) [10–12], but the precise nature
of this connection was not clear and the initiation pressure was often incorrectly calculated as the
bifurcation pressure for a periodic mode. Fu et al. [13] demonstrated explicitly, under the membrane
assumption, that localized bulging is a bifurcation phenomenon but is not connected with a periodic
mode. In fact, a weakly nonlinear analysis based on the periodic mode viewpoint would give a bulging
profile that has no resemblance to the actual bulging profile observed experimentally or simulated nu-
merically. They also demonstrated that the initiation pressure is equal to the pressure for the limiting
point instability in one loading scenario, but this connection may be lost in other loading scenarios
(e.g., the case of fixed ends).

Recent studies have focused on tubes of arbitrary wall thickness to which the membrane as-
sumption no longer applies. With the help of dynamical systems theory, Fu et al. [14] derived the
bifurcation condition for localized bulging and showed that it takes a simple form JpP,Nq “ 0 where
JpP,Nq denotes the Jacobian determinant of the internal pressure P and resultant axial force N ,
each viewed as a function of two principal stretches. This bifurcation condition was rederived in [15]
as a by-product of a weakly nonlinear analysis to derive the bulging solution explicitly. The derived
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analytic predictions were corroborated by numerical simulations [16] and experimental studies [17].
This bifurcation condition provides a framework under which various other effects may be assessed in
a systematic manner [18–23]. More recently, the same methodology has been applied to study elasto-
capillary bulging and necking in soft elastic cylinders [24] and tubes [25, 26]. The work [24] seems to
be the first self-consistent study on this problem that not only addresses the initial bifurcation, but
also connects it to the final Maxwell state, correcting again misconceptions in the relevant field.

The bifurcation condition JpP,Nq “ 0 was established in [14] via a brute force approach: the
condition that zero becomes a triple eigenvalue of the spatial dynamical system governing axisym-
metric incremental deformations is first derived, and was then shown numerically to be equivalent to
JpP,Nq “ 0. The purpose of the current paper is to derive this equivalence analytically, thus providing
further insight into the bifurcation condition and justifying its application in other elastic localiza-
tion problems. The main idea is to recognize that the bifurcation condition is simply the solvability
condition for an extra uniform expansion to exist.

The same methodology is then applied to derive the bifurcation condition for the axisymmetric
necking of a thin sheet that is subject to equibiaxial stretching within the plane. Under general biaxial
stretching (not necessarily equibiaxial), the two nominal stresses are functions of the two in-plane
stretches, and it is then natural to compute their Jacobian determinant, evaluate it at an equibiaxial
stretching state, and ask whether it is related to necking. It turns out that this is not the case [27],
and we explain why.

The rest of this paper is organized as follows. The next section is devoted to the inflation problem.
We first summarize the solution for the primary inflation solution and the incremental boundary
value problem, and then re-derive the bifurcation solution using a procedure that is simpler than
that employed in [14]. This new derivation shows explicitly that the bifurcation condition is in fact
the solvability condition for a non-trivial uniform perturbation to exist, and thus enables the above-
mentioned equivalence to be established. In Section 3 we use the same methodology to study the
axisymmetric necking problem. The paper is concluded in Section 4 with a summary and a discussion
of other applications of the methodology proposed in the current paper.

2. Localized bulging in an inflated hyperelastic tube

2.1. Uniform inflation and extension

We consider a sufficiently long circular cylindrical tube that is incompressible, isotropic and hyperelas-
tic. The tube is assumed to have inner radius A and outer radius B before deformation; see Fig. 1(a).
When it is uniformly stretched in the axial direction by a force N and inflated by an internal pressure
P , the inner and outer radii become a and b, respectively, as shown in Fig. 1(b). The deformation, in
terms of cylindrical polar coordinates, is specified by

r2 “ λ´1
z pR

2 ´A2q ` a2, θ “ Θ, z “ λzZ, (2.1)

where pR,Θ, Zq and pr, θ, zq are the coordinates in the undeformed and deformed configurations,
respectively, and λz is the constant stretch in the axial direction. The first equation in (2.1) is a
consequence of the incompressibility constraint. It follows from (2.1) that the three principal stretches
are simply

λ1 “
r

R
, λ2 “ λz, λ3 “ 1{pλ1λ2q, (2.2)

where we have identified the indices 1, 2, 3 with the θ-, z-, and r-directions, respectively. Throughout
this paper, we shall refer to the deformed configuration corresponding to (2.1) as the uniformly inflated
configuration.

We assume that the constitutive behavior of the tube is described by a strain energy function
W pλ1, λ2, λ3q. The non-zero Cauchy stresses are given by

σii “ λi
BW

Bλi
´ p, i “ 1, 2, 3, (2.3)
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(a) (b)

Figure 1. A hyperelastic cylindrical tube in (a) reference (undeformed) configura-
tion and (b) uniformly inflated configuration.

where p is the Lagrange multiplier enforcing the incompressibility constraint. For the considered defor-
mation,W can be regarded as a function of λ1 and λ2 which we write as wpλ1, λ2q “W pλ1, λ2, λ

´1
1 λ´1

2 q.
By a standard calculation using (2.3) we obtain the stress differences

σ11 ´ σ33 “ λ1w1, σ22 ´ σ33 “ λ2w2, (2.4)

where w1 “ Bw{Bλ1 and w2 “ Bw{Bw2.
The only equilibrium equation that is not satisfied automatically is

dσ33
dr

`
σ33 ´ σ11

r
“
dσ33
dr

´
λ1w1

r
“ 0, (2.5)

and the associated boundary conditions are

σ33|r“a “ ´P, σ33|r“b “ 0, (2.6)
ż b

a

rσ22 dr ´
1

2
a2P “

N

2π
. (2.7)

Integrating equation (2.5) subject to the boundary conditions (2.6) leads to

´

ż b

a

λw1

r
dr ` P “ 0, (2.8)

whereas eliminating σ22 in (2.7) in favor of σ33 with the aid of (2.4)2, (2.5) and (2.6) yields
ż b

a

rλzw2 dr ´
1

2

ż b

a

rλw1 dr ´
N

2π
“ 0. (2.9)

Alternatively, the last two equations may be manipulated into the form [29]

P “

ż λa

λb

w1

λ2λz ´ 1
dλ, (2.10)

N “ πA2pλ2aλz ´ 1q

ż λa

λb

2λzw2 ´ λw1

pλ2λz ´ 1q2
λ dλ, (2.11)

where the two limits λa and λb are defined by λa “ a{A and λb “ b{B, and are related to each other
by the incompressibility condition pλ2bλz ´ 1qB2 “ pλ2aλz ´ 1qA2.

2.2. Derivation of the bifurcation condition for localized bulging

We first summarize the linearized incremental equations for the problem formulated in the previous
subsection. We consider an axisymmetric perturbation of the form

δx “ upr, zqer ` vpr, zqez, (2.12)
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where δx stands for the increment of the position vector x and per, eθ, ezq denotes the standard
orthonormal basis for cylindrical polar coordinates pr, θ, zq. It follows that the incremental deformation
gradient η is

η “
u

r
eθ b eθ ` vzez b ez ` vrez b er ` uzer b ez ` urer b er, (2.13)

where vz :“ Bv{Bz, vr :“ Bv{Br, etc.

The incremental equilibrium equations that are not satisfied automatically are [15]

Bχ22

Bz
`
Bχ23

Br
`
χ23

r
“ 0, (2.14)

Bχ33

Br
`
Bχ32

Bz
`
χ33 ´ χ11

r
“ 0, (2.15)

where the incremental stress components χij are given by

χij “ Bjiklηlk ` pηji ´ p˚δji. (2.16)

In the above expression, p and p˚ are the Lagrange multipliers associated with the deformation (2.1)
and the incremental deformation, respectively, and Bijkl are the instantaneous elastic moduli given
by [28]

Biijj “ λiλjWij ,

Bijij “
λiWi ´ λjWj

λ2i ´ λ
2
j

λ2i , λi ‰ λj ,

Bijji “ Bijij ´ λiWi, i ‰ j,

(2.17)

where Wi “ BW {Bλi, Wij “ B
2W {BλiBλj , etc.

The equilibrium equations (2.14) and (2.15) are to be solved in conjunction with the incompress-
ibility condition

trpηq “ ur ` vz `
u

r
“ 0 (2.18)

subject to the incremental boundary conditions

pχn´ PηTnq|r“a “ 0, χn|r“b “ 0, (2.19)

where n denotes the unit normal to the surface where each of the boundary conditions is imposed.
Written out explicitly, the above boundary conditions become

vr ` uz “ 0, r “ a, b, (2.20)

pB3333 ´ B2233 ` λ3W3qur ` pB1133 ´ B2233q
u

r
´ p˚ “ 0, r “ a, b. (2.21)

To study the bifurcation of the primary deformation determined previously, we look for an
eigensolution of the form

upr, zq “ fprqeαz, vpr, zq “
1

α
gprqeαz, p˚pr, zq “ hprqeαz, (2.22)
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where α is a spectral parameter and the functions f, g and h are to be determined. On substituting
these expressions into (2.14), (2.15) and (2.18)–(2.21), we obtain the differential equations

α2pB2233 ` B3223qf
1prq ` α2 1

r
prpB13223 ` p1q ` B1122 ` B3223qfprq

` B3232g
2prq `

1

r
pB3232 ` rB13232qg1prq ` α2B2222gprq ´ α

2hprq “ 0,

(2.23)

B3333f
2prq `

1

r
prpB13333 ` p1q ` B3333qf

1prq `
1

r2
pα2r2B2323 ` rB11133 ´ B1111qfprq

` pB2233 ` B2332qg
1prq `

1

r
prB12233 ` B2233 ´ B1122qgprq ´ h

1prq “ 0,

(2.24)

f 1prq `
fprq

r
` gprq “ 0, (2.25)

and the associated boundary conditions

α2fprq ` g1prq “ 0, r “ a, b, (2.26)

pB3333 ´ B2233 ` λ3W3qf
1prq `

1

r
pB1133 ´ B2233qfprq ´ hprq “ 0, r “ a, b. (2.27)

In the above equations, B13223 “ dB3223{dr, p
1 “ dp{dr, etc. Solving the above eigenvalue problem

using the numerical scheme detailed in [14] or [29], we may determine the relationship between λa
and α2. For periodic buckling modes, we replace α by ik with k denoting the axial wavenumber. The
bifurcation condition for such periodic buckling modes has been computed by Haughton & Ogden [29].
Here our attention will be focused on the condition when non-trivial solutions with an infinitesimal α
may exist.

We thus assume that α is infinitesimal and write ε “ α2. We aim to determine the corresponding
principal stretch λa for which such a small eigenvalue can exist (the other parameter λz is either fixed
or determined by the condition that N is fixed). Since ε is small, it is natural to look for a solution of
the form

λa “ λacr ` ελ0 `Opε
2q. (2.28)

Once we have found this asymptotic expression, it is then clear that α Ñ 0 as λa Ñ λacr. In other
words, λacr is the value of λa at which zero becomes a triple eigenvalue and is therefore the critical
value for localized bulging to take place [30–32].

Since the eigenvalue problem (2.23)–(2.27) contains a small parameter ε, it is appropriate to look
for an asymptotic solution of the form

fprq “ εf p1qprq ` ε2f p2qprq ` ¨ ¨ ¨ ,

gprq “ εgp1qprq ` ε2gp2qprq ` ¨ ¨ ¨ ,

hprq “ εhp1qprq ` ε2hp2qprq ` ¨ ¨ ¨ ,

(2.29)

where the functions on the right-hand sides are to be determined at successive orders.

On substituting (2.29) into (2.23), (2.25), (2.26), and then equating the coefficients of ε, we
obtain

1

r

d

dr
rB3232

d

dr
gp1q “ 0, gp1q `

1

r

d

dr
rf p1q “ 0, (2.30)

d

dr
gp1q “ 0, r “ a, b. (2.31)

By straightforward integration, we find that

gp1q “ ´2c1, f p1q “ c1r `
c2
r
, (2.32)

where c1 and c2 are arbitrary constants.
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The solution for hp1qprq can be found by considering the coefficients of ε in the equilibrium
equation (2.24) and the associated boundary conditions (2.27), which take the form

c1ω1prq ` c2ω2prq ´
d

dr
hp1q “ 0, (2.33)

c1D1prq ` c2D2prq ´ h
p1q “ 0, r “ a, b, (2.34)

where the functions ω1prq, ω2prq, D1prq and D2prq are defined by

ω1prq “ B11133 ` B13333 ´ 2B12233 ` p̄1 `
1

r
p2B1122 ` B3333 ´ B1111 ´ 2B2233q, (2.35)

ω2prq “
1

r2
pB11133 ´ B13333 ´ p̄1q `

1

r3
pB3333 ´ B1111q, (2.36)

D1prq “ B1133 ` B3333 ´ 2B2233 ` λ3W3, (2.37)

D2prq “
1

r2
pB1133 ´ B3333 ´ λ3W3q. (2.38)

Integrating (2.33) from r “ a to r “ b and making use of the boundary condition (2.34), we obtain

m11c1 `m12c2 “ 0, (2.39)

where the coefficients m11 and m12 are given by

m11 “

ż b

a

ω1prq dr `D1paq ´D1pbq, (2.40)

m12 “

ż b

a

ω2prq dr `D2paq ´D2pbq. (2.41)

Alternatively, equation (2.39) can be obtained by integrating the equilibrium equation (2.15) from
r “ a to r “ b and making use of the boundary conditions (2.19), that is from

ż b

a

Bχ32

Bz
dr `

ż b

a

χ33 ´ χ11

r
dr ´ Pur|r“a “ 0. (2.42)

A second linear equation for c1 and c2 can be derived from overall equilibrium in the z-direction:
ż b

a

χ22r dr ´ Pau|r“a “ 0. (2.43)

This equation follows from integration of the equilibrium equation (2.14) multiplied by r from r “ a
to r “ b, followed by application of the boundary conditions (2.19) and the decaying conditions as
z Ñ ˘8 appropriate for a localized solution. Equating the coefficient of ε in the above equation then
leads to

m21c1 `m22c2 “ 0, (2.44)

where the coefficients m21 and m22 are given by

m21 “

ż b

a

θ1prqr dr ´
1

2

ż b

a

ω1prqpb
2 ´ r2q dr ´

1

2
D1paqpb

2 ´ a2q ´ a2P, (2.45)

m22 “

ż b

a

θ2prqr dr ´
1

2

ż b

a

ω2prqpb
2 ´ r2q dr ´

1

2
D2paqpb

2 ´ a2q ´ P, (2.46)

with θ1prq and θ2prq defined by

θ1prq “ B1122 ` B2233 ´ 2B2222 ´ 2p, (2.47)

θ2prq “
1

r2
pB1122 ´ B2233q. (2.48)

The existence of a nonzero solution to (2.39) and (2.44) requires that

Ωpλa, λzq :“ m11m22 ´m12m21 “ 0, (2.49)
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which is an equation that must be satisfied by λacr, and so is the bifurcation condition for localized
bulging. We have verified numerically that (2.49) is equivalent to its counterpart in [14]. We note that
equations (2.39) and (2.44) are both obtained at leading order due to the use of two integrals of the
incremental equilibrium equations, whereas their counterparts in [14] were obtained at a higher order.

2.3. Equivalence between the bifurcation condition and JpP,Nq “ 0

Although the bifurcation condition (2.49) is simpler than its counterpart in [14], it is still too compli-
cated to give a direct analytical proof of its equivalence to JpP,Nq “ 0, where JpP,Nq denotes the
Jacobian of P and N with each of them viewed as a function of λa and λz (see (2.10) and (2.11)). Previ-
ously, this equivalence was only shown numerically by verifying that the contour plots of Ωpλa, λzq “ 0
and JpP,Nq “ 0 in the pλa, λzq-plane always coincide. We now establish this equivalence analytically.

We first note that with the use of (2.29) and (2.32), the solution (2.22) takes the form

upr, zq “ α2pc1r `
c2
r
`Opα2qqeαz, (2.50)

vpr, zq “ αp´2c1 `Opα
2qqeαz. (2.51)

Thus, to order α2 we have

upr, zq “ α2pc1r `
c2
r
q, vpr, zq “ ´2αc1 ´ 2α2c1z. (2.52)

Consequently, the coordinates of a representative point in the perturbed configuration are given by

r̃ “ r ` α2pc1r `
c2
r
q, z̃ “ z ´ 2α2c1z ´ 2αc1. (2.53)

To interpret these two expressions, we view the r and z given by (2.1) as functions of λa and λz and
differentiate them to obtain

dr “
Br

Bλa
dλa `

Br

Bλz
dλz “

A2λa
r

dλa ´
r2 ´A2λ2a

2rλz
dλz, (2.54)

dz “ λ´1
z zdλz, (2.55)

where dr denotes the differential of r etc. It can then be verified that equation (2.53) may be rewritten
as r̃ “ r ` dr, z̃ “ z ` dz ´ 2αc1 provided

dλa “ α2pc1λa `
c2

λaA2
q, dλz “ ´2α2λzc1. (2.56)

Thus, the perturbed configuration given by (2.53) is due to a constant perturbation in λa and λz. In
other words, the solution (2.52) corresponds to a perturbation that takes the hyperelastic tube from
one uniformly inflated configuration to another uniformly inflated configuration, plus a rigid body
displacement in the axial direction (represented by the term ´2αc1). Note that higher order terms
are not relevant to the bifurcation condition since as pointed earlier the latter was derived at leading
order. Therefore, the bifurcation condition for localized bulging is simply the condition for an adjacent
uniformly inflated configuration to exist.

Let us denote by P˚pλa, λzq and N˚pλa, λzq the two functions resulting from viewing P and N
as functions of λa and λz (i.e., the right-hand sides of (2.10) and (2.11)). Then uniformly inflated
configurations are characterized by the following two equations

P˚pλa, λzq “ P, N˚pλa, λzq “ N. (2.57)

As argued above, the bifurcation occurs when locally the above relation cannot be inverted uniquely.
By the implicit function theorem, this implies that the Jacobian determinant of the functions P˚ and
N˚ is zero at the bifurcation point. We note that P˚pλa, λzq and N˚pλa, λzq represent the functional
dependence of P and N on λa and λz, respectively. Hence the bifurcation condition for localized
bulging is equivalent to the vanishing of the Jacobian of P and N with them viewed as functions of
λa and λz.
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By carefully analyzing the linearized forms of (2.57) and connecting them with equations (2.42)
and (2.43), one can establish the equality

Ωpλa, λzq “ ´
λz

πλaA2

´

BP˚

Bλa

BN˚

Bλz
´
BP˚

Bλz

BN˚

Bλa

¯

, (2.58)

which proves the equivalence between the bifurcation condition and JpP,Nq “ 0 explicitly in view of
(2.49). For interested readers, we present the proof of equality (2.58) in Appendix A.

3. Axisymmetric necking in a hyperelastic sheet under equibiaxial stretching

In this section, we address the bifurcation condition for axisymmetric necking in a hyperelastic sheet
under equibiaxial stretching. Unlike the problem studied in the previous section, the governing equa-
tions in this problem have variable coefficients and thus do not enjoy translational invariance in the
direction of localization. It turns out that the bifurcation condition no longer corresponds to the
vanishing of a Jacobian determinant.

3.1. Homogeneous solution corresponding to equibiaxial tension

We consider a sufficiently large circular incompressible hyperelastic sheet that is subject to an equibi-
axial tension in its plane. The thicknesses of the sheet in the undeformed and deformed configurations
are denoted by 2H and 2h, respectively. The equibiaxial deformation is described by

r “ λR, θ “ Θ, z “ λ´2Z, (3.1)

where pR,Θ, Zq and pr, θ, zq are the cylindrical polar coordinates in the undeformed and deformed
configurations, respectively, and λ is the constant stretch in the plane. It follows that the three principal
stretches are given by

λ1 “ λ3 “ λ, λ2 “ λ´2, (3.2)

where 1, 2, 3 still correspond to the θ-, z- and r-directions, respectively.

In terms of the strain energy function W pλ1, λ2, λ3q, the non-zero nominal stress components are
given by

Sii “
BW

Bλi
´ pλ´1

i , i “ 1, 2, 3, (3.3)

where p is the Lagrange multiplier enforcing the incompressibility constraint. The top and bottom
surfaces of the sheet are assumed to be traction-free, thus S22 “ 0. Eliminating p using this condition
yields

S11pλ1, λ3q “
Bw

Bλ1
pλ1, λ3q, S33pλ1, λ3q “

Bw

Bλ3
pλ1, λ3q, (3.4)

where wpλ1, λ3q “ W pλ1, λ
´1
1 λ´1

3 , λ3q is the reduced strain energy function. For the homogeneous
solution, we have 2S33 “ dwpλ, λq{dλ, which allows one to determine the stretch once the traction at
the circular edge is specified.

3.2. Bifurcation condition for axisymmetric necking

In a similar fashion to Section 2, the bifurcation condition for axisymmetric necking can be obtained
by solving an eigenvalue problem. As in that section, we superpose an axisymmetric perturbation
of the form δx “ upr, zqer ` vpr, zqez to the homogeneous configuration. The linearized incremental
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governing equations can be written as

Bχ22

Bz
`
Bχ23

Br
`
χ23

r
“ 0, (3.5)

Bχ33

Br
`
Bχ32

Bz
`
χ33 ´ χ11

r
“ 0, (3.6)

η11 ` η22 ` η33 “ 0, (3.7)

χ22 “ 0, χ32 “ 0, z “ ˘h, (3.8)

where the incremental deformation gradient η and stress tensor χ have been defined in (2.13) and
(2.16), respectively.

We look for an eigensolution of the form

upr, zq “
1

α
fpzqI1pαrq, vpr, zq “ gpzqI0pαrq, p˚pr, zq “ ppzqI0pαrq, (3.9)

where α plays the role of the spectral parameter, Inpxq, n “ 0, 1, . . . denote the modified Bessel
functions of the first kind that obey the identities

In`1pxq “ In´1pxq ´
2n

x
Inpxq, I 1npxq “

1

2
pIn´1pxq ` In`1pxqq, (3.10)

and the functions f , g and p are to be determined. On substituting this solution into (3.5)–(3.8) and
using (3.10) to simplify the results, we obtain the differential equations

pB1122 ` B3223qf
1pzq ` B2222g

2pzq ` α2B3232gpzq ´ p
1pzq “ 0, (3.11)

B2323f
2pzq ` α2B1111fpzq ` α

2pB1122 ` B2332qg
1pzq ´ α2ppzq “ 0, (3.12)

fpzq ` g1pzq “ 0, (3.13)

and the associated boundary conditions

B1122fpzq ` pB2222 ` λ2W2qg
1pzq ´ ppzq “ 0, z “ ˘h, (3.14)

f 1pzq ` α2gpzq “ 0, z “ ˘h. (3.15)

We assume that the bifurcation condition for axisymmetric necking still corresponds to when a non-
trivial solution with an infinitesimal α exist. To find this condition, we let ε “ α2 and look for an
asymptotic solution of the form

fpzq “ εf p1qpzq ` ε2f p2qpzq ` ¨ ¨ ¨ ,

gpzq “ εgp1qpzq ` ε2gp2qpzq ` ¨ ¨ ¨ ,

ppzq “ εpp1qpzq ` ε2pp2qpzq ` ¨ ¨ ¨ .

(3.16)

On substituting (3.16) into (3.11)–(3.15) and equating the coefficient of ε, we obtain a boundary value
problem satisfied by f p1q, gp1q and pp1q whose solution is given by

f p1q “ A, gp1q “ ´Az `B, pp1q “ ApB1122 ´ B2222 ´ λ2W2q, (3.17)

where A and B are arbitrary constants.
By integrating r times the equilibrium equation (3.6) across the thickness and making use of the

boundary conditions (3.8), we obtain

r
dχ̃33

dr
` χ̃33 ´ χ̃11 “ 0, (3.18)

where the stress resultants χ̃11 and χ̃33 are defined by

χ̃11 “

ż h

´h

χ11 dz, χ̃33 “

ż h

´h

χ33 dz. (3.19)
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Substituting (3.17) into (3.18), we obtain

r
dχ̃33

dr
` χ̃33 ´ χ̃11 “ pεpB1111 ` B2222 ´ 2B1122 ` 2λ2W2qA`Opε

2qq2hαrI1pαrq

“ ε2pB1111 ` B2222 ´ 2B1122 ` 2λ2W2qhr
2A`Opε3q “ 0,

(3.20)

which must hold for arbitrary ε. It follows that the bifurcation condition for axisymmetric necking
is [27]

B1111 ` B2222 ´ 2B1122 ` 2λ2W2 “ 0. (3.21)

We remark that the leading order term on the right-hand side of (3.20) is of order ε2 and the bifurcation
condition is obtained by setting this ε2 term to zero. This is in contrast with the situation in the
previous problem where the bifurcation equation was obtained by equating an Opεq term to zero.

3.3. Equivalence between the bifurcation condition and BS33{Bλ3 “ 0

In view of (3.13) and (3.17), the perturbation solution is of the form

upr, zq “ αpA` α2C 1pzq `Opα4qqI1pαrq, (3.22)

vpr, zq “ α2p´Az `B ´ α2Cpzq `Opα4qqI0pαrq, (3.23)

where Cpzq “ ´gp2qpzq. Note that we cannot obtain the bifurcation condition by expanding I0pαrq
and I1pαrq in terms of α and then considering the leading order (i.e., Opα2q) terms of upr, zq and
vpr, zq as in Subsection 2.3, since now the bifurcation condition is obtained at Opα4q. To order α4, we
have

u “
1

2
α2Ar `

1

16
α4Ar3 `

1

2
α4rC 1pzq, (3.24)

v “ α2p´Az `Bq `
1

4
α4p´Az `Bqr2 ´ α4Cpzq. (3.25)

Accordingly, the non-zero components of the incremental deformation gradient to order α4 are

η11 “
1

2
α2A`

1

16
α4Ar2 `

1

2
α4C 1pzq,

η22 “ ´α
2A´

1

4
α4Ar2 ´ α4C 1pzq,

η23 “
1

2
α4p´Az `Bqr,

η32 “
1

2
α4rC2pzq,

η33 “
1

2
α2A`

3

16
α4Ar2 `

1

2
α4C 1pzq.

(3.26)

Let F denote the deformation gradient related to the perturbed deformation. It follows from the chain
rule that

F “

¨

˝

λp1` η11q 0 0
0 λ´2p1` η22q λη23
0 λ´2η32 λp1` η33q

˛

‚. (3.27)

The corresponding principal stretches are then given by

λ̃1 “ λp1` η11q, λ̃2 “ λ´2p1` η22q `Opα
8q, λ̃3 “ λp1` η33q `Opα

8q. (3.28)

Thus even to order α4, the θ-, z- and r-directions are still principal directions, and the constitutive
relation (3.4) still holds for the perturbed configuration. We note, however, that the deformation is
homogeneous (an equibiaxial extension) to order α2, but is non-homogeneous when expanded to order
α4.
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From the definition of the stress tensor χ, it is not hard to see that (3.18) corresponds to the
linearized form of

R
dS̃33

dR
` S̃33 ´ S̃11 “ 0, (3.29)

where S̃11 and S̃33 are defined by

S̃11 “

ż H

´H

S11 dZ, S̃33 “

ż H

´H

S33 dZ. (3.30)

With the use of (3.26) and (3.28), we may expand S11 as

S11 “S11|λ1“λ3“λ `
BS11

Bλ1
λη11 `

BS11

Bλ3
λη33 `

1

2

B2S11

Bλ21
pλη11q

2

`
B2S11

Bλ1λ3
λ2η11η33 `

1

2

B2S11

Bλ23
pλη33q

2 ` ¨ ¨ ¨ ,

(3.31)

where all the partial derivatives are evaluated at λ1 “ λ3 “ λ. A similar expression for S33 can be
written. On integrating these two expressions from Z “ ´H to Z “ H and then substituting the
resulting expressions into (3.29), we find

BS33

Bλ3
λAHr2α4 `Opα6q “ 0. (3.32)

We observe that the leading order term on the left-hand side is of order α4 and is due to the r-
dependent terms in η11 and η33. Therefore, the bifurcation condition for axisymmetric necking can be
expressed in the simple form

BS33

Bλ3
“ 0. (3.33)

Note that it also follows from the definition of χ that (3.18) differs from the linearized form of (3.29)
by a factor of λ hH . A comparison of (3.20) and (3.32) yields

λ2
BS33

Bλ3
“ B1111 ` B2222 ´ 2B1122 ` 2λ2W2. (3.34)

This connection was derived in [27] by expressing both sides in terms of derivatives of the strain energy
function, whereas here it is derived without using these expressions explicitly.

Equation (3.29) represents equilibrium in the r-direction of an infinitesimal annular sector. It
is obvious that any homogeneous solution in the form of equibiaxial extension would always satisfy
this equation. According to the above analysis, the bifurcation condition for axisymmetric necking
corresponds to when this equilibrium equation admits a non-homogeneous solution. This explains
why the bifurcation condition for necking is not given by a Jacobian determinant equal to zero.

4. Conclusion

It was shown numerically in [14] that the bifurcation condition for localized bulging of an inflated
rubber tube is equivalent to JpP,Nq “ 0 with JpP,Nq denoting the Jacobian determinant of the
internal pressure P and resultant axial force N which are viewed as functions of two deformation
parameters λa and λz. In this paper, we derived this equivalence analytically by employing two
integrals of the equilibrium equations together with the observation that the bifurcation condition is
the solvability condition for a non-trivial uniform perturbation to exist. The same strategy is applied
to the axisymmetric necking of a stretched elastic plate for which it has recently been shown that the
bifurcation condition is not given by a Jacobian determinant equal to zero although the perturbation
still represents a homogeneous equibiaxial extension to leading order. We give an explanation for the
latter fact by deriving the bifurcation condition analytically, and showing that it is the condition
for an infinitesimal sectorial element to admit an adjacent non-homogeneous solution. We emphasize



12 Xiang Yu and Yibin Fu

that, contrary to the common belief, a homogeneous perturbation does not necessarily imply that the
bifurcation condition corresponds to the vanishing of some Jacobian determinant, as shown in the
problem of axisymmetric necking. The bifurcation condition should be derived by carefully analyzing
the incremental equations for the homogeneous perturbation and connecting them with the equilibrium
equations of the primary deformation; the latter step usually leads to a simple form of the bifurcation
condition. We believe that this method can be applied in other similar localization problems such as
elasto-capillary necking/bulging in soft cylinders [24] or tubes [25,26], necking in solid cylinders under
axial stretching [33]. It is also expected that the current methodology can be used to significantly
simplify the weakly nonlinear analysis that determines the localized solutions explicitly.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 12072224).

Appendix A. Proof of equality (2.58)

To prove (2.58), we start by analyzing the linearized forms of (2.57). Assuming that the perturbed
configuration is also uniform, we show below that the linearized forms of the following two equations

´ P˚pλa, λzq ` P “ 0, (A.1)

1

2
b2pP˚pλa, λzq ´ P q `

1

2π
pN˚pλa, λzq ´Nq “ 0 (A.2)

agree with (2.42) and (2.43).

Let us denote by σ and σ the Cauchy stresses associated with the uniformly inflated configuration
and perturbed configuration, respectively. Then it follows from the definition of the incremental stress
tensor χ that

σ “ pI ` ηqpσ ` χq. (A.3)

Note that the incremental deformation gradient η is diagonal since the perturbed configuration is
uniform.

Specifying (A.1) to the perturbed configuration, we see from the definition of P˚ that the resulted
equation takes the form

ż b̃

ã

σ33 ´ σ11
r̃

dr̃ ` P “ 0. (A.4)

where r̃ “ r ` u denotes the radius of the tube after perturbation, and ã “ r̃pAq and b̃ “ r̃pBq. Sub-
stituting (A.3) into (A.4) and making a change of variables (integration by substitution) by applying
the incompressibility equality

λ̃zpr̃
2 ´ ã2q “ λzpr

2 ´ a2q, (A.5)

where λ̃z is the axial stretch of the tube in the perturbed configuration, we obtain

ż b

a

p1` η33qpσ33 ` χ33q ´ p1` η11qpσ11 ` χ11q

r

λzr
2

λ̃z r̃2
dr ` P “ 0. (A.6)

When expanded to linear order, we have

λzr
2

λ̃z r̃2
“ 1´ 2

r̃ ´ r

r
´
λ̃z ´ λz
λz

“ 1´ 2η11 ´ η22 “ 1´ η11 ` η33, (A.7)
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where we have used incompressibility constraint η11`η22`η33 “ 0. Thus by ignoring nonlinear terms,
one can simplify (A.6) as

ż b

a

χ33 ´ χ11

r
dr `

ż b

a

pσ33
η33 ´ η11

r
`
σ33 ´ σ11

r
η33q dr “ 0. (A.8)

The radial equilibrium for the unperturbed deformation implies that

dσ33

dr
`
σ33 ´ σ11

r
“ 0. (A.9)

Using integration by parts, one can write the second integral in (A.8) as
ż b

a

pσ33
η33 ´ η11

r
`
σ33 ´ σ11

r
η33q dr “

ż b

a

pσ33
η33 ´ η11

r
´
dσ33

dr
η33q dr

“ ´σ33η33|
r“b
r“a `

ż b

a

σ33p
η33 ´ η11

r
`
dη33
dr
q dr

“ ´Pur|r“a `

ż b

a

σ33p
η33 ´ η11

r
`
dη33
dr
q dr,

(A.10)

where use has been made of the boundary conditions σ33|r“a “ ´P and σ33|r“b “ 0. In view of
incompressibility constraint and the fact that η22 is constant since the perturbed configuration is
uniform, we deduce that

η33 ´ η11
r

`
dη33
dr

“
η33 ´ η11

r
´
dη11
dr

“
ur ´ u{r

r
´

d

dr
p
u

r
q “ 0. (A.11)

Putting these together, we see that the linearized form of (A.1) can be written as
ż b

a

χ33 ´ χ11

r
dr ´ Pur|r“a “ 0, (A.12)

which agrees with (2.42) (note that χ32 “ 0 for uniform inflations).
Equation (A.2) applied to the perturbed configuration can be written as

ż b̃

ã

σ22r̃ dr̃ ´
1

2
ã2P ´

N

2π
“ 0. (A.13)

Using (A.3) and (A.5), we can rewrite the above equation as
ż b

a

pσ22 ` χ22qr dr ´
1

2
ã2P ´

N

2π
“ 0. (A.14)

Its linearized form is
ż b

a

χ22r dr ´ Pau|r“a “ 0, (A.15)

which is the same as (2.43).

Now let λ̃a and λ̃z be the two principal stretches of the perturbed configuration, thus

λ̃a “ λa ` dλa “ λa ` α
2pc1λa `

c2
λaA2

q, (A.16)

λ̃z “ λz ` dλz “ λz ´ 2α2λzc1. (A.17)

Then equation (A.1) applied to the unperturbed and perturbed configurations takes the form´P˚pλa, λzq`

P “ 0 and ´P˚pλ̃a, λ̃zq ` P “ 0, respectively. Subtraction of these two equalities yields

´P˚pλ̃a, λ̃zq ` P
˚pλa, λzq “ 0. (A.18)

In a similar way, we can deduce from (A.2) that

1

2
b̃2pP˚pλ̃a, λ̃zq ´ P

˚pλa, λzqq `
1

2π
pN˚pλ̃a, λ̃zq ´N

˚pλa, λzqq “ 0, (A.19)
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where b̃ “ r̃pBq is the outer radius of the tube after perturbation. Linearizing the above two equations
at pλa, λzq followed by the use of (A.16) and (A.17), we obtain

p2λz
BP˚

Bλz
´ λa

BP˚

Bλa
qc1 ´

1

λaA2

BP˚

Bλa
c2 “ 0, (A.20)

´λa
2π

BN˚

Bλa
`
λab

2

2

BP˚

Bλa
´
λz
π

BN˚

Bλz
´ λzb

2 BP
˚

Bλz

¯

c1 `
´ 1

2πλaA2

BN˚

Bλa
`

b2

2λaA2

BP˚

Bλa

¯

c2 “ 0, (A.21)

Comparing them with (2.39) and (2.44), we conclude that

m11 “ 2λz
BP˚

Bλz
´ λa

BP˚

Bλa
,

m12 “ ´
1

λaA2

BP˚

Bλa
,

m21 “
λa
2π

BN˚

Bλa
`
λab

2

2

BP˚

Bλa
´
λz
π

BN˚

Bλz
´ λzb

2 BP
˚

Bλz
,

m22 “
1

2πλaA2

BN˚

Bλa
`

b2

2λaA2

BP˚

Bλa
.

(A.22)

In view of (2.49), it follows from (A.22) that Ωpλa, λzq can be expressed as

Ωpλa, λzq “ ´
λz

πλaA2
p
BP˚

Bλa

BN˚

Bλz
´
BP˚

Bλz

BN˚

Bλa
q, (A.23)

which completes the proof.
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[8] Rodŕıguez, J., Merodio, J.: A new derivation of the bifurcation conditions of inflated cylindrical membranes
of elastic material under axial loading. Application to aneurysm formation. Mech. Re. Commun. 38(3),
203–210, (2011). https://doi.org/10.1016/j.mechrescom.2011.02.004
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