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Matrix Equations and Hilbert’s Tenth Problem

Paul C. Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, ∗

Igor Potapov †

Abstract

We show a reduction of Hilbert’s tenth problem to the solvability of
the matrix equation Xi1

1 X
i2
2 · · ·X

ik
k = Z over non-commuting integral

matrices, where Z is the zero matrix, thus proving that the solvability
of the equation is undecidable. This is in contrast to the case whereby
the matrix semigroup is commutative in which the solvability of the
same equation was shown to be decidable in general.

The restricted problem where k = 2 for commutative matrices is
known as the “A-B-C Problem” and we show that this problem is
decidable even for a pair of non-commutative matrices over an algebraic
number field.

Keywords: Matrix Equations; Undecidability; Formal Power Series; Diophantine

Equations.

1 Introduction

Matrices and matrix semigroups play a fundamental and central role in
many diverse fields of mathematics and computer science. There has been a
great deal of interest by researchers on computational problems for finitely
generated matrix semigroups and many natural decision questions on them
are in fact undecidable.

One such problem which was studied is the mortality problem. We
are given a finite set of matrices, G, forming a semigroup S, and must
determine whether the zero matrix (the matrix with all zero elements) is
present in the semigroup. This problem was shown to be undecidable by
M. Paterson in 1970 for 3-dimensional integer matrix semigroups, [17], and
remains undecidable even when there are only 7 matrices in the generator
of the semigroup [9].
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The membership problem for a scalar matrix (A matrix with a scalar k
on all leading diagonal elements and 0 elsewhere) was recently shown to be
undecidable for 4-dimensional integral matrices, see [4]. We also mention
that the freeness problem for 3-dimensional integral matrix semigroups is
undecidable, see [13]. In fact, the problem remains undecidable even when
the matrices are upper triangular, see [8].

What can be said of decidable cases in the area however? There are
far fewer cases where decision problems are known to be decidable. It was
shown that the “orbit problem” (Given a matrix M ∈ Qn×n and vectors
u, v ∈ Qn, does there exist any k ≥ 0 such that Mku = v?) is decidable,
even in polynomial time, see [12]. Furthermore, it was shown that for a semi-
group generated by row-monomial rational matrices (each row of a matrix
contains exactly one nonzero element), the membership is decidable for any
dimension, see [14]. Some criteria for semigroup freeness in two-dimensional
upper triangular matrices was also shown in [8].

Another decidable case which was shown was that for a commutative
rational matrix semigroup in any dimension, where the membership problem
was shown to be decidable in polynomial time, see [1]. In this problem, we
are given a (finite) set of commutative matrices G = {M1,M2, . . . ,Mt} ⊆
Qn×n, and a fixed matrix M . The problem can be stated as: does there
exist natural numbers j1, j2, . . . , jt such that:

M j1
1 M

j2
2 · · ·M

jt
t = M?

In this paper we shall examine a related problem where we consider the
above equation for non-commutative integral matrices. We show that given
the k matrices X1, X2, . . . , Xk ⊆ Zn×n, determining whether there exists
natural numbers i1, i2, . . . , ik such that:

Xi1
1 X

i2
2 · · ·X

ik
k = Z,

where Z is the zero matrix, is undecidable. We do not use a reduction of
Post’s correspondence problem, as is standard for undecidability proofs, we
instead use the undecidability of Hilbert’s tenth problem and properties of
formal power series to show the undecidability.

Given three commutative matrices A,B,C the problem of determining
the solvability of the equation AiBj = C for arbitrary i, j ≥ 0 is known as
the “A-B-C Problem” and was shown to be decidable in [7] (obviously this is
a sub-case of the more general decidability result of [1] but it was considered
prior to this result and formulated after the results of [12]). We show that the
“A-B-C Problem” is decidable even for non-commutative matrices A,B,C
over an algebraic number field.
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2 Preliminaries

2.1 Matrices and Words

Let A be a finite set of letters called an alphabet. A word w is a finite
sequence of letters from A and the set of all words over A is denoted A∗.
The empty word is denoted by ε. For two words u = u1u2 · · ·ui and v =
v1v2 · · · vj , where u, v ∈ A∗, the concatenation of u and v is denoted by u · v
such that u · v = u1u2 · · ·uiv1v2 · · · vj . By abuse of notation, we also refer to
concatenation via juxtaposition, i.e., u · v = uv. A subset L of A∗ is called
a language.

As usual, for a matrix M , we denote by MT the transpose of matrix M .
For an arbitrary semiring K, let vec be a function, vec : Kn×n 7→ Kn2

, such
that vec takes an n× n matrix and creates a n2 dimensional column vector
by stacking the columns of the matrix on top of each other starting with the
first, i.e., for a matrix M ∈ Kn×n, then:

vec(M) = (M[1,1], . . . ,M[n,1],M[1,2], . . . ,M[n,2], . . . ,M[1,n], . . . ,M[n,n])
T ∈ Kn2

Let A,B,C,X ∈ Kn×n, then it is well known that the equation AXB =
C (for unknown X), can be rewritten:

(BT ⊗A)vec(X) = vec(C), (1)

where ⊗ denotes the Kronecker product, see [5].
We shall also need the mixed product property of Kronecker products,

namely that for given matrices A,B,C,D ∈ Kn×n it holds that:

(A⊗B)(C ⊗D) = (AC ⊗BD) ∈ Kn2×n2
. (2)

2.2 Formal Power Series

We use the definitions and terminology as in [6]. Here, and throughout, let
K be a semiring and A a finite alphabet generating a free monoid denoted
by A∗. A formal power series, S, is defined to be a function:

S : A∗ 7→ K,

and the image of a word w ∈ A∗ under S is denoted (S,w) and is called the
coefficient of w in S. The set of formal power series over A with coefficients
in K is denoted by K〈〈A〉〉. If there are only finitely many coefficients of a
formal power series which are nonzero, then it is called a polynomial. The
set of polynomials over A with coefficients in K is denoted by K〈A〉. We
can also use a standard notation for a formal power series S ∈ K〈〈A〉〉 by
writing:

S =
∑
w∈A∗

(S,w)w.
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Given two power series S and T , we can define their sum by:

(S + T,w) = (S,w) + (T,w),

for each word w ∈ A∗. We may also define the product of S and T by:

(ST,w) =
∑
uv=w

(S, u)(T, v),

where u, v, w ∈ A∗ and clearly the summation is finite for each word w. Two
external operations of K on K〈〈A〉〉 are given by:

(kS,w) = k(S,w), (Sk,w) = (S,w)k,

for each w ∈ A∗ where k ∈ K (note that K is not required to have commu-
tative multiplication in general).

A formal power series, S, is called proper if (S, ε) = 0, i.e., the coefficient
of the empty word in S is 0. For a proper formal power series S, we may
define the star operation:

S∗ =
∑
i≥0

Si.

The rational operations in K〈〈A〉〉 are the sum, product, star operation
and the two external products. A subset of K〈〈A〉〉 is rationally closed if
it is closed under the rational operations. The smallest subset of K〈〈A〉〉
containing a subset E, is called the rational closure of E. A formal power
series S is called K-rational if it is contained within the rational closure of
K〈A〉 (the set of polynomials).

If L is any language over an alphabet A, then its characteristic series
(which we denote by char(L)), is the formal power series S ∈ K〈〈A〉〉:

S = char(L) =
∑
w∈L

w,

i.e., it is the series S such that (S,w) = 1 if w ∈ L and 0 if w /∈ L.
We may also define the Hadamard product of two series S, T ∈ K〈〈A〉〉

by:

S � T =
∑
w∈A∗

(S,w)(T,w)w.

It was shown by Schützenberger that the Hadamard product of two K-
rational formal power series is also K-rational [20].

Furthermore, a formal power series S ∈ K〈〈A〉〉 is called recognizable if
there exists an integer n ≥ 1, two vectors ρ, τ ∈ Kn and a monoid homo-
morphism

µ : A∗ 7→ Kn×n,
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such that for all words w ∈ A∗,

(S,w) = ρTµ(w)τ.

If such elements exist, then (ρ, µ, τ) is called a linear representation of the
formal power series S.

The following fundamental theorem was originally shown by Kleene
for formal power series with boolean coefficients and later extended by
Schützenberger to arbitrary semirings:

Theorem 1 (Schützenberger, 1961 [19]). A formal power series is rational
if and only if it is recognizable.

For details of this proof, see also [6] or [18].

3 Hilbert’s Tenth Problem

In 1900, David Hilbert presented a lecture entitled “Mathematische Prob-
leme” in which he posed 23 open problems for the coming centuries. The
tenth problem, which is the only decision problem of the list, concerns the
solvability of Diophantine equations and can be stated:

Hilbert’s Tenth Problem Given a Diophantine equation with any
number of unknown quantities and with rational integral numerical coef-
ficients: To devise a process according to which it can be determined by
a finite number of operations whether the equation is solvable in rational
integers.

The problem remained open for 70 years until a “negative solution” to
the problem was shown (in other words, it was shown to be undecidable,
although the notion of algorithmic unsolvability was not known at the time)
in 1970 by Y. Matiyasevich building upon earlier work of many mathemati-
cians, including M. Davis, H. Putman and J. Robinson. For more details of
the history of the problem as well as the full proof of the undecidability of
this theorem, see [15]. Note that we may, without loss of generality, restrict
the problem to that whereby the solution is over natural numbers rather
than rational integers, see [15, p.6].

It is well known that we may reduce Hilbert’s tenth problem to a problem
in formal power series, namely the problem of determining for a Z-rational
formal power series S ∈ Z〈〈A〉〉, whether there exists any word w ∈ A∗ such
that (S,w) = 0. We shall now show this reduction, see also [18].

Let P (n1, n2, . . . , nk) be an integer polynomial with k variables (the vari-
ables take natural number values). We show a construction of a Z-rational
formal power series S over monoid A = {x, y} with coefficients in the natural
numbers, such that for any word of the form w = xn1yxn2y · · · yxnk ∈ A∗,
where ni ≥ 0 for each 1 ≤ i ≤ k, it holds that (S,w) = P (n1, n2, . . . , nk)2

and for any word, u, not of this form, (S, u) = 1. Thus, it follows that there
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exists some word w ∈ A∗ such that (S,w) = 0 if and only if the polynomial
P has a solution in natural numbers. Due to the undecidability of the latter
problem, the problem on formal power series is also therefore undecidable.

We shall now give the details of the construction as in [18, p.73]. For
each index 1 ≤ j ≤ k, define:

Rj =

 ∑
n1,...,nj−1≥0

xn1yxn2y · · ·xnj−1y

∑
nj≥0

njx
nj

 ∑
nj+1,...,nk≥0

yxnj+1y · · ·xnk

 ,

and it is not difficult to show that each series Rj is N-rational. Furthermore,
by examining the product we see that:

(Rj , x
n1yxn2y · · · yxnk) = nj .

It can now be seen that the series R ∈ Z〈〈A〉〉 with the required property
can be constructed using the Hadamard product, addition and subtraction
of the series R1, R2, . . . , Rk. However, we may note that any word w not of
the form xn1yxn2y · · · yxnk will have the property that (R,w) = 0. Thus,
we finally take the series:

S = R�R+ char((x∗y)k−1x∗)C ,

where the superscript C denotes the complement. This formal power series
is clearly still Z-rational and note that R � R ensures that each element is
positive or 0. Thus S contains a zero for some word if and only if that word
is an encoding of a correct solution to the given Diophantine equation as
required.

4 Undecidable Matrix Equations

We shall now show a construction which will allow us to obtain the unde-
cidability of solving a specific type of matrix equation. As above, we shall
encode a Diophantine equation within an Z-rational formal power series,
but use a different underlying monoid. We shall then convert the series to a
linear representation (which is guaranteed to exist due to Theorem 1) and
using this representation, we shall obtain the undecidability of determining
if the matrix equation has a solution.

Theorem 2. Given integral matrices X1, X2, . . . , Xk of dimension n×n, it
is algorithmically undecidable to determine whether there exists a solution
to the equation:

Xi1
1 X

i2
2 · · ·X

ik
k = Z,

where Z denotes the zero matrix and i1, i2, . . . , ik ∈ N are unknowns 1.

1This holds even for fixed values n and k depending upon the minimal degree and
number of variables required in the polynomial for the proof of undecidability of Hilbert’s
tenth problem.
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Proof. Let P (n1, n2, . . . , nk) denote a polynomial with integer coefficients
and let A = {x1, x2, . . . , xk} be an alphabet. Our first step shall be to con-
struct a Z-rational formal power series2, S ∈ N〈〈A〉〉, such that for any word
of the form w = xn1

1 x
n2
2 · · ·x

nk
k ∈ A

∗, it holds that (S,w) = P (n1, n2, . . . , nk)2

and for any word u not of this form, we have (S, u) = 1.
The initial construction is similar to that used in Section 3. Instead of

encoding the argument of the polynomial within a binary alphabet however,
we use a separate letter for each variable in the encoding. Thus, for each
index 1 ≤ j ≤ k, we define:

Rj =

 ∑
n1,...,nj−1≥0

xn1
1 x

n2
2 · · ·x

nj−1

j−1

∑
nj≥0

njx
nj

j

 ∑
nj+1,...,nk≥0

x
nj+1

j+1 · · ·x
nk
k

 ,

and as previously, we see that each series Rj is N-rational. We now have the
required property that:

(Rj , x
n1
1 x

n2
2 · · ·x

nk
k ) = nj .

We can thus create a rational formal power series R ∈ Z〈〈A〉〉 using the
Hadamard product, addition and subtraction of the series R1, R2, . . . , Rk in
a straightforward manner. To complete the encoding, we must make words
not of the correct form have nonzero coefficients, thus we define the series:

S = R�R+ char(x∗1x
∗
2 · · ·x∗k)C ,

where again, char(L) denotes the characteristic series of the language L
and the superscript C denotes the complement of the series. Thus S has
the property that if any word w ∈ A∗ is such that (S,w) = 0, then w
is of the form xn1

1 x
n2
2 · · ·x

nk
k where n1, n2, . . . , nk ∈ N, and it holds that

P (n1, n2, . . . , nk) = 0. Since it is undecidable if P has any such solution in
natural numbers, determining whether S has a zero coefficient for any word
w ∈ A∗ is undecidable.

Now, using Theorem 1, there exists an integer n ≥ 1, two column vectors
ρ, τ ∈ Zn and a monoid morphism µ : A∗ 7→ Zn×n such that for any word
w ∈ A∗ :

(S,w) = ρTµ(w)τ,

and (ρ, µ, τ) is called a linear representation of the Z-rational series S.
We shall not discuss how to convert between rational formal power series

and linear representations, see [18] for details. Suffice it to say that in such
a conversion, we may assume that ρ is of the form (1, 0, . . . , 0)T and τ is of
the form ((S, ε), 0, . . . , 0, 1)T where ε denotes the empty word and the top
left element of µ(w) is 0 whenever w 6= ε. We can also see for a non-empty

2The series S is Z-rational but the coefficients are natural numbers.
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word, w ∈ A+ that ρTµ(w)τ = µ(w)1,n, i.e., the value (S,w) is given in the
top right element of µ(w).

If Γ = {µ(x1), µ(x2), . . . , µ(xk)} ⊆ Zn×n, then we obtain an undecidable
scalar reachability problem for the semigroup generated by Γ, with the vec-
tors ρ, τ and scalar 0. As the final step, we shall show how to obtain the
matrix equation given in the theorem.

First note that (S, ε) is only present in the τ vector for the case when
we have a word of 0 length, otherwise, due to the construction in [18],
(S, ε) will be multiplied by 0 for any non-empty word (since the left most
column of µ(w) has all zero elements for all w ∈ A+). Since we may check
if (S, ε) = 0 independently, we may ignore this value and take the vector
τ = (0, 0, . . . , 1)T . Let us now define Xi = µ(xi) for 1 ≤ i ≤ k and two new
matrices:

X0 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , Xk+1 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Zn×n,

i.e., Xk+1 has all zeros except elements (1, 1) and (n, n) which are 1. Note
that X0 and Xk+1 are both idempotent, thus X2

0 = X0 and X2
k+1 = Xk+1.

Consider now the equation:

Xi0
0 X

i1
1 · · ·X

ik
k X

ik+1

k+1 = Z, (3)

where Z is the zero matrix of dimension n. Since X0 and Xk+1 are idem-
potent, the powers i0 and ik+1 are irrelevant unless they equal 0. If i0 or
ik+1 equals 0, then the corresponding matrix equals the identity matrix. We
can clearly see below however that this does not affect the validity of the
theorem even if either of these matrices equals the identity matrix (in fact
we will get more nonzero elements).

Note that for any matrix M ∈ Zn×n:

X0MXk+1 =


M1,1 · · · 0 M1,n

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ,

and ρTMτ = M1,n. In the construction of [18] each matrix in the image of µ

has a zero first column, thus in an equation of the form Xi0
0 X

i1
1 · · ·X

ik
k X

ik+1

k+1 ,
the top left element equals 1 if and only if i1 = i2 = · · · = ik = 0 (all central
powers are zero corresponding to the empty word and giving the identity
matrix), and we discount this case since we may check (S, ε) separately as
mentioned. Assume then that the top left element equals 0. Thus, Eq. (3)
holds if and only if M1,n = ρTMτ = 0, if and only if P (n1, n2, . . . , nk) = 0.
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Since determining if P (n1, n2, . . . , nk) = 0 is undecidable, the solvability of
Eq. (3) for unknowns i0, i1, . . . , ik+1 ∈ N is also undecidable as required.

We can note that the solvability of Eq. (3) is decidable (even in polyno-
mial time) when all matrices are commutative, see [1].

5 Decidable Cases

We shall now consider decidable cases, in contrast to the results of the last
section. We show that the “A-B-C Problem” is decidable in polynomial time
even for non-commuting matrices A,B,C.

Let us state the following theorem from [1] which will be useful in this
section:

Theorem 3. [1, Theorem 1.4] Let M1,M2, . . . ,Mh, N1, N2, . . . , Nk ⊆ Fn×n

be commuting matrices (with h, k fixed) and P,Q ⊆ Fn×l (where F is an al-
gebraic number field), it is decidable in polynomial time whether there exists
any solutions to: (

h∏
i=1

Mxi
i

)
P =

 k∏
j=1

N
yj
j

Q, (4)

where x1, . . . , xh, y1, . . . , yk are non-negative integers. If such a set of solu-
tions exists, it can be found in polynomial time.

Note that from this theorem it holds that we may decide if the intersec-
tion of two commutative semigroups S1, S2 generated by {M1,M2, . . . ,Mh}
and {N1, N2, . . . , Nk} respectively are empty by setting P = Q = I where I
is the identity matrix (although we need to remove the trivial solution where
all exponents equal zero which is easy to do by increasing the dimension of
all matrices by 1 or removing the trivial solution from those considered by
Lenstra’s algorithm in [1]). The same problem for non-commuting matrices
was shown to be undecidable by A. Markov in 1947, [16]. The undecidability
bounds were improved in the recent papers [10] and [3].

We shall now use Theorem 3 to show that the A-B-C problem is decid-
able for non-commutative matrices over an algebraic number field in any
dimension.

Theorem 4. Given three matrices A,B,C ∈ Fn×n (where F is an algebraic
number field), it is decidable if there exists any i, j ≥ 0 such that:

AiBj = C.

Proof. Note that the matrix product AiBj = C can be rewritten

((BT )j ⊗Ai)vec(In) = vec(C)
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where In is the n-dimensional identity by applying Eq. (1) from Section 2.1.
Iteratively applying the mixed product property of Kronecker products,

Eq. (2), we see that:

((BT )j ⊗Ai) = ((BT )j ⊗ I)(I ⊗Ai) = (BT ⊗ I)j(I ⊗A)i,

and note that matrices (BT ⊗ I) and (I ⊗ A) commute. Thus the problem
becomes: “Does there exist an i, j ≥ 0 such that:

(BT ⊗ I)j(I ⊗A)ivec(In) = vec(C)

is satisfied?”. Since the matrices are now commutative, this is an instance
of Eq. (4) where h = 2, k = 1, M1 = (BT ⊗ I), M2 = (I ⊗ A), N1 = I,
P = vec(In) and Q = vec(C) and by Theorem 3, this problem is decidable.

We shall now show a relation of the above result to Skolem’s problem
(also called Pisot’s problem), which we shall soon define after some prelim-
inary definitions. A sequence of integers (ui)

∞
i=0 is called a linear recurrent

sequence if it satisfies the recurrence un = un−1rk−1+un−2rk−2+· · ·+un−kr0,
where ri are fixed integers called the recurrence coefficients. The first k val-
ues, u0, u1, · · · , uk−1 are called the initial conditions of the sequence.

Skolem’s Problem - Given the initial conditions and recurrence coeffi-
cients of a linear recurrent sequence, (ui)

∞
i=0, determine whether there exists

an integer i ≥ 0 such that ui = 0.
The decidability status of Skolem’s problem is a long standing open

problem. It was recently shown to be decidable for linear recurrences of
depth 5, see [11]. The following theorem concerning the mortality problem3

was recently proven:

Theorem 5 ([2]). Skolem’s Problem with depth k recurrences can be re-
duced to the Mortality Problem for a semigroup generated by a pair of k-
dimensional integral matrices.

Utilizing this result and Theorem 4, we obtain the following corollary.

Corollary 6. There exist integral matrices P,X,Z ∈ Zk×k (where Z is the
zero matrix) such that determining if PXi = Z or XiP = Z are solvable
for some i ≥ 0, is decidable, but determining if PXiP = Z has a solution is
equivalent to Skolem’s problem.

Proof. In the proof of Theorem 5, we have two integral matrices, P,X ∈
Zk×k such that P has a 1 in the top left element and 0 everywhere else.
It follows from the proof that we can therefore state Skolem’s problem as,

3Given a matrix semigroup, determine whether the zero matrix belongs to the semi-
group.
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“Given matrices P,X, does there exist an i ≥ 0 such that PXiP = Z
where Z is the zero matrix?”. This proves that the decidability of Skolem’s
problem can be reduced to the solvability of the equation PXiP = Z.

For the decidable cases, note that P is idempotent, thus P 2 = P , from
which it follows that PXj = P iXj for any i > 0 and we know from Theo-
rem 4 that determining if there exists any i, j ≥ 0 such that P iXj = Z is
decidable in polynomial time (if i = 0, P iXj = Xj which equals Z for some
j iff X is nilpotent which is easily checked). An almost identical argument
holds for the solvability of XiP = Z, and thus the corollary holds.
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