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Abstract

In this paper we consider several reachability problems such as vector reachability, membership in matrix semigroups and
reachability problems in piecewise linear maps. Since all of these questions are undecidable in general, we work on lowering the
bounds for undecidability. In particular, we show an elementary proof of undecidability of the reachability problem for a set of
5 two-dimensional affine transformations. Then, using a modified version of a standard technique, we also prove that the vector
reachability problem is undecidable for two (rational) matrices in dimension 11. The above result can be used to show that the
system of piecewise linear functions of dimension 12 with only two intervals has an undecidable set-to-point reachability problem.
We also show that the “zero in the upper right corner” problem is undecidable for two integral matrices of dimension 18 lowering
the bound from 23.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The significant property of iterative maps as well as dynamical systems in general is that the slightest uncertainty
about the initial state leads to very large uncertainty after some time. With such initial uncertainties, the system’s
behaviour can only be predicted accurately for a short amount of time into the future. Many fundamental questions
about iterative maps are closely related to reachability problems in different abstract structures. The question of
whether these problems have an algorithmic solution or not is important since it gives an answer to many practical
questions related to the analysis of model systems, whose components are governed by simple laws, but whose overall
behaviour is highly complex.

Let us start with an example of Iterative Function Systems (IFS). IFS can be defined as a set of affine
transformations that are iteratively applied (equiprobably or with assigned probability) starting from some initial
state. A fascinating property of IFS is that they have the ability to create incredibly complex images by very small sets
of functions. A spleenwort fern (Fig. 1, left) can be generated by 4 planar affine transformations and the well-known
Sierpinski gasket (Fig. 1, centre) is an attractor for only 3 affine transformations. The “Dragon Fractal” is another
example that is generated by affine transformations and is shown in Fig. 1 on the right. Some iterative function systems
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Fig. 1. Fractals generated by two-dimensional affine maps.

may have a very strange combination of both predictable coarse-grain patterns and unpredictable (undecidable) fine-
grain questions such as point-to-point reachability.

We show that it is possible to encode Post’s Correspondence Problem (PCP) within iterative function systems with
5 rules. This shows that IFSs with 5 transformations are in fact so complex that they can be used as a computational
device. This is not a first attempt to encode PCP into an IFS framework. However, in contrast to the previous research
[8], which shows only the undecidability of parameterised reachability, we show the undecidability of point-to-point
reachability for a set of non-deterministic affine maps.

The question as to whether the reachability problem is decidable for a set of one-dimensional affine transformations
applied in a non-deterministic way is currently an open problem. It is also not clear whether there exists any class of
more complex functions for which the reachability problem in non-deterministic maps becomes undecidable in one
dimension. Similar open problems are stated in [1,14] for piecewise affine or polynomial maps. It is known that
the reachability question for piecewise maps in the case of elementary [16], rational [17] or analytic maps [15] is
undecidable even in one dimension. In the first part of this paper we show an elementary proof of the undecidability
of the reachability problem for two-dimensional affine transformations. This leads us to the undecidability result for
the vector reachability problem in 3 x 3 rational matrix semigroups.

We then extend the result to show the undecidability of the vector reachability problem in the case of a matrix
semigroup generated by two rational matrices of dimension 11. Using a similar encoding, we improve the bound for
the “zero in the upper right corner problem”. It was shown that for a semigroup generated by two integral matrices
of dimension 24, the problem of determining if some matrix in the semigroup has zero in the upper right corner is
undecidable [6]. This bound was later improved to 23 [9]. We show that the problem is still undecidable for two
integral matrices of dimension 18.

We also show how to lower the dimensions in related problems concerning control systems that are defined by a
system of piecewise transformations. We apply our result for the undecidability of the vector reachability problem
in dimension 11 to show that set-to-point reachability is undecidable for piecewise linear functions of dimension 12
with only two intervals. The natural problem we can thus state for iterative maps is to find undecidable problems
concerning maps defined by only two transformations in the smallest possible dimensions.

Only a few algorithms for vector reachability or membership problems are known. In particular, the above problems
are decidable for semigroups with commutative matrices [2] or row-monomial matrices over commutative elements
[18]. The mortality problem (membership of the zero matrix) is known to be decidable only in the case of two 2 x 2
matrices [4]. So another natural problem is the identification of decidable fragments and the construction of effective
semialgorithms that can solve membership and vector reachability problems at least in many cases.

2. Reachability in affine and linear transformations

In this section we show an elementary proof of the undecidability of the reachability problem for two-dimensional
affine transformations and the vector reachability problem for 3 x 3 rational matrix semigroups.

Let us define X' = {a, b} to be a binary alphabet and X* to be the free monoid generated by X'. For any word,
w = wiws - - - wg we denote the reverse of the word by w® = wy - - - wpwy. Define a mapping ¥/ : ¥ U {e} — Q>*?

by
w’(e>=<(1) ?) w/(a)=((1) ;) w’(b>=(é ;)
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where v/ (¢) is the identity matrix . We can now define ¥ : £* — Q>*2 by:

Y(w) =y (w) -y W2y (W) lw=wiwsew, € 57

It is easy to check that the matrices ¥'(a) and ¥'(b) generate a free semigroup [5] and the mapping ¥ is an
isomorphism between X* and the monoid generated by {¢/'(¢), ¥'(a), ¥'(b)}. We also define the mapping ¢ using
the inverse matrices:

—1 1 -1
¢ = ((1) ?) ¢ = (é ﬁ) 9'b) = (O 1)
2 2

and similarly we have the related morphism ¢ : £* — Q2*2 given by:

p(w) = ¢ (w1) - ' (w2) -+~ ¢’ (wy) |w=wiwy---w, € .

Notice that for any word w € X*, ¢ (w) and ¢ (w) will have a matrix representation of the following form:

(é ;C) lx,y € Q.

Post’s correspondence problem (in short, PCP) is formulated as follows: Given a finite alphabet I" and a finite set
of pairs of words in I'*:

{1, v1), ..., (ug, vo)},

does there exist a finite sequence of indices (i1,i2,...,ip) With 1 < i; < kfor 1 < j < m, such that
Wi Uiy - - Ui, = Vi Vi, - -~ v;, 7 It can be shown that this problem is undecidable even with a binary alphabet I". PCP(n)
denotes the problem with a set of n pairs. We write n, for the minimum size PCP is known to be undecidable (currently
7, see [19]). In some of our reductions we will also use Claus Instances of PCP, where we have the same undecidability
result under the assumption that two pairs will be used only once and their positions are fixed (see [7,10]).

Theorem 1 ([7,10]). It is undecidable whether an instance of PCP consisting of 7 pairs of words has a solution
(1,12, ..., im), whereiy = 1,i, =Tand2 <i; <6for1 < j <m.

In other words, the first and last pair of words of a solution is fixed and the remaining 5 pairs occur between these
pairs in an arbitrary way. In fact all solutions must be of this form. We shall use this theorem to reduce some later
undecidability bounds.

Problem 2. Decide whether a point (xg, yo) € Q? can be mapped to another point (x1,y;) € Q2 by non-
deterministically applying a sequence of two-dimensional affine transformations from a given finite set.

We shall now show that this problem is undecidable.
Theorem 3. PCP(n) can be reduced to Problem 2 with a set of n affine transformations.

Proof. Given a set of pairs of words over a binary alphabet X:

{(M], v])a(u2’ U2)7--~,(anvn)} |Mi,vi € E+-
Let us construct a set of pairs of 2 x 2 matrices using the two mappings ¢ and ¥, i.e.: {(¢(u1), ¥ (v1)), ..., (¢ (uy,),
Y (vn))}.

Instead of the equation u = v, we consider a concatenation of two words u® . v, whichis a palindrome in the case
where u = v. In fact by using inverse elements for the # word (denoted by u), then u is equal to v if and only if
uR . v = €. We call this an inverse palindrome since it equals the identity iff Z® is the inverse of v. Initially we take
an empty word and for every pair (;, v;) that we use, we concatenate the reverse of word u; (using inverse elements)

to the left and word v; to the right.
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Let us consider now a matrix interpretation of the PCP problem. We associate a 2 x 2 matrix

-(:)

with a word w of the form u®

- v. Initially C is an identity matrix corresponding to an empty word. The extension

of a word w by a new pair of words (u;, v;) (i.e. that gives us w’ = ulR - w - v;) corresponds to the following matrix
multiplication
Cur =ty = $Wf) - Cu -y (), M

Eq. (1) is therefore written:

Lox"\ _ (1 pi) (1 x\ (1 @
<0 y/)_<0 P2> (0 y) (0 qz)' @

Note that py,q> # O, since they are invertible. If we multiply the matrices in (2) we have a very simple

transformation from a word vl.R - w - u; to a matrix:

L X"\ _ (1 qx+q@piy+a 3)
0 0 q2p2y '
Thus we can state that PCP has a solution iff we can get the identity matrix by using a set of transformations defined

for each pair of words from PCP.
In fact we can rewrite (3) as a two-dimensional affine transformation:

X' =q@x+qpy+q
Y = paqay

where we define one such affine transformation for each pair in the PCP. It can now be seen that the problem is reduced
to the question about reaching the point (x1, y;) = (0, 1), starting from the point (xg, yo) = (0, 1). This follows since
(0, 1) corresponds to the identity matrix (see [21]) in the above calculations. [

Corollary 4. Problem 2 is undecidable for a set of five affine transformations of dimension two.

Proof. Let us fix the use of transformations associated with the first and the last pair of words in PCP. In order to
do so, we will apply the transformation corresponding to the first pair to the original starting point and the inverse
of the transformation corresponding to the last pair to the final point. It is straightforward to see that the inverse
transformation exists, since its corresponding matrix is invertible. Since PCP is undecidable for Claus instances of
size 7 [10] the number of transformations can be reduced to 5. For more details, see the proof of Theorem 6. [

Problem 5 (Vector Reachability). Given a semigroup of matrices S C F"*" and two vectors x, y € F" (where F is
an arbitrary ring), does there exist some M € § such that Mx = y?

The above problem can thus be defined on integer, rational or complex matrices and vectors for example. We shall
now show that the vector reachability problem is undecidable for rational matrices of dimension 3.

Theorem 6. The vector reachability problem in matrix semigroups generated by five rational matrices of dimension
3 is undecidable.

Proof. Let us convert each two-dimensional affine transformation into a three-dimensional linear transformation as
follows:

x’ 9@ @p1 qi\ (x
Y]1=10 pg 0|y
1

[
{x =@x+epy+a
o o 1)\

Y = paqay

Thus for a set of n affine functions, this conversion gives us a set of matrices {M{, Ma, ..., M, }, where M; € Q>*3
forl <i <n.
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From the proof of Theorem 3 follows that the problem to decide whether there exists a product M =
M M;,---M;,, where 1 < i; < nforl < j < k such that Mv = v where v = (0, 1, DT is undecidable. It
was stated that PCP for Claus instances of size 7 is undecidable in Corollary 4. Thus applying the same idea of
incorporating the matrices corresponding to the first and the last pairs of words to the original and final vectors, we
only needed 5 matrices. So fixing the first and the last pair of words in PCP we have to check whether there is a matrix
M = M;M;,---M;,,where 2 < i; < 6forl < j < k such that Mw = s where w = M7v, s = Ml_lv and
v=(0,1, DT, M, is invertible by the construction. []

It is also possible to get a symmetric result by converting the additive form of linear transformations into
multiplicative form. In this case we will obtain the undecidability of the reachability problem for two-dimensional
transformations of the following form:

x = 291 x22y 2P
y = yPa,

Theorem 7. The vector reachability problem is undecidable for two rational matrices of dimension 2n.p, — 3 (where
Nep 1s the size of Claus instances for which PCP is undecidable).

Proof. We use a modification of a standard technique for converting membership problems from a set of matrices into
one defined by just two matrices (see, for example, [6] or [3]). We first obtain the undecidability for two matrices of
dimension 15, then show how this can be reduced to just 11.

Given a set of matrices {M{, M>, ..., M,,} where M; € Q™™ Let us define two block diagonal matrices A’ and
T’ by:
M, 0 0 0
W 0 M, O 0 - ( 0 Im)
0 0 R 0 ’ Im(n—l) 0
0 0 0 M,

where 0 denotes a submatrix with zero elements. Clearly the dimension of both of A" and T’ is nm. Further, it can
be seen that for any 1 < j < n then T"~/+1A’T"J=1 ¢cyclically permutes the blocks of A’ so that the direct sum of
T IHAT I isM; &M 1 @ - &M, ®M; @ - ®M;_;. We can also note that A’ ~ T~/ T AT/~ (i.e. this
is a similarity transform) since 7#~/*1 . 77/=1 = T'* —= [, 1t is therefore apparent that any product of the matrices
can thus occur and in fact can appear in the first block of the nm matrix product.

Let us define a vector x = (v1,0,0,...,0T € Q"*! where v = (0, 1, 1)T as before and two matrices Fuy,, Ly,
as follows:

M, 0 M, 0
Fy, = R Ly = .
M ( 0 Im(n1)> M ( 0 Im(nl))

It is easily observed that there exists a matrix product M = M; M;,---M;, where2 < i; <n—1forl < j <t
satisfying MiMM7v = v iff there exists a product R" = {A’, T'}" satisfying R'w = s, where w = Ly, x,
s = Fy,~'x (Fy, will be invertible by the construction). From Theorem 6 and Corollary 4, this establishes the
undecidability of vector reachability over 2 matrices of dimension 3 - 5 = 15.

We can observe however that (M;)(3,3; = 1 and M; is upper triangular for all 1 < i < n. Let us now construct four
new matrices of dimension 2n., — 3:

(@)1 (@p1 O 0 e (@

0 (p2g2) 0 0 -0

0 0 (g2 (@pD2 - (@) 0 Lo
A=1] o 0 0 (p2q2)2 - 0 |- T = IZnE)p—é 8 (1)

0 0 0 0 0 1
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(g1 (g2p1 0 (gin @2n,, (q2pn, O (Qqi)n,
F=| 0 (pg21 0 0 |, L= 0 (P292)n,, 0O 0
O 0 IZiICp—S 0 0 Izn(:p_s

where 0 denotes either the number zero or a submatrix with zero elements, I is the k-dimensional identity matrix and
(x); denotes the element x from matrix M;. Straightforward calculation shows that Tn—itlATI ! permutes the pairs
of rows in A and using a similar argument as before, we thus can form any product of matrices in the first two rows of
this matrix. We define (2n., — 3)-dimensional vectors w =1L(0,1,0,...,0, l)T and s/ = F_I(O, 1,0,...,0, 1)T to
act in the same way as w and s did previously (again F is invertible since g2, p» # 0). Finally we see that there exists
a solution to PCP iff there exists a product R € {A, T} satisfying Rw’ = s’. Note that in this construction we have
two matrices of dimension 2n., — 3. U

Since PCP is undecidable for 7 pairs where two of them are fixed (n., = 7), the dimension of the two rational
matrices for which the vector reachability is undecidable is therefore (2 - 7) — 3 = 11 as required:

Corollary 8. The vector reachability problem is undecidable for two matrices of dimension 11.

Theorem 9. PCP(n) can be reduced to the vector reachability problem for a semigroup generated by n integral
matrices of dimension 4.

Proof. Given a set of pairs of words over a binary alphabet ' = {a, b}: {(u1, v1), ..., (uy, v,)}. Let us construct the
set of pairs of 2 x 2 matrices using two mappings u and &: {(u(u1), E(v1)), ..., (u(uy), £(v,))} that we define in the
same way as we did for ¢ and i but using another free semigroup of integer matrices:

s’<e)=<(1, ?) s’(a>=<(1) }) g’(b)=<} ?)
u/(e)=<(1) (1’) ;/(a)=<(1) ]‘) u’(b)z(_ll ?)

where &’(¢) and 1/ (¢) is the identity matrix I,. We also define two mappings from words to matrices as follows

Ew)=¢&wy) &' wp) & (wp) lw=wwy - -w, € X

p(w) = p'(wy) - p'(wa) - p'(wy)  |w=wwy--w, € T*

As in Theorem 3, instead of equation u = v we consider a concatenation of two words u® - v that is a palindrome
in the case that u = v. We associate 2 x 2 matrix C with a word w of the form u«® . v. Initially C is an identity
matrix corresponding to an empty word. The extension of a word w by a new pair of words (u,, v,) (i.e. that gives us

w’ = ul - w - v,) corresponds to the following matrix multiplication

Cur = Cyoyy, = 1 Wf) - Cy - £(vy). )

Let us rewrite the operation (1) in more details.

112 112
cw, cw/ _ (l/l” u]Z) cw Cw <U11 U12> (1/)
=\,2t 22" 21 .22
ci}l, ciz, u u ci‘ ciz v v

From the injectivity of the mappings, it follows that u = u; u;, - - -u;, = v;,vi, ---v;, = v for a finite sequence
of indices {i;} with i; € {1..k} if and only if w(u®) - £(v) is equal to the identity matrix. So the question of the
word equality can be reduced to the problem of finding a sequence of pairwise matrix multiplications that gives us the
identity matrix.

Now we show that it is possible to avoid pairwise matrix multiplications by increasing the dimension from 2 to 4.
Actually we represent matrices Cy, and C,,y from (1") as 4 x 1 vectors and we unite every pair of matrices u(u f) and
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&(vy) into 4 x 4 joint matrix M, Ry, in the following way:

11
Cw/ Cw
12 T 12
21 (u un S 2 el
2 = 2 @\, 2 |
w’ w
2 22
Cw, Cw
cl
Ll L 2! W12l L1221 "
Cfurrem 122 L1212 W12 22 ¢l o
=1,2 ., W21 21 W21l 422! 21
J2 12 W21 22 u21 12 42222 >
Cw
Mu,R,Ur

where ® denotes the tensor product. Note that the Eq. (1) is equivalent to Eq. (2) in the sense that the expression for
computing values of c;}, cluz,, ci‘, and ci}z/ in (2) coincide with the corresponding values in (1).
Thus for every pair of words (u,, v,) we construct the matrix M, R - Now PCP(n) can be reduced to the following

vector reachability problem: Given a matrix semigroup S generated by a set of matrices {M,, Roypseees Mk ,, }, decide

whether there is a matrix M € S such that M - (1,0, 1, O)T =(1,0,1, O)T. It follows that if we can solve this problem
then we can solve the PCP(n). O

Matiyasevich and Sénizergues proved in [19] that PCP(7) is undecidable. Thus the vector reachability problem is
undecidable for semigroups generated by 7 integral matrices of dimension 4. Since all matrices in the generator of
the semigroup are invertible, we can apply the “Claus instances” again and incorporate the first and last matrix to the
initial and final vectors. Thus, the following corollary of Theorem 9 holds:

Corollary 10. The vector reachability problem is undecidable for a semigroup generated by 5 integer matrices of
dimension > 4.

Next we show a related problem but instead of considering vector reachability in a semigroup, we instead choose
the next matrix to apply in a piecewise manner depending upon the current position of an element in the vector. This
relates non-deterministic and piecewise reachability questions in a natural way.

Let us consider an arbitrary piecewise linear map F: D — D, D C Qk defined by

Xnt1 = Mix,, forx, € D;

where D = D1 U---UDy; D; N D; = @ fori # j; x is a vector in QF and M; is a matrix in QF*K.

An iterative piecewise linear map generates a sequence of points. One of the obvious problems that arises in
such systems is a reachability problem that can be formulated as a point-to-point, set-to-point, point-to-set or set-
to-set reachability problem. We shall show that the set-to-point reachability problem is undecidable for an iterative
piecewise linear map of dimension 12 with only two disjoint partitions.

Theorem 11. Given a piecewise linear map defined on two domains

Mx,
Myx,

x € D

F(xns1) = { e

where a pair of matrices My, My € Q¥ D = D; U Dy € QF and a vector y € QF. The problem of deciding if
there exists any initial point w' € D from which we can reach y in the iterative piecewise map is undecidable for
k =2n¢p — 2, (where ngp is the smallest size Claus instance known to be undecidable, currently 7).

Proof. We extend the matrices A, T € Q™*™ defined in Theorem 7 by 1 dimension therefore k = m + 1. Let:

(A z (T =z
T_<d1 10)’ W_(dz 10)
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where z = (0,0,...,0)T € Q*=V is the zero vector, d; = (0,0, ..., —1),d> = (0,0, ..., —2) and d[, d] € Q*=D.
We also extend the vector w used in the previous proof to w’ = (wT, x)T = (0,1,0,0,...,1,x)T € QF where x € Q
and x € (0, 1]. We will choose which matrix (1" or W) to apply at each step depending upon the current x value.
Define y’ = (0, 1,0,0,...,1,0)T € Q*.

Let vector w’ be given where 0 < x < 1. We choose which matrix to multiply by on the next step by a simple rule.
Lett = (0,0,...,1)T € Q%! Then at each step of the computation we update w’ according to:

rooLse 1
W — Tw ,1f10_
Wuw' ;ifl—zofw’T~t<

A
E\
-
<
A
Sl gl

and the next step if undefined outside these regions. Note that 7w’ is the same as in the previous proof except for the
last element of the vector. This is equal to 10x — 1, which is equivalent to shifting the decimal representation of x to
the left and subtracting the integer part (since the first decimal digit is a 1). Similarly, (Ww')x,17 = 10x — 2 which is
equivalent to shifting the decimal one place left and subtracting the integer part.

This is applied in an iterative manner until either 0 < x < 1]_0 or x > % (which is undefined so we halt) or else
x = 0 in which case, if w’ = y’ then there exists a correct solution to the PCP as in the previous proof. If w’" # y’

then x did not correspond to a correct solution and we halt because the next step is undefined (when x = 0). O

The previous theorem states that a set-to-point reachability problems is undecidable for piecewise linear map with
only two partitions of dimension 12. The initial point defines the order of indices for PCP problem. If there exists
some x with the desired property (e.g. of the form x = 0.1221121...) then we choose the next matrix depending
on whether we have a 1 or a 2 in the next decimal position (e.g. YWW T'TW 7). Note that in this case, if a point
y = (0,1,0,...,1,00T € QF is reachable from a point w’ = (wT,x)T = (0,1,0,0,...,1,x)T € QF then the
decimal part of x at the start of the computation corresponded to a sequence of indices giving a solution to PCP.

3. Zero in the upper right corner problem

‘We now move to a different problem which has been studied in the literature and is related to Skolem’s problem.

Problem 12. Given a set of matrices M|, M», ..., M, of dimension m generating a semigroup S, is it decidable if
there exists a matrix M € § such that M|y ,,; = 0. Le. does there exist a matrix M € S with a 0 in the upper right
corner?

This problem has been studied for two main reasons. Firstly it is related to the mortality problem (Does the zero
matrix belong to a semigroup?). Actually the upper left corner is used in the proof but the upper right corner problem
is used in related problems. See for example [12].

Secondly the problem is related to Skolem’s problem of finding zeros in linear recurrent sequences. It can be easily
shown that Skolem’s problem can be reformulated in terms of a single matrix R and the question, “Does there exist a
k € Z such that (R¥)(; ,») = O where m is the degree of the linear recurrence?””. For an overview of this problem and
a proof of the decidability for degree 5 linear recurrence sequences, see the recent paper [11].

In terms of undecidability, it was shown that for two integral matrices of dimension 24 the zero upper right corner
problem is undecidable [6]. This was improved to dimension 23 in [9]. Using a similar idea to that shown above and
the technique used in [6], we show how to improve the bound to two integral matrices of dimension 18.

Theorem 13. Given two matrices A, B € Z"*" forming a semigroup S, it is undecidable if there exists a matrix
X € S with a zero in the upper right corner for n = 2n, + 4 (currently 18).

Proof. It can be seen that there exists an injective morphism between words over a binary alphabet I' = {L1, L»}
and three-dimensional matrices. In fact, one such morphism, which was originally used by Paterson to prove the
undecidability of the mortality problem [20],is A" : I'™* x I'* > Z3*3 defined by:

3l 0 o)
Nu,vy=| 0 3% o
0 0 1
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fortwowordsu = L; L, ---L;, andv =L Lj,---Lj,withiy,... i, j1,...,Js € {1,2}, where we define
Jue]

o) = Zikalu‘—k
k=1

and similarly for v. This matrix is the unique 3-adic representation of the binary words u, v € I'*. Now consider the
following matrix:

1 -1 0
H=]|0 -1 0
0 0 -1

which is self-inverse since HH = I3. We can thus define a similarity transform HX'(u, v)H which gives us the
alternate (but still injective) morphism:

3lul 3l 3l 5 (v) — o (u)
Au,v) =HNw,v)H=1] 0 3l o (v)
0 0 1

Notice that u = v iff A(u, v)[1,3; = O since the top right element of the matrix is the subtraction of the 3-adic
representations of u, v.

Using the same idea as before, we can now encode n such matrices into a single matrix, B, of size 2n + 1 and use
a second matrix 7 which is identical to the permutation matrix defined previously. Therefore, given n pairs of words
{(uy, vy), (U2, v2), ..., (u,, vy)} we define:

lurl  glul — 3leal 0 coro(v)) —o(ur)
0 3luil 0 0 o(vy)
0 0 3lual 3lel _3leal L G (vy) — o (un)
B=1] o 0 0 3lv2] o (v2)
0 0 0 0 1

We can see that a product containing both B and T has a zero in the upper right corner iff there exists a solution to
the PCP however T has a zero upper right corner on its own. We can apply the encoding technique used in [6] so that
the case with a power of only 7" matrices can be avoided. Define:

01 x 1 01 x 1
;10 0 0 1 ;10 1 0 1
B = 0 0 B z|’ r= 00 T <z
0 0 0 00 0
where x = (1,0, ---,0),z = (0,0, ---, DT, with x € 71k 7 € 7%%1 and k is the dimension of matrix B (and 7). It

is clear that the sub-matrices B, T are multiplied in the same way as before and unaffected by this extension. Notice
the [2, 2] element is 0 in B’ and 1 in T". This is used to avoid the pathological case of a matrix product with only 7"’
matrices.

Consider a product of these matrices Q = Q1Q7--- Q,, where Q; € {B', T’} for 1 < i < m. It is easily seen
that if m < 2 then the top right element of Q equals 1 for any Q1, Q>. Let us thus assume m > 3 and write this
multiplication as Q = Q1CQ,, where C = 0203 - Om—1,

0 *x *x %
0 A 0 =
C=1lo 0o ¢ «
0 0 0

where * denotes unimportant values, A = {0, 1} and C’ is a submatrix equal to some product of B, T matrices.
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Now we will compute the top right element of Q. Let r denote the dimension of matrix C (or Q). The first row
of Q1C equals (0, A, C{’l, ;’2, R ;’k, %) where again * is unimportant. Note that this vector contains the top
/ /

row of the C’ submatrix. We can now easily see that Q1 -] = (Q1C Qm)1,r] equals (0, A, Cl,l’ 1299 i,k’ *) -
(1, 1,7, 0T =1 + C} ;- Itis clear that A = 1iff C = (T")"~2 i.e. C is a power of only 7’ matrices. In this case,
note that (C"~2)(1.4 = 0 since this is a power of matrix 7. Thus Q;,; =1 +0 = 1.

In the second case, A, = 0 whenever C’ contains a factor B’. Therefore Q1] = 0+C El, K= C {1’ K which is exactly
the top right element of C’ as required. This equals O iff there exists a solution to the PCP.

We require 3 extra rows and columns for this encoding, therefore the problem is undecidable for dimension
2np +1+3 =2n, + 4 (currently 18). [

4. Conclusion

We showed that point-to-point reachability is undecidable for n,, (where n, is the smallest value for which PCP
is undecidable, currently 7) two-dimensional affine transformations. A simple extension allowed us to prove that
the vector reachability problem for n, rational matrices of dimension 3 is undecidable and also for 2 matrices of
dimension 2n., — 3 (currently 11). We then showed an undecidable result for a piecewise vector reachability question
where the next matrix applied depends upon the current value of an element in the vector. Finally we improved the
bounds on the “zero in the upper right corner problem” from 37, + 2 (currently 23) to 2n, + 4 (currently 18) using
two integral matrices.

It is interesting that we may get an undecidable problem for semigroups generated by just two integral matrices of
dimension 11. Recently, it was shown by Halava and Hirvensalo in [13] that scalar reachability is undecidable even in
dimension 9 for two matrices and also that the zero in the upper right corner problem is undecidable for two integral
matrices of dimension 10.

It would be interesting to consider whether there exist other undecidable problems related to semigroups generated
by pairs of matrices with undecidability over even smaller dimensions. We showed a connection between semigroup
membership and piecewise reachability, however we believe this connection can be strengthened to show other
undecidability results in piecewise functions.
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