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Abstract

There has been much research into freeness properties of finitely generated ma-
trix semigroups under various constraints, such as the dimensions of the gen-
erator matrices and the semiring over which the matrices are defined. Most
freeness problems have been shown to be undecidable starting from dimension
three, even for upper-triangular matrices over the natural numbers. There are
many open problems still remaining in dimension two. A recent paper has also
investigated freeness properties of bounded languages of matrices, which are
matrices from a set M∗1M

∗
2 · · ·M∗k ⊆ Fn×n for some semiring F and a fixed

value k ∈ N>0, where matrices M1, . . . ,Mk are given [1].
We consider a notion of freeness and ambiguity for scalar reachability prob-

lems in matrix semigroups and bounded languages of matrices. Scalar reachabil-
ity concerns the set {ρTMτ |M ∈ S}, where ρ, τ ∈ Fn are vectors and S ⊆ Fn×n

is a finitely generated matrix semigroup. Ambiguity and freeness problems are
defined in terms of the uniqueness of factorizations for each scalar. Such prob-
lems have also been studied in connection to formal power series. We show
various undecidability results and their connections to weighted and probabilis-
tic finite automata.

Keywords: matrix semigroup freeness, bounded languages, undecidability,
weighted automata, probabilistic automata

1. Introduction

Classical (non)-deterministic finite automata (NFA/DFA) act as acceptors
for the regular languages. In this Boolean setting, each word is either accepted
or rejected by a given automaton; the set of languages accepted forming the
regular language of the automaton. There are many possible generalisations
of the model of DFA and NFA. One such model is that of Weighted Finite
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erpool, L3-3AF, UK
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Automata (WFA), whose transition function is a partial function defined on
accepting words to values from Q. A related model is that of Probabilistic
Finite Automata (PFA), where for each letter of the input alphabet, we assign
a rational weight to each outgoing transition from each state such that the
weights form a probability distribution. Depending upon the properties of the
chosen semiring and the acceptance conditions, we obtain interesting language
theoretic decision problems for such models. Our aim in this paper is to explore
the undecidability of the uniqueness of acceptance weights for WFA and the
uniqueness of acceptance probabilities for PFA under various constraints. We
call these scalar reachability problems. Such problems over PFA are also related
to the threshold isolation of cut-points as studied in [2]. A motivation for the
study of the threshold isolation problem is that the set of words accepted by a
PFA with a probability strictly greater than an isolated threshold is a regular
language [2, 3].

Another motivation for studying scalar reachability problems is the freeness
problem for matrix semigroups. Decision problems on matrices have long been
studied, with one of the earliest results being Paterson’s result showing that the
mortlity problem is undecidable for 3 × 3 integer matrices [4]. The mortality
problem asks whether a finitely generated semigroup contains the zero matrix.
A related problem is the freeness problem for integer matrices - given a set G ⊆
Fn×n, where F is a semiring, determine if G is a code for the semigroup generated
by G, denoted 〈G〉 (i.e. if every element of 〈G〉 has a unique factorization over
elements of G). It was proven by Klarner et al. that the freeness problem is
undecidable over N3×3 in [5] and this result was improved by Cassaigne et al.
to hold even for upper-triangular matrices over N3×3 in [6].

There are many open problems related to freeness in 2 × 2 matrices, see
[1, 7, 8] for good surveys. The freeness problem over H2×2 is undecidable [9],
where H is the skew-field of quaternions (in fact the result even holds when all
entries of the quaternions are rationals). The freeness problem for two upper-
triangular 2 × 2 rational matrices remains open, despite many partial results
being known [1].

The freeness problem for matrix semigroups defined by a bounded language
was recently studied. Given a finite set of matrices {M1, . . . ,Mk} ⊆ Qn×n, we
define a bounded language of matrices to be of the form:

{M j1
1 · · ·M

jk
k |ji ≥ 0 where 1 ≤ i ≤ k}.

The freeness problem for such a bounded language of matrices asks if there exists
j1, . . . , jk, j

′
1, . . . , j

′
k ≥ 0, where at least one ji 6= j′i such that M j1

1 · · ·M
jk
k =

M
j′1
1 · · ·M

j′k
k in which case the bounded language of matrices is not free. This

problem was shown to be decidable when n = 2, but undecidable in general [1].
In this paper we consider two notions of freeness for matrix semigroups

called scalar ambiguity and scalar freeness problems. These are related to the
uniqueness of factorizations of a set of scalar values of the form {ρTMτ |M ∈ S},
where S is a finitely generated matrix semigroup and ρ, τ are two given vectors of
appropriate dimension (see Section 3 for details). Related problems for vector
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ambiguity were studied in [10], where problems related to the uniqueness of
factorizations of a set of vectors {Mτ |M ∈ S} was studied. The problem was
shown to be undecidable when S ⊆ Z4×4, or when S ⊆ Q3×3.

The scalar reachability problem has implications for several computational
models, depending upon the properties of the vectors, matrices and update
rules that we may apply. We initially interpret our results for Weighted Finite
Automata (WFA), defined formally in Section 2.2. The formulation of this
model is dependent upon the semiring over which the model is defined. A well
studied problem is the universality problem for WFA, whereby we are given some
threshold and we ask whether all possible input words have an acceptance weight
below the threshold. Decision problems for WFA over the tropical semiring
are studied in [11, 12, 13], although in this paper we focus exclusively on the
integers and rationals. Weighted automata have a variety of applications, for
example in automatic speech or image recognition [14] or in the verification of
quantative properties [15]. In this paper we consider instead the problem of
determining whether the acceptance weight of each input word is unique over
the integers. We show that this problem is undecidable over a 4 state WFA
by an encoding of the Mixed Modification Post’s Correspondence Problem and
show that the undecidability holds even when the input words come from a
bounded language. The problem can also be stated in terms of formal power
series: given a formal power series r, determine if r has two equal coefficients.
This problem was studied in [16] and Theorem 3.4 of [17] (more details appear
in Section 4 of this paper).

In Section 4, we also study a related ambiguity problem for Probabilistic
Finite Automata (PFA), defined in Section 2.3. Several reachability problems
for PFA (such as emptiness of cut-point languages) are known to be undecidable
[18], even in a fixed dimension [2, 19]. The reachability problem for PFA defined
on a bounded language (i.e. where input words are from a bounded language
which is given as part of the input) was shown to be undecidable in [20].

Associated with each input word w over an alphabet A is the probability
of that word being accepted by a PFA R, which we denote by fR(w), defined
formally in Section 2.3. In this paper, we show that determining whether every
probability is unique is undecidable, even over a bounded language. In other
words, given a bounded language L ⊂ A∗, then to determine if there exist two
words w1, w2 ∈ L with w1 6= w2 such that fR(w1) = fR(w2) is undecidable.
This is a similar concept to the threshold isolation problem which is known to
be undecidable, see [3, 2].

A preliminary version of this paper appeared in [21].

2. Preliminaries

2.1. Notations and Definitions

Let A = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word
w is a finite sequence of letters from A, the set of all words over A is denoted
A∗ and the set of nonempty words is denoted A+. The empty word is denoted



2 PRELIMINARIES 4

by ε. We use |u| to denote the length of a word u, i.e. how many letters the
word u contains. Also we have |ε| = 0. For two words u = u1u2 · · ·ui and
v = v1v2 · · · vj , where u, v ∈ A∗, the concatenation of u and v is denoted by
u · v (or by uv for brevity) such that u · v = u1u2 · · ·uiv1v2 · · · vj . Given a word
u = u1u2 · · ·ui, a prefix of u is a word u1u2 · · ·um, where m ≤ i. If m < i, then
the prefix is called proper. A suffix of u is a word of the form umum+1 · · ·ui,
where 1 ≤ m ≤ i. If m > 1 then the suffix is called proper. A subset L of A∗ is
called a language. A language L ⊆ A∗ is called a bounded language if and only
if there exist words w1, w2 . . . , wm ∈ A+ such that L ⊆ w∗1w∗2 · · ·w∗m.

Recall that a semiring is a set F, with two operations called addition and
multiplication defined on it, denoted + and ·, and two distinct elements 0, 1
such that (F,+, 0) is a commutative monoid and (F, ·, 1) is a monoid. Also
multiplication left and right distributes over addition and multiplication by 0
annihilates F.

We denote by Fn×n the set of all n×n matrices over a semiring F. Through-
out the paper the structure over the matrices is the multiplicative structure with
the operations on matrices defined via the addition and multiplication of the
semiring. Given M ∈ Fm×m and N ∈ Fn×n, we define the direct sum M ⊕ N
of M and N by:

M ⊕N =

(
M ∅
∅ N

)
,

where ∅ is the zero matrix of appropriate dimension. Given a finite set of
matrices G ⊆ Fn×n, 〈G〉 is the semigroup generated by G.

For a semigroup S, and a subset G′ ⊆ S, we say that G′ is a code if
x1 · · ·xk1

= y1 · · · yk2
where xi, yi ∈ G′, implies that k1 = k2 and xi = yi

for 1 ≤ i ≤ k1. Alternatively stated, G′ is not a code if and only if some element
of S has more than one factorization over G′. We call G′ a prefix code if no
w1 ∈ G′ is a prefix of another word w2 ∈ G′.

2.2. Weighted Finite Automata

We use similar definitions of a Weight Finite Automata/Automaton (WFA)
as in [12]. A WFA is defined as an 8-tuple, given byW = (Σ, Q,∆, c,Q0, QF , i, f),
where Σ = {x1, x2, . . . , xn} is a finite alphabet of input letters, Q = {q1, q2, . . . , qm}
is the finite set of states, ∆ ⊆ Q×Σ×Q is the transition function, c : ∆→ Q is
a cost function associated to each transition, Q0 ⊆ Q is the set of initial states,
QF ⊆ Q is the set of final states, i : Q0 → Q is the initial-weight function and
f : QF → Q is the final-weight function. Transitions of the system are of the
form ∆(q, l, q′), which we also write ∆(q, l) = q′. We understand this to mean
that when in state q and we read the input letter l, the WFA changes to state
q′. WFA may be nondeterministic, since they have a set of initial states and
the transition function may be nondeterministic.

Given a word w = w1w2 · · ·wk ∈ Σ∗, a run of W on w is a sequence rw =
(r0, r1, . . . , rk) ∈ Qk+1, such that r0 ∈ Q0, rk ∈ QF , and there exists dj =
(rj−1, wj , rj) ∈ ∆ for each 1 ≤ j ≤ k. We denote the set of all runs of W
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on w by RW(w) and associated with each run is a cost. For a WFA over the
integers/rationals, the cost of a run rw = (r0, r1, . . . , rk) ∈ Qk+1 is defined as:

c(rw) = i(r0)×
k∏

j=1

c(dj)× f(rn).

Note here that we overload function c, although this should not cause confusion.
Since the WFA may be nondeterministic, there may be more than one run
defined for word w on W, and hence more than one associated cost. Moreover,
the cost of an accepting word w on W is defined to be the (semiring) sum of
costs of all accepting runs of the WFA on w:

LW(w) =
∑

rw∈RW(w)

c(rw)

WFA over the integers can equivalently be represented in terms of vectors
and matrix operations. Given the WFA W as above, we can define a vector
τ ∈ Zm such that τj = 0 if qj 6∈ Q0 and τj = i(qj) if qj ∈ Q0. Vector ρ is defined
such that ρj = 0 if qj 6∈ QF and ρj = f(qj) if qj ∈ QF . Then, for each xj ∈ Σ,

matrix X(j) ∈ Zm×m is defined such that for djb,a = (b, xj , a) ∈ Q × Σ × Q,

then X
(j)
[a,b] = 0 if djb,a 6∈ ∆, and X

(j)
[a,b] = c(djb,a) if djb,a ∈ ∆. We then find that

LW(w) = ρTX(ik) · · ·X(i2)X(i1)τ for word w = xi1xi2 · · ·xik ∈ Σ∗. See also
Example 3 for a detailed example.

There are a variety of interesting questions for WFA. The universality prob-
lem asks given a WFA W and a threshold value λ ∈ Q, is LW(w) < λ for all
words w ∈ Σ∗? The equality problem is to determine for two WFA W1 and W2

over an alphabet Σ if LW1
(w) = LW2

(w) for all w ∈ Σ∗. We are interested
in this paper in the freeness problem for WFA: given a WFA W, do there ex-
ist w1, w2 ∈ Σ∗ with w1 6= w2 such that LW(w1) = LW(w2)? We later show
that this problem is undecidable when W has three states and an alphabet of
size 16 (over rationals) and when W has four states (over the integers). The
problem remains undecidable even when input words must come from a given
bounded language, although the resulting WFA has many more states and a
larger alphabet (an equivalent undecidability result was discussed in [16] in the
context of formal power series). In all of our proofs, we assume the initial-weight
function and the final-weight function of the WFA have values of the identity
element of the weight semigroup for all states, and hence they are not given in
constructions.

2.3. Probabilistic Finite Automata

A vector y ∈ Qn is a probability distribution if its elements are nonnegative
and sum to 1 (y has an L1 norm of 1). Matrix M is called a column stochastic
matrix if each column is a probability distribution, a row stochastic matrix if
each row is a probability distribution and it is called a doubly stochastic matrix
if it is both row and column stochastic. For any row stochastic matrix M , if y
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is a probability distribution, then so is yTM , since M preserves the L1 norm on
vectors and is nonnegative. The product of two row/column/doubly stochastic
matrices is also row/column/doubly stochastic (respectively) as is not difficult
to verify.

A Probabilistic Finite Automaton (PFA, see [18, 2] for further details) over
an alphabet A is a triplet (u, ϕ, v), where u ∈ Qn is the initial probability
distribution, ϕ : A∗ → Qn×n is a monoid homomorphism whose range is the set
of n-dimensional row stochastic matrices and v ∈ Qn is the final state vector
whose ith coordinate is 1, if state i is final, and 0 otherwise. 2

For a given PFA denoted R = (u, ϕ, v) and a word w ∈ A∗, we can define a
function fR : A∗ → [0, 1], where:

fR(w) = uTϕ(w)v ∈ [0, 1] ; w ∈ A∗.

This is the probability of R being in a final state after reading word w ∈ A∗.
In this paper we study the freeness problem for PFA over a bounded language

which is similarly defined as the problem for WFA above: given a PFA R =
(u, ϕ, v) over a bounded language L ∈ A∗, do there exist two different words
w1, w2 ∈ L such that uTϕ(w1)v = uTϕ(w2)v? We show that this problem is
also undecidable, depending upon the number of states of R and the size of the
input alphabet A.

2.4. Mixed Modification Post’s Correspondence Problem

We will require the following undecidable problem for proving later results,
which is a variant of the famous Post’s Correspondence Problem (PCP).

Problem 1 (Mixed Modification PCP (MMPCP)). Given a finite set of letters
Σ = {s1, s2, . . . , s|Σ|}, a binary alphabet Σ2, and a pair of homomorphisms
h, g : Σ∗ → Σ∗2, the MMPCP asks to decide whether there exists a word w =
x1 . . . xk ∈ Σ+, xi ∈ Σ such that

h1(x1)h2(x2) . . . hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 6= gj .

Theorem 1. [22] - The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

It will later be useful to slightly modify the definition of this problem. As
with other variants of Post’s correspondence problem, the proofs of undecid-
ability of the MMPCP often have the property that potential solution words
are of the form w = s1x2x3 · · ·xk−1s|Σ|, where x2, . . . , xk−1 ∈ Σ−{s1, s|Σ|}, i.e.
potential solution words must start with letter s1, end with letter s|Σ|, and all
other letters are not equal to s1 or s|Σ|. An instance of the (MM)PCP which

2The definition of a PFA in the literature often interchanges the roles of u and v from
our definition and requires column stochastic matrices, but the two can easily be seen to be
equivalent by transposing all matrices and interchanging u and v.
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has this property is called a Claus instance of the problem. In fact all known
proofs of the undecidability of (MM)PCP seem to have this property [23]. Claus
instances can be useful for decreasing the resources required for showing certain
undecidability results, and we use this property later.

Theorem 2. [23] - The Mixed Modification PCP is undecidable for Claus in-
stances, when |Σ| ≥ 9.3

3. Scalar Ambiguity and Freeness for Matrices

Consider a finite set G = {G1, G2, . . . , Gk} ⊂ Fn×n, generating a semigroup
of matrices S = 〈G〉 and two column vectors ρ, τ ∈ Fn. Let Λ(G) be the set of
scalars such that Λ(G) = {λ : λ = ρTMτ |M ∈ S}. If for λ ∈ Λ(G) there exists a
unique matrix M ∈ S such that λ = ρTMτ , then we say that λ is unambiguous
with respect to G, ρ, τ . We call Λ(G) unambiguous if every λ ∈ Λ(G) is unam-
biguous. If for λ ∈ Λ(G) there exists a unique product Gi1Gi2 · · ·Gim ∈ S, with
each Gil ∈ G such that λ = ρTGi1Gi2 · · ·Gimτ , then we say that λ is free with
respect to G, ρ, τ . We call Λ(G) free if every λ ∈ Λ(G) is free.

Problem 2 (Scalar Ambiguity). Is Λ(G) unambiguous with respect to G, ρ, τ?

Problem 3 (Scalar Freeness). Is Λ(G) free with respect to G, ρ, τ?

Problem 2 and Problem 3 look similar at first glance. However, the scalar
ambiguity problem concentrates more on the properties of the semigroup S,
whilst the scalar freeness problem deals more with the properties of the set G. A
fact one can see from the definitions is that if the identity matrix I is contained
in 〈G〉, then the corresponding scalar set Λ(G) is not free, but the same property
does not hold for the scalar ambiguity problem. See the following two examples
for further discussion.

Example 1. Given a semigroup of matrices S = 〈G〉 generated by a finite set

G =

{(
1 1
0 1

)
,

(
1 0
1 1

)}
and two vectors ρ = τ = (1, 0)T , it is well-known that

S is a free semigroup (e.g.[22]). However, since

1 =

(
1
0

)T (
1 1
0 1

)(
1
0

)
=

(
1
0

)T (
1 0
1 1

)(
1
0

)
,

then scalar 1 is ambiguous with respect to G, ρ, τ and thus Λ(G) is ambiguous
and not free even though G is free.

3The result in [23] states the undecidability for |Σ| ≥ 7 since they fix the first/last letters
of a potential solution.
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Example 2. Given a semigroup of matrices S = 〈G〉 generated by a finite set

G =

{(
2 0
0 1

)
,

(
3 0
0 1

)}
, and two vectors ρ = τ = (1, 0)T , it is not difficult to

verify that for k ∈ N :(
2 0
0 1

)k

=

(
2k 0
0 1

)
and

(
3 0
0 1

)k

=

(
3k 0
0 1

)
.

As the vectors ρ and τ will only calculate the element M[1,1] for the matrix
M ∈ 〈G〉, every scalar in the set Λ(G) is of the form 2m3n, where m,n ∈ N and
m+ n 6= 0. The only way to generate such a scalar by a single matrix is

2m3n =

(
1
0

)T (
2m3n 0

0 1

)(
1
0

)
,

thus Λ(G) is unambiguous. However, since the two matrices in the set G are
commutative, the semigroup S is clearly not free, and

2m3n =

(
1
0

)T(
2 0
0 1

)m(
3 0
0 1

)n(
1
0

)
=

(
1
0

)T(
3 0
0 1

)n(
2 0
0 1

)m(
1
0

)
,

which indicates that Λ(G) is also not free. Notice that if we select a different
pair of vectors, for example ρ = (1, 1)T , τ = (0, 1)T , the scalar set Λ(G) can
become neither free nor unambiguous.

Example 1 shows that a scalar set Λ(G) can be ambiguous and not free even
if S = 〈G〉 is a free semigroup. Example 2 shows that even if a scalar set Λ(G)
and the corresponding matrix semigroup G are not free, the scalar set can be
ambiguous or unambiguous, depending on the vectors given. The links between
the scalar ambiguity problem, scalar freeness problem and matrix semigroup
freeness problem are illustrated in the following proposition.

Proposition 1. Given a semigroup of matrices S generated by a finite set G,
and two column vectors ρ and τ, let Λ(G) be a set of scalars generated by G, ρ
and τ. Then the following relations hold:

(1) If Λ(G) is ambiguous, then Λ(G) is not free.

(2) if Λ(G) is free, then S is free.

Proof. (1) Suppose Λ(G) is ambiguous, then by definition there exist two matri-
ces M1,M2 ∈ S,M1 6= M2 such that ρTM1τ = ρTM2τ. If M1,M2 are different,
then their factorisations must be different. Thus, there exists factorizations
M1 = Gi1Gi2 . . . Gim1

6= Gj1Gj2 . . . Gjm2
= M2, where each Gi, Gj ∈ G and so

Λ(G) is not free.
(2) We proceed by contradiction. Suppose Λ(G) is free but S is not. If S is

not free, there exists Gi1Gi2 . . . Gim1
= Gj1Gj2 . . . Gjm2

∈ S, where Gi, Gj ∈ G,
and for at least one k, Gik 6= Gjk , or m1 6= m2. Thus, clearly it also holds that
ρTGi1Gi2 . . . Gim1

τ = ρTGj1Gj2 . . . Gjm2
τ, which contradicts the definition of

scalar freeness.
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It can be seen that by answering the scalar freeness problem, one can ‘partly’
answer the scalar ambiguity problem and the matrix semigroup freeness prob-
lem. However, neither problem is a sub-problem of the other, and there seems
to be no direct connection between the scalar ambiguity problem and the matrix
semigroup freeness problem. We are now ready to prove the main result of this
section. We later show that this theorem also holds over integer matrices and
vectors in Corollary 1.

Theorem 3. The Scalar Freeness Problem is undecidable over G ⊆ Q3×3 and
the Scalar Ambiguity Problem is undecidable over G′ ⊆ Q4×4, when |G|, |G′| ≥
16.

Proof. We prove the result by encoding an instance of the MMPCP problem.
The basic idea is inspired by [22]. We start by showing the undecidability of
the scalar freeness problem. We construct a finite set of matrices G, generating
a matrix semigroup S and two fixed vectors ρ and τ such that the encoded
MMPCP instance has a solution if and only if the scalar set Λ(G) is not free. In
other words, there exists a scalar λ ∈ Λ(G) such that λ = ρTGi1Gi2 . . . Gim1

τ =

ρTGj1Gj2 . . . Gjm2
τ , where Gi, Gj ∈ G and some Gik 6= Gjk or m1 6= m2.

Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets and
h, g : Σ∗ → ∆∗ be an instance of the mixed modification PCP. The naming
convention will become apparent below. We define two injective mappings α, β :
(Σ ∪∆)∗ → Q by:

α(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)j−1,

β(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)−j ,

and α(ε) = β(ε) = 0. Thus α represents xi1xi2 · · ·xim as a reverse (n+ 1)-adic
number and β represents xi1xi2 · · ·xim as a fractional number (0.xi1xi2 · · ·xim)(n+1)

(e.g. if n = 9, then x1x2x3 is represented as α(x1x2x3) = 32110 and β(x1x2x3) =
0.12310, where subscript 10 denotes base 10). Note that ∀w ∈ (Σ∪∆)∗, α(w) ∈ N
and β(w) ∈ [0, 1) ∩ Q. It is not difficult to see that ∀w1, w2 ∈ (Σ ∪ ∆)∗, (n +
1)|w1|α(w2) + α(w1) = α(w1w2) and (n+ 1)−|w1|β(w2) + β(w1) = β(w1w2).

Define γ′ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3 by

γ′(u, v) =

(n+ 1)|u| 0 α(u)
0 (n+ 1)−|v| β(v)
0 0 1

 .

It is easy to verify that γ′(u1, v1)γ′(u2, v2) = γ′(u1u2, v1v2), i.e., γ′ is a homo-
morphism. Define two more matrices T and T−1 :

T =

1 1 0
0 1 0
0 0 1

 , T−1 =

1 −1 0
0 1 0
0 0 1

 .

We now define γ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3:

γ(u, v) = Tγ′(u, v)T−1 =

(n+ 1)|u| (n+ 1)−|v| − (n+ 1)|u| α(u) + β(v)
0 (n+ 1)−|v| β(v)
0 0 1

 .
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We can now verify that, γ(u1, v1)γ(u2, v2) = Tγ′(u1, v1)TT−1γ′(u2, v2)T−1 =
Tγ′(u1u2, v1v2)T−1 = γ(u1u2, v1v2), hence γ is a homomorphism.

Let G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n − 2}, S = 〈G〉, ρ =
(1, 0, 0)T and τ = (0, 0, 1)T . Assume that there exist M1 = Gi1Gi2 · · ·Git ∈ 〈G〉
and M2 = Gj1Gj2 · · ·Gjt′ ∈ 〈G〉 such that t 6= t′ or else at least one Gip 6= Gjp

where 1 ≤ p ≤ t and λ = ρTM1τ = ρTM2τ . We see that:

λ = ρTM1τ = (M1)[1,3] = α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit)),
λ = ρTM2τ = (M2)[1,3] = α(xj1xj2 · · ·xjt′ ) + β(f ′1(xj1)f ′2(xj2) · · · f ′t′(xjt′ )),

where each fi, f
′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1) ∩ Q, ∀w ∈

(Σ ∪ ∆)∗, injectivity of α and β implies that if ρTM1τ = ρTM2τ , then t =
t′ and ik = jk for 1 ≤ k ≤ t. Furthermore, if ρTM1τ = ρTM2τ , we have
that β(f1(xi1)f2(xi2) · · · ft(xit)) = β(f ′1(xi1)f ′2(xi2) · · · f ′t(xit)) and since at least
one fp 6= f ′p for 1 ≤ p ≤ t by our above assumption, then this corresponds
to a correct solution to the MMPCP instance (h, g). On the other hand, if
there does not exist a solution to (h, g), then β(f1(xi1)f2(xi2) · · · ft(xit)) 6=
β(f ′1(xi1)f ′2(xi2) · · · f ′t(xit)), and injectivity of β implies that ρTM1τ 6= ρTM2τ .

By Theorem 1, this implies that the result holds for |G| ≥ 18 since the
MMPCP is undecidable over an alphabet of size 9. We now prove that the
result holds for |G| ≥ 16. By Theorem 2 above, we may assume that h, g :
Σ∗ → ∆∗ is a Claus instance of the MMPCP problem, and that |Σ| ≥ 9. Let
then Σ = {x1, x2 . . . , x9}. Since h, g is a Claus instance, then any potential
solution word w is of the form w = x1w

′x9, with w′ ∈ (Σ − {x1, x9})∗. By
symmetry, we may assume that h1 = h and by the proof in [23], gi = g and
hi = h for all 1 ≤ i ≤ t. Clearly then, one of h(x1) and g(x1) is a proper
prefix of the other (assume h(x1) is a prefix of g(x1)), otherwise a shorter
solution must exist. Similarly one of h(x9) and g(x9) is a proper suffix of
the other (assume that g(x9) is a suffix of h(x9); the opposite case is similar).
Now, we redefine ρ′T = ρT γ(x1, h(x1)) and τ ′ = γ(x9, g(x9))τ . Finally we
remove the matrices corresponding to h(x1) and g(x9) from G and redefine
the matrices corresponding to g(x1) and h(x9) by g′(x1) = γ(x1, h(x1)−1g(x1))
and h′(x9) = γ(x9, h(x9)g(x9)−1) respectively. Since h(x1) is a proper prefix
of g(x1), then h(x1)−1g(x1) is the suffix of g(x1) after removing the common
prefix with h(x1) (similarly for h(x9)g(x9)−1). Then, we see that

h1(xi1)h2(xi2) · · ·ht−1(xit−1)ht(xit) = g1(xi1)g2(xi2) · · · gt−1(xit−1)gt(xit)

⇔ h(x1)h(xi2) · · ·h(xit−1)h(x9) = g(x1)g(xi2) · · · g(xit−1)g(x9)

⇔ h(xi2) · · ·h(xit−1)h′(x9) = g′(x1)g(xi2) · · · g(xit−1)

This completes the proof of the scalar freeness problem for 16 rational ma-
trices of dimension 3.

We now show the undecidability of the scalar ambiguity problem by a re-
duction of the scalar freeness problem shown above. The above encoding has
the property that if some λ = ρTM1τ = (M1)[1,3] = ρTM2τ = (M2)[1,3], then
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it implies that M1 = M2. If there exists a solution to the MMPCP instance,
then some matrix M ∈ S has two distinct factorizations as above, one using
morphisms from h, the other using morphisms from g (see the proof of the un-
decidability for Claus instances of MMPCP, Theorem 13 of [23]). We increase
the dimension of γ by 1 to store an additional element. Each matrix of the form
γ(xi, g(xi)) ∈ G is modified to γ(xi, g(xi)) ⊕ 3 ∈ Q4×4 and each matrix of the
form γ(xi, h(xi)) ∈ G is modified to γ(xi, h(xi)) ⊕ 5 ∈ Q4×4. We modify ρ to
ρ⊕ 0 and τ to τ ⊕ 0, which have an additional dimension which does not select
this new element (of the form 3t or 5t). A solution to the MMPCP instance
will now have two different factorizations, and the corresponding matrices will
differ in one component. Therefore the ambiguity problem is undecidable for 16
matrices over Q4×4.

Let G ⊆ Qn×n be a set of matrices and ρ, τ ∈ Qn be two vectors such that
Λ(G) is free (resp. ambiguous) with respect to G, ρ and τ . Unfortunately, it is
not the case that for all z ∈ Z− {0} then Λ(zG) is free (resp. ambiguous) with
respect to zG, zρ and zτ (where zG denotes multiplying each matrix of G by z).
The reason this is unfortunate is that otherwise we may multiply all matrices
and vectors by some large enough constant z so that they become integer. In
order to show a reduction from the rational to integer version of Theorem 3, we
require a new technique which is shown in the following Lemma.

Lemma 1. If the scalar freeness or scalar ambiguity problem is undecidable
for two vectors ρ′, τ ′ ∈ Zn−1 and a set of matrices G′ = {G′1, G′2, . . . , G′k} ⊆
Q(n−1)×(n−1), where non-free scalars must have the same number of factors,
then the problem is also undecidable for computable vectors ρ, τ ∈ Zn and set of
matrices G = {G1, G2, . . . , Gk} ⊆ Zn×n.

Proof. Notice in the proof of Theorem 3 that if a scalar is non-free or ambiguous,
then the scalar can be generated by two matrices X1 and X2, each of which is
the product of the same number of matrices from the generator. We use this
property in the proof below.

Let z ∈ N>1 be large enough such that zG′i ∈ Z(n−1)×(n−1) for each G′i ∈ G′.
Such a z clearly exists and can be taken as the least common multiple of the
denominators of elements from each matrix and vector. Let ρ = ρ′ ⊕ 1 and
τ = τ ′ ⊕ 1 (i.e. ρ is ρ′ with a ‘1’ appended at the end). Finally, we define
G = {G1, G2, . . . , Gk} ⊆ Zn×n by Gi = z2G′i ⊕ z.

Assume that Λ(G′) is free with respect to G′, ρ′, τ ′. We now show that Λ(G)
is free with respect to G, ρ, τ .

Assume by contradiction that there exists M1 = Gi1Gi2 · · ·Gik1
∈ 〈G〉 and

M2 = Gj1Gj2 · · ·Gjk2
∈ 〈G〉 such that either k1 6= k2 or at least one Git 6= Gjt

for 1 ≤ t ≤ k1, where ρM1τ = ρM2τ . We see that

ρM1τ = z2k1ρ′M ′1τ
′ + zk1 = z2k2ρ′M ′2τ

′ + zk2 = ρM2τ,

where M ′1 = G′i1G
′
i2
· · ·G′ik1

∈ 〈G′〉 and M ′2 = G′j1G
′
j2
· · ·G′jk2

∈ 〈G′〉. Now, if

k1 = k2, then this implies that ρ′M ′1τ
′ = ρ′M ′1τ

′, which is a contradiction since



3 SCALAR AMBIGUITY AND FREENESS FOR MATRICES 12

Λ(G′) is free with respect to G′, ρ′, τ ′. Thus, assume that k2 > k1 (the other case
is similar). In this case we can divide both sides of equation z2k1ρ′M ′1τ

′+ zk1 =
z2k2ρ′M ′2τ

′ + zk2 by zk1 to see that

zk1ρ′M ′1τ
′ + 1 = z2k2−k1ρ′M ′2τ

′ + zk2−k1

Now, zk1ρ′M ′1τ
′+ 1 mod z ≡ 1 and z2k2−k1ρ′M ′2τ

′+ zk2−k1 mod z ≡ 0, there-
fore they cannot be equal. Thus, if Λ(G) is free with respect to G, ρ, τ , then it
implies that Λ(G′) is free with respect to G′, ρ′, τ ′ as required.

Finally, assume that Λ(G′) is not free with respect to G′, ρ′, τ ′. By the
assumption of the Lemma, then there exists two matrices X1 = G′i1G

′
i2
· · ·G′ik1

and X2 = G′j1G
′
j2
· · ·G′ik1

such that ρ′X1τ
′ = ρ′X1τ

′. Notice that X1 and X2

are the product of the same number of matrices k1. We now see that:

ρGi1Gi2 · · ·Gik1
τ = z2k1ρ′X1τ

′ + zk1 = z2k1ρ′X2τ
′ + zk1 = ρGj1Gj2 · · ·Gjk1

τ

and therefore Λ(G) is not free with respect to G, ρ, τ .

We can now state Theorem 3 is undecidable over integer matrices, with an
increase in the dimension (note that this increased dimension was erroneously
omitted in [21]).

Corollary 1. The Scalar Freeness Problem is undecidable over G ⊆ Z4×4 and
the Scalar Ambiguity Problem is undecidable over G′ ⊆ Z5×5, when |G|, |G′| ≥
16.

Proof. Immediate from Theorem 3 and Lemma 1.

Corollary 2. Given a four-state Weighted Finite Automaton W, determining
if the cost of W is distinct for every possible accepting word is undecidable over
the integers, even when the initial and final weight functions of W equal the
identity.

Proof. We use the set of matrices G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤
i ≤ n − 2}, ρ = (1, 0, 0)T and τ = (0, 0, 1)T defined in the proof of Theorem 3.
We label the matrices in G by hi, gi for 1 ≤ i ≤ n − 2 (with the obvious
correspondence). Since Corollary 1 proves it is undecidable to determine if
there exists two matrices X1, X2 ∈ 〈G〉 such that X1 and X2 have different
factorizations and ρTX1τ = ρTX2τ , therefore it is undecidable to determine if
there exists two words w1, w2 ∈ Σ′∗ where Σ′ = {hi, gi|1 ≤ i ≤ n − 2} and
w1 6= w2, such that LW(w1) = LW(w2).

Example 3. We consider in Fig. 1. the weighted automaton W corresponding
to some γ(u, v) ∈ G in the proof of Theorem 3, where u, v ∈ Σ∗ is from the
encoding of the PCP. In this example we consider a WFA over a unary input
alphabet Σ1. Recall that ρT = (1, 0, 0) and τT = (0, 0, 1) are the vectors used
in the proof to compute a value ρT γ(u, v)τ , which corresponds to state ‘3’ being
the initial state and state ‘1’ being the final state (with initial and final weights
being identity).

The cost value LW(w) for a word w ∈ Σ+
1 is thus α(u|w|)+β(v|w|) as required.
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(
1 0 0

) x y − x α(u) + β(v)
0 y β(v)
0 0 1

0
0
1


y−x

1 2

3

β(v)

1

yx

(v)β+(u)α

Figure 1: The matrix representation and WFA for a pair γ(u, v), where x = (n + 1)|u| and
y = (n+ 1)−|v|. The cost for a single letter is α(u) + β(v).

4. Ambiguity and Freeness over a Bounded Language

We now study the concept of scalar ambiguity, scalar freeness and vector
ambiguity for a bounded language of matrices, showing that these problems are
undecidable. We start with the definition of Hilbert’s tenth problem, which was
shown to be undecidable by Matiyasevich.

Hilbert’s tenth problem is to determine if a given Diophantine equation
P (n1, n2, . . . , nk) = 0 has a solution for variables n1, n2, . . . nk ∈ N (P is thus
a polynomial with integer coefficients). The undecidability of Hilbert’s tenth
problem was shown in 1970 by Yu. Matiyasevich building upon earlier work
of many mathematicians, including M. Davis, H. Putnam and J. Robinson.
For more details of the history of the problem as well as the full proof of its
undecidability, see the excellent reference [24]. We may restrict all the variables
of the problem to be natural numbers without loss of generality, see [24, p.6].

The following corollary follows from the proof construction in Theorem 2 of
[25].

Corollary 3. [25] - Given an integer polynomial P (n1, n2, . . . , nk), one can
construct two vectors ρ = (1, 0, . . . , 0)T ∈ Nn and τ = (0, . . . , 0, 1)T ∈ Nn, an
alphabet Σ = {x1, x2, . . . , xk} and a homomorphism µ : Σ∗ → Zn×n, such that
for any word of the form w = xy1

1 x
y2

2 . . . xyk

k ∈ Σ+ :

ρTµ(w)τ = P (y1, y2, . . . , yk)2,

and ρTµ(ε)τ = 0 for the empty word ε. The triple (ρ, µ, τ) is a linear represen-
tation of a Z-regular formal power series Z ∈ N〈〈Σ〉〉.

We will require the following lemma, which follows from the undecidability
of Hilbert’s tenth problem.

Lemma 2. Given two integer polynomials P1 and P2 over variables (n1, . . . , nk)
and with integer coefficients. It is undecidable to decide whether there exist
integers (y1, . . . , yk) such that P 2

1 (y1, . . . , yk) = P 2
2 (y1, . . . , yk).

Proof. Let P (n2, . . . , nk) be an instance of Hilbert’s tenth problem, i.e. a
polynomial with integer coefficients and variables. Define P1(n1, n2, . . . , nk) =
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(n2
1 + 1)P (n2, . . . , nk) and P2(n1, n2, . . . , nk) = (n2

1 + 2)P (n2, . . . , nk). Since
0 < n2

1 + 1 < n2
1 + 2, we see that P 2

1 (n1, n2, . . . , nk) = P 2
2 (n1, n2, . . . , nk) implies

that P 2
1 (n1, n2, . . . , nk) = 0 and P 2

2 (n1, n2, . . . , nk) = 0, which then implies that
P (n2, . . . , nk) = 0, which is undecidable to determine [24]. This result holds for
any value of n1 since n2

1 + 1 6= n2
1 + 2. We will use this property in the later

proof.

Now we show that the scalar freeness problem remains undecidable even over
bounded languages. The problem can also be stated in terms of formal power
series: given a formal power series r, determine if r has two equal coefficients.
This problem was shown to be undecidable for formal power series over the inte-
gers in Theorem 8.15 of [16] and even over the natural numbers in Theorem 3.4
of [17].4 We include the proof below, which uses a different encoding technique
from [16, 17], for completeness and since the proof allows us to directly show
the related vector ambiguity problem to be undecidable in Corollary 4.

Theorem 4. The Scalar Freeness Problem over a bounded language of integer
matrices is undecidable. In other words, given k matrices M1,M2, . . . ,Mk ∈
Zn×n, generating a bounded language of matrices M = M∗1M

∗
2 · · ·M∗k , and two

vectors ρ, τ ∈ Zn, it is undecidable to decide if there exist l1, . . . , lk, r1, . . . , rk ∈
N such that

ρTM l1
1 M

l2
2 . . .M lk

k τ = ρTMr1
1 Mr2

2 . . .Mrk
k τ,

where lj 6= rj for at least one j.

Proof. We prove this theorem in 4 steps. We will define a set of matrices
{Mi, Ni|0 ≤ i ≤ k + 1} for some k + 1 > 0, which will define the bounded
language of matrices M = M∗0M

∗
1M

∗
2 · · ·M∗kM∗k+1N

∗
0N
∗
1N
∗
2 · · ·N∗kN∗k+1. The

set of matrices {Mi | i = 0, ..., k + 1} encodes a polynomial P1 and the set of
matrices {Ni | i = 0, ..., k + 1} encodes a separate polynomial P2. The proof
will show that if we have ρTA1τ = ρTA2τ , where A1, A2 ∈ M and A1, A2

have different factorizations, then A1 = M j0
0 M j1

1 M j2
2 · · ·M

jk
k M

jk+1

k+1 and A2 =

N
j′0
0 N j1

1 N j2
2 · · ·N

jk
k N

j′k+1

k+1 (or vice versa). We will show that this implies that
P 2

1 (j1, · · · , jk) = P 2
2 (j1, · · · , jk), the determination of which was shown to be

undecidable in Lemma 2.
Step 1. Given two integer coefficient polynomials P1 and P2 of same number of
variables, from Corollary 3, we can construct an alphabet Σ = {x1, x2, . . . , xk},
two vectors ρ′ = (1, 0, . . . , 0)T , τ ′ = (0, . . . , 0, 1)T ∈ Nn, and two homomor-
phisms µ1, µ2 : Σ∗ → Zn×n such that:

ρ′Tµi(w)τ ′ =

{
Pi(y1, y2, . . . , yk)2, if w ∈ L\{ε};
0, if w = ε;

where i ∈ {1, 2} and L is the bounded language L = x∗1x
∗
2 . . . x

∗
k ⊂ Σ∗.

4Note that the relevant theorems in [16, 17] do not specifically state that they hold for
bounded languages, but the result can be easily derived by the technique used to encode
rational formal power series into matrices [16].
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Step 2. Given alphabets K = {0, 1, . . . , k, k + 1} and Ω = K ∪ {#, ∗}, define
left and right desynchronizing morphisms l and r : K∗ → Ω∗ by

l(0) = #0, l(1) = ∗1, l(i) = #i, l(k + 1) = #(k + 1)#,
r(0) = #0∗, r(1) = 1#, r(i) = i#, r(k + 1) = (k + 1)#,

where 2 ≤ i ≤ k. In the sequel, by abuse of notation, we use lj , rj to represent
the words derived from the morphisms l(j), r(j), 0 ≤ j ≤ k + 1. We define a
word u ∈ Ω∗ as ‘free’ if there is a unique factorization of u over {lj , rj}.

Let L′ = l∗0l
∗
1 · · · l∗k+1r

∗
0r
∗
1 · · · r∗k+1 ∈ Ω∗. We shall now prove that for any

word of the form u = lj00 l
j1
1 · · · l

jk+1

k+1 r
j′0
0 r

j′1
1 · · · r

j′k+1

k+1 ∈ L′ which is not free, it has
two factorizations, in one of which all ji = 0 and in the other all j′i = 0.

Note that no element of Γ = {lt, rt|0 ≤ t ≤ (k + 1)} is a prefix of any other
word from the set, except for l0 which is a prefix of r0. Thus, Γ \ {l0} is a prefix
code. If u does not begin with l0 to some nonzero power, then by the definition
of L′, word u thus has a unique factorization.

If u has a prefix #0, but not #0∗, then the prefix only matches with l0, not
r0 and this prefix can be extracted from u since it has only a single possible
factorization. We can continue this argument iteratively, until we reach u which
begins with #0∗. Thus assume that u begins with #0∗. Let u = l0u1 = r0v1 be
the two possible factorizations. Since u1 must start with ∗, then u1 = l1u2. This
implies that v1 starts with symbol ‘1’, which implies v1 = r1v2 since r1 is the
only word with prefix 1. Now, u2 must be of the form lpu3 for some 2 ≤ p ≤ k.
Then v2 must be of the form rpv3. This matching continues iteratively, until
eventually we reach (k+1), at which point we must use lk+1 for the u-word and
rk+1 for the v-word.

At this point we have the two factorizations u = l∗0l0l1l
j2
2 · · · l

jk
k lk+1r

∗
k+1

and u = l∗0r0r1r
j2
2 · · · r

jk
k rk+1r

∗
k+1 as the only possibilities. An example of this

follows:

u = #0 ∗ 1#3#5#(k + 1)# = l0l1l3l5lk+1 = #0 · ∗1 ·#3 ·#5 ·#(k + 1)#
= r0r1r3r5rk+1 = #0 ∗ ·1# · 3# · 5# · (k + 1)#

Step 3. We now encode the words li and rj (0 ≤ i, j ≤ k + 1) into rational
numbers in the interval (0, 1). For simplicity we first define a mapping σ : Ω→
X, where X = {x0, x1, . . . , xk+3} such that

σ(z) =

 xz if z ∈ {0, 1, . . . , k + 1};
xk+2 if z = #;
xk+3 if z = ∗.

We can extend σ to be a homomorphism σ : Ω∗ → X∗. We then define a
homomorphism β : X∗ → (0, 1)∩Q in a similar way as in the proof of Theorem 3:

β(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)−j ,

and β(ε) = 0, where n = |X| = k + 4. Moreover, we use a similar definition as
in the proof of Theorem 3 for γ, but only on a single word v ∈ X∗, such that
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γ : X∗ → Q2×2 :

γ(v) =

(
(n+ 1)−|v| β(v)

0 1

)
.

It can be verified that γ(v1v2) = γ(v1)γ(v2), and thus γ is a homomorphism.
Finally, we define γl, γr : K∗ → Q2×2 by γl(i) = γ(σ(li)) and γr(i) =

γ(σ(ri)), where 0 ≤ i ≤ k + 1. It can be seen that ρ′′T γlτ
′′ and ρ′′T γrτ

′′ are
two injective mappings from K∗ to (0, 1), where ρ′′ = (1, 0)T and τ ′′ = (0, 1)T ,
mapping the words derived from left and right desynchronizing morphisms l and
r to (0, 1) ∩Q.
Step 4. In step 1 we showed how to encode an integer polynomial into a matrix.
In Step 2 and 3 we defined left and right desynchronizing morphisms and wrote
them into matrix form. We now combine these steps together by defining a set
of matrices {Mi, Ni} ⊂ Q(n+2)×(n+2):

M0 = I ⊕ γl(0), Mi = µ1(xi)⊕ γl(i), Mk+1 = I ⊕ γl(k + 1),
N0 = I ⊕ γr(0), Ni = µ2(xi)⊕ γr(i), Nk+1 = I ⊕ γr(k + 1),

where 1 ≤ i ≤ k, and I is the n× n identity matrix. Then we let a scalar λ be
written as:

λ = ρTMp0

0 Mp1

1 . . .M
pk+1

k+1 N
q0
0 Nq1

1 . . . N
qk+1

k+1 τ

= ρ′Tµ1(w1)µ2(w2)τ ′ + ρ′′T γl(v1)γr(v2)τ ′′,

where ρ = (ρ′T , ρ′′T )T , τ = (τ ′T , τ ′′T )T , w1, w2 ∈ L, v1, v2 ∈ 0∗1∗ . . . (k + 1)∗ ⊆
K∗. It can be seen that scalar λ contains two parts, one part consists of the
homomorphisms µ1, µ2 we constructed in Step 1 related to the polynomials,
which is the integer part; the other part consists of the homomorphisms γl, γr
we constructed in Step 3 related to the desynchronizing morphisms, which is
the fractional part. We now show that scalar λ is not free if and only if there
exists some nonzero integer variables (y1, . . . , yk) such that P 2

1 (y1, . . . , yk) =
P 2

2 (y1, . . . , yk).
If λ is not free, by definition there must be integers p0, . . . , pk+1, q0, . . . , qk+1

and p′0, . . . , p
′
k+1, q

′
0, . . . , q

′
k+1 such that

λ = ρTMp0

0 . . .M
pk+1

k+1 N
q0
0 . . . N

qk+1

k+1 τ = ρTM
p′0
0 . . .M

p′k+1

k+1 N
q′0
0 . . . N

q′k+1

k+1 τ,

where pt 6= p′t or qt 6= q′t for at least one 0 ≤ t ≤ k + 1. Since the value of the
fractional part of λ only depends on the desynchronizing morphisms, l, r, and
the fractional parts are identical in both factorizations, from step 2 we have

pi = q′i and qi = p′j = 0, for 1 ≤ i, j ≤ k, or
pi = q′i = 0 and qj = p′j , for 1 ≤ i, j ≤ k.

We only consider the first case, the second case can be analysed in a similar
way mutatis mutandis. As the integer parts of λ in both factorizations are
also identical, and M0,Mk+1, N0, Nk+1 are defined in a way that the value of
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p0, pk+1, q0, qk+1 and p′0, p
′
k+1, q

′
0, q
′
k+1 do not affect the value of the integer part,

we have
ρ′Tµp1

1 (x1) . . . µpk

1 (xk)τ ′ = ρ′Tµp1

2 (x1) . . . µpk

2 (xk)τ ′,

which implies that P 2
1 (p1, . . . , pk) = P 2

2 (p1, . . . , pk). So (p1, . . . , pk) is a solution.
If λ is free, we show there is no solution such that P 2

1 = P 2
2 by contradiction.

Assume there is a nonzero solution (y1, . . . , yk), such that P 2
1 (y1, . . . , yk) =

P 2
2 (y1, . . . , yk). From the way we construct P1 and P2 in Lemma 2, we know

the value of y1 can be any integer value without changing the equality. Thus it
must be true that P 2

1 (1, y2, . . . , yk) = P 2
2 (1, y2, . . . , yk), and there exists a word

w = x1x
y2

2 . . . xyk

k ∈ L∗ such that

ρ′Tµ1(w)τ ′ = ρ′Tµ2(w)τ ′,

which implies that

ρ′Tµ1(x1)µy2

2 (x2) . . . µyk

k (xk)τ ′ = ρ′Tµ1(x1)µy2

2 (x2) . . . µyk

k (xk)τ ′.

Since
Mi = µ1(xi)⊕ γl(i),
Ni = µ2(xi)⊕ γr(i),

for 1 ≤ i ≤ k, we can set v = 0 · 1 · 2y2 · · · kyk · (k + 1), and scalar λ can be
written as

λ = ρ′Tµ1(w)τ ′ + ρ′′T γl(v)τ ′′ = ρTM0M1M
y2

2 · · ·M
yk

k Mk+1τ
= ρ′Tµ2(w)τ ′ + ρ′′T γr(v)τ ′′ = ρTN0N1N

y2

2 · · ·N
yk

k Nk+1τ.

This shows that λ has two different factorizations, which is a contradiction.
Thus we showed that scalar freeness problem can be reduced to the problem
stated in Lemma 2, which is undecidable.

Finally, from the above proof we know that if some scalar λ is not free, it
must be that λ = ρTXτ = ρTY τ , where X = Xi1Xi2 · · ·Xit ∈ {Mi}∗ and
Y = Yi1Yi2 · · ·Yit ∈ {Ni}∗. Since X and Y have the same number of factors,
by Lemma 1, we may increase the size of the dimension by 1 and obtain the
undecidability result instead for integer matrices.

Theorem 5. The Scalar Ambiguity Problem over a bounded language of integer
matrices is undecidable.

Proof. We can use the same idea as in the proof of Theorem 3, increasing the
dimension of matrices Mi, Ni constructed in the proof of Theorem 4 to store
an additional prime which is unique for each matrix. Vectors ρ, τ are modified
with an additional zero-value dimension such that the value of scalar λ is not
affected. Hence in the case λ = ρTM1τ = ρTM2τ , we must have M1 6= M2.

Corollary 4. Vector ambiguity over a bounded language of integer matrices is
undecidable.
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Proof. Follows from Theorem 5 in the case when only one vector τ is considered.
Note that by Step 4 of Theorem 4, ambiguous scalars can be written in the form:

λ = ρTM0M
p1

1 . . .Mpk

k Mk+1τ = ρTN0N
q′1
1 · · ·N

q′k
k Nk+1τ. (1)

Define M ′0 = ρρTM0 and N ′0 = ρρTN0. We thus see that:

ρλ = M ′0M
p1

1 . . .Mpk

k Mk+1τ = N ′0N
q′1
1 · · ·N

q′k
k Nk+1τ = ρλ,

thus if element λ is ambiguous then vector ρλ is ambiguous. Clearly if every λ
is unique, then every ρλ is also unique and therefore the problem is undecidable
over bounded language M ′0M

p1

1 · · ·M
pk

k Mk+1N
′
0N

q1
1 · · ·N

qk
k Nk+1.

Note that if one defines M ′k+1 = Mk+1ττ
T and N ′k+1 = Nk+1ττ

T , then
Equation (1) implies that:

ρλτT = M ′0M
p1

1 . . .Mpk

k M ′k+1τ = N ′0N
q′1
1 · · ·N

q′k
k N ′k+1τ = ρλτT ,

and thus matrix ρλτT has more than one factorization over bounded language
M ′0M

p1

1 · · ·M
pk

k M ′k+1N
′
0N

q1
1 · · ·N

qk
k N ′k+1. This is equivalent to showing that

the freeness problem for matrices over a bounded language is undecidable. This
result was proven with different methods in [1].

Corollary 5. Given a Weighted Finite Automaton W, and a bounded language
L, determining if the output of W is distinct for every possible input word from
language L is undecidable over the integers.

Proof. Immediate from the proof of Corollary 2 when using the encoding of an
instance of Hilbert’s tenth problem from Theorem 5.

Finally, we show a result related to Probabilistic Finite Automata (PFA).

Corollary 6. The PFA freeness problem over a bounded language is undecid-
able.

Proof. In this proof, we will construct a PFA (u, ϕ, v) over a bounded language
L on an alphabet A. We will show that the problem to decide if there exist two
different words w1, w2 ∈ L such that uTϕ(w1)v = uTϕ(w2)v, can be reduced
to the scalar freeness problem and hence is undecidable. The proof uses a
modification of the construction in Lemma 1 of [26]; see also [19, 20].

Define {M ′i , N ′i |0 ≤ i ≤ k + 1} ⊆ Z(t−3)×(t−3) and ρ′, τ ′ ∈ Zt−3 to be the
modified integer version of the matrices {Mi, Ni|0 ≤ i ≤ k+ 1} and vectors ρ, τ
defined in the proof of Theorem 4, where t > 3 is the appropriate dimension.
We increase the dimension of each M ′i , N

′
i and ρ′, τ ′ by one by defining M ′′i =

tM ′i ⊕ 1, N ′′i = tN ′i ⊕ 1, for each 0 ≤ i ≤ k + 1 and ρ′′ = ρ′ ⊕ 1, τ ′′ = τ ′ ⊕ 1.
Define the morphism ζ : A = {a0, a1, . . . , a2k+3} → {M ′′i , N ′′i } by

ζ(aj) =

{
M ′′j if 0 ≤ j ≤ k + 1;
N ′′j−(k+2) if k + 2 ≤ j ≤ 2k + 3.
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Then for a word w ∈ A∗, we have

ρ′′T ζ(w)τ ′′ = t|w|ρ′TX ′wτ
′ + 1 = t|w|λ+ 1,

where X ′w is the matrix generated by M ′i , N
′
i according to the word w and

λ = ρ′TX ′wτ
′ ∈ Z.

We then extend the dimension of the matrix ζ(aj) to t by defining ζ ′ → Zt×t :

ζ ′(aj) =

 0 0 0
pj ζ(aj) 0
rj qTj 0

 ,

where pj , qj ∈ Z(t−2) and rj ∈ Z are chosen such that, for each ζ ′(aj), the row
and column sums of ζ ′(aj) are all 0 (note that these values are well defined and
unique).

We now modify ζ ′(aj) so that every entry is positive. To do this we let ∆ be
the matrix of dimension t with all elements being 1. Let c ∈ Z+ be chosen so
that ζ ′(aj) + c∆ is a strictly positive matrix for all 1 ≤ j ≤ 2k + 3, and define

ζ̂ : A∗ → Zt×t
+ as

ζ̂(aj) = ζ ′(aj) + c∆ ∈ Nt×t
>0 .

Finally, let ϕ : A∗ → [0, 1]t×t be

ϕ(aj) =
1

ct
ζ̂(aj) =

1

ct
ζ ′(aj) +

1

t
∆.

Since row and column sums of ζ ′(aj) are all 0, and ∆ is a matrix of dimension t
with all elements being 1, it can be verified that all ϕ(aj) are stochastic matrices.

Then let u = (0, 1
3ρ
′′T , 0)T and v = (0, 1

3τ
′′T , 0)T , we have constructed a

PFA (u, ϕ, v) over a bounded language L = a∗0a
∗
1 . . . a

∗
2k+3 ⊆ A∗. Note that u, v

have an L1 norm of 1.
To see that the scalar freeness problem for PFA (u, ϕ, v) is undecidable, we

note that ∆n = tn−1∆ (as ∆2 = t∆), and by the definition of ζ ′(aj), it holds
that ζ ′(aj) ·∆ = ∆ · ζ ′(aj) = ∅ (the zero matrix). Thus,

uTϕ(w)v = uT

((
1

ct

)|w|
ζ ′(w) +

(
1

t

)|w|
∆|w|

)
v

=

(
1

ct

)|w|
(
1

9
ρ′′T ζ(w)τ ′′) + uT

(
∆

t

)
v ; (since ∆|W | = t|W |−1∆)

=
1

9

(
1

ct

)|w|
(t|w|λ+ 1) +

1

t

Now assume there exist two different words w1, w2 ∈ L with uTϕ(w1)v =
uTϕ(w2)v. Then we have

1

9

(
1

ct

)|w1|

(t|w1|λ1 + 1) +
1

t
=

1

9

(
1

ct

)|w2|

(t|w2|λ2 + 1) +
1

t
(2)
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If |w1| = |w2|, since c and t are all fixed, we immediately get λ1 = λ2, which
implies the corresponding scalar freeness problem has a solution.

If |w1| 6= |w2|, without lose of generality, we assume |w1| = y1 < y2 = |w2|.
Then we get

cy2−y1ty2λ1 + (ct)y2−y1 = ty2λ2 + 1,

But, cy2−y1ty2λ1 + (ct)y2−y1 mod t ≡ 0 and ty2λ2 + 1 mod t ≡ 1, which gives
a contradiction.

If there exist words w1, w2 ∈ L such that ρ′′T ζ(w1)τ ′′ = ρ′′T ζ(w2)τ ′′ (thus
the scalar freeness problem has a positive solution), then by the proof of Theo-
rem 3, we know that |w1| = |w2| and λ1 = λ2, therefore Equation (2) holds and
therefore the PFA (u, ϕ, v) is not free. Hence the freeness problem for PFA over
a bounded language is undecidable.

Corollary 7. The PFA freeness problem is undecidable for PFA with 5 states
and an alphabet A of size 16.

Proof. We use a combination of the techniques from Theorem 3 and Corollary 6.
Theorem 3 shows how we can prove the scalar freeness problem is undecidable for
vectors ρ, τ ∈ Q3 and matrices M1,M2, . . . ,M16 ∈ Q3×3. Using the Turakainen
technique detailed in Corollary 6, we derive vectors ρ′, τ ′ ∈ Q5 and doubly
stochastic matrices M ′1,M

′
2, . . . ,M

′
16 ∈ Q5×5, such that the initial vector is a

probability distribution, which therefore defines a PFA.
Now, if there exist two words w1, w2 ∈ A∗ such that w1 6= w2 and the

acceptance probability of w1 and w2 is the same, then

ρ′M ′w1
τ ′ = ρ′M ′w2

τ ′ ⇔ ρMw1τ = ρMw2τ,

which is undecidable by Theorem 3.

5. Conclusion

We defined two related problems for matrix semigroups: the scalar ambiguity
problem and the scalar freeness problem. We discussed the relations between
these two problems and the matrix semigroup freeness problem. We showed
that both problems are undecidable in low dimensions, three for ambiguity and
four for freeness (dimensions four and five respectively when considered over
the integers). These two problems remain undecidable even over bounded lan-
guages, but require higher dimensions. Using these results, we showed the free-
ness problem for weighted and probabilistic finite automata is also undecidable,
which appears to be of independent interest.
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[6] J. Cassaigne, T. Harju, J. Karhumäki, On the undecidability of freeness
of matrix semigroups, International Journal of Algebra and Computation
9 (3-4) (1999) 295–305.

[7] J. Cassaigne, F. Nicolas, On the decidability of semigroup freeness, RAIRO
- Theoretical Informatics and Applications 46 (3) (2012) 355–399.
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