
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Multiprocessor speed scaling for jobs with arbitrary sizes and deadlinesMultiprocessor speed scaling for jobs with arbitrary sizes and deadlines

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1007/s10878-013-9618-8

PUBLISHER

© Springer

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Bell, Paul C., and Prudence W.H. Wong. 2019. “Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes
and Deadlines”. figshare. https://hdl.handle.net/2134/18803.

https://lboro.figshare.com/
http://dx.doi.org/10.1007/s10878-013-9618-8

Noname manuscript No.
(will be inserted by the editor)

Multiprocessor Speed Scaling for Jobs
with Arbitrary Sizes and Deadlines

Paul C. Bell, Prudence W.H. Wong

Received: date / Accepted: date

Abstract In this paper we study energy efficient deadline scheduling on mul-
tiprocessors in which the processors consumes power at a rate of sα when run-
ning at speed s, where α ≥ 2. The problem is to dispatch jobs to processors and
determine the speed and jobs to run for each processor so as to complete all
jobs by their deadlines using the minimum energy. The problem has been well
studied for the single processor case. For the multiprocessor setting, constant
competitive online algorithms for special cases of unit size jobs or arbitrary
size jobs with agreeable deadlines have been proposed by Albers et al. [6]. A
randomized algorithm has been proposed for jobs of arbitrary sizes and ar-
bitrary deadlines by Greiner et al. [22]. We propose a deterministic online
algorithm for the general setting and show that it is O(logα P)-competitive,
where P is the ratio of the maximum and minimum job size.
Keywords: Online algorithms; Dynamic speed scaling; Competitive analysis;
Multiprocessor scheduling; Deadline scheduling.

1 Introduction

Energy efficient deadline scheduling. Energy consumption has become an im-
portant concern in the design of modern processors, not only for battery-
operated mobile devices with single processors but also for server farms or

This work is partially supported by EPSRC Grant EP/E028276/1. A preliminary version
appeared in Proceedings of the 8th Annual Conference on Theory and Applications of Models
of Computation, 2011, pp. 27–36.

P. C. Bell
Corresponding Author, Department of Computer Science, Loughborough University, Lough-
borough, LE11 3TU, UK, p.bell@lboro.ac.uk

P. W. H. Wong
Department of Computer Science, University of Liverpool, Ashton Building, Ashton St,
Liverpool, L69 3BX, UK, pwong@liverpool.ac.uk

2 Paul C. Bell, Prudence W.H. Wong

laptops with multi-core processors. A popular technology to reduce energy us-
age is dynamic speed scaling (see e.g., [6, 13, 18, 33]) where the processor can
vary its speed dynamically. The power consumption is modelled by sα when
the processor runs at speed s, where α is typically 2 or 3 [17,31]. Running a job
slower saves energy, yet it takes longer to finish the job. The challenge arises
from the conflicting objectives of providing good “quality of service” (QoS)
and conserving energy. Deadline feasibility is a common QoS measure for job
scheduling. Jobs with arbitrary sizes and deadlines arrive at unpredictable
times and they are to be run on some processor. Preemption is allowed with
no penalty.

The theoretical study of speed scaling was initiated by Yao et al. [33]. They
studied deadline scheduling on a single processor in which jobs with arbitrary
sizes and deadlines arrive online and the aim is to finish all jobs by their
deadlines using the minimum amount of energy. The decision at any time is to
determine which job to run and at what speed. They gave an optimal offline al-
gorithm and a simple online algorithm AVR which is 2α−1αα-competitive and
they also proposed an online algorithm OA. Bansal, Kimbrel and Pruhs [13]
later showed that OA is αα-competitive. They also gave a 2(α/(α − 1))αeα-
competitive algorithm, which is called the BKP algorithm and is better than
OA when α > 5. The result is further improved to 4α/(2

√
eα)-competitive by

the qOA algorithm [12].

The problem of energy efficient scheduling has also been studied for other
QoS measures. The problem of minimizing flow time and energy has attracted
a lot of attention [5, 10, 11, 14, 22, 23, 29, 30] while other objectives including
lateness, stretch and rejection have also been considered [9,19,21,32]. Energy
efficient scheduling has also been extended to the setting with sleep states [3,
20, 24, 26, 27]. The literature also contains results on other aspects of energy
efficient scheduling, see [1, 2, 25].

Energy efficient multiprocessor scheduling. The problem of energy efficient
deadline scheduling becomes NP-hard in the multiprocessor setting, even when
all the jobs have the same arrival times and deadlines. In the multiprocessor
setting, in addition to determining processor speeds, a job dispatching algo-
rithm is required to assign jobs to processors. Albers et al. [6] have extended
the study to the multiprocessor setting in which preemption is allowed but
migration is not allowed1. They study the special cases of unit-size jobs or
jobs with agreeable deadlines (jobs arriving earlier have earlier deadlines). If
jobs have unit-size and agreeable deadlines, Round Robin (RR) is optimal.
For the case of unit-sized jobs with arbitrary deadlines or arbitrary-sized jobs
with agreeable deadlines, they gave an αα24α-competitive algorithm. Their
algorithm, called Classified Round Robin (CRR) first classifies jobs according
to the density of the job (the ratio of the job size to the duration between
arrival and deadline), and then schedules jobs in each class independently us-
ing RR. All jobs (of different classes) dispatched on a processor are run at a

1 Some work has considered the scenarios where migration is allowed [4,7,16] or preemp-
tion is not allowed [8].

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines 3

speed determined by AVR. The case for jobs of arbitrary sizes and arbitrary
deadlines is left as an open question.

Greiner, Nonner and Souza [22] have shown that any β-competitive algo-
rithm for a single processor yields a randomized βBα-competitive algorithm,
where Bα is the αth Bell number [15] and this result holds for jobs of arbitrary
size and arbitrary deadlines. This means that the existing algorithms [12,13,33]
for single processors lead to randomized online algorithms in the multiproces-
sor setting. Yet it is still an open question to have a competitive deterministic
algorithm for the general case of jobs with arbitrary sizes and arbitrary dead-
lines.

Our contribution. In this paper we study the generalized problems in the
multiprocessor setting where jobs have arbitrary sizes and arbitrary deadlines
and give a deterministic online algorithm. We first show that the Classified
Round Robin algorithm (CRR) [6] does not scale well when jobs have arbi-
trary sizes and deadlines. The competitive ratio is at least mα−1, where m is
the number of processors. We then consider a natural extension of CRR and
propose a non-migratory deterministic job dispatching algorithm, called Dual-
Classified Round Robin (DCRR), which classifies jobs in terms of both density
and sizes. We show that DCRR coupled with AVR is 24α(logα P + αα2α−1)-
competitive where P is the ratio between the maximum and minimum job size.
Note that the competitive ratio is independent of m and holds even against
an optimal migratory offline algorithm.

Roughly speaking, to analyze the performance of DCRR, we round the
density and size of a job to the boundaries that define the classes, and show
that the performance on the general set is no more than a constant factor of
that on such a “nice” job set. This idea is similar to the proof in [6], which
rounds only the density of the jobs. We further show that for a nice job set,
the classification of DCRR means that the jobs in the same class satisfy the
property of agreeable deadlines, making the analysis easier. We are then able
to show that the competitive ratio of DCRR depends on the number of classes,
which is related to logP .

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we define the problem and give some preliminary results. In
Section 3, we review an existing algorithm CRR and show that it does not
work well for jobs of arbitrary sizes and deadlines. In Section 4, we describe
and analyze our algorithm DCRR. Finally, we conclude in Section 5.

2 Preliminaries

We are to schedule a set of jobs onto m processors M0, M1, · · · , Mm−1.
Preemption is allowed without penalty but migration is not allowed. The speed
of each processor can be varied. When running at speed s, a processor processes
s units of work and consumes sα units of energy in each time unit, where α ≥ 2.

4 Paul C. Bell, Prudence W.H. Wong

We denote the release time, deadline and size of a job j as r(j), d(j), and
w(j), respectively. The span of job j is span(j) = d(j)− r(j) and the density

den(j) = w(j)
d(j)−r(j) . A job j is called active at time t if r(j) ≤ t ≤ d(j).

The problem is to dispatch the jobs to processors, and for each processor,
to determine which job and at what speed to run at any time. The objective
is to complete all jobs by their deadlines using the minimum energy.

Consider any job set J . For any algorithm A, we overload the symbol A(J)
to mean both the schedule of A on J and the energy required by the schedule.
Let OPT1 and OPTm denote the optimal schedule on a single processor and
m processors, respectively. In [6], it has been shown that OPT1(J)/mα−1 ≤
OPTm(J). We further lower bound the value OPTm(J). At any time t, the
speed of AVR on a processor is the sum of the densities of all active jobs
at t scheduled on this processor. It has been shown in [33] that AVR1(J) ≤
αα2α−1OPT1(J), implying AVR1(J) ≤ αα2α−1mα−1OPTm(J). Let MIN(J)
be the minimum energy to run each job of J independently of other jobs, i.e.,
MIN(J) =

∑
j∈J denα(j)span(j). Then, we have MIN(J) ≤ OPTm(J). We

summarize these bounds on OPTm(J) in the following lemma.

Lemma 1 ([6], [33]) Consider any job set J . (a) OPT1(J)/mα−1 ≤ OPTm(J).
(b) (i) MIN(J) ≤ OPTm(J); (ii) AVR1(J) ≤ αα2α−1mα−1OPTm(J).

3 Classified Round Robin (CRR)

In this section, we review the algorithm CRR which is αα24α-competitive for
the special case in which jobs are of unit size, or jobs are of arbitrary sizes but
agreeable deadlines [6]. We show that CRR is no longer constant competitive
when the jobs have arbitrary sizes and arbitrary deadlines.

Let ∆ be the maximum density of the jobs in J . CRR classifies jobs with
density ∆ into density-class-0, and jobs with density in [∆/2k, ∆/2k−1) into
density-class-k, for some positive integer k. Jobs within each class are dis-
patched to processors by round-robin independently. For each processor, the
speed is the sum of the densities of the unfinished jobs dispatched to that
processor (i.e., AVR) and the processor processes these jobs by splitting the
speed equally among them.

The following theorem shows a lower bound for CRR when jobs are of ar-
bitrary sizes and deadlines. Figure 1 shows the CRR schedule and the optimal
schedule for the adversary.

Theorem 1 For arbitrary size jobs with arbitrary deadlines, CRR has a com-
petitive ratio of at least mα−1.

Proof Let ε > 0 be a small positive value and k > 0 be an arbitrary large
value. Given m processors, define a job set J of m2 jobs such that for any
1 ≤ i ≤ m2, the release time of job ji is iε. For all jobs ji with i mod m 6= 0,
we set the span of the job to be ε. For all jobs ji with i mod m = 0, we set the

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines 5

M0

M1

Mm

M2

a b

Mm

M1

M0

Fig. 1 In the adversary, all jobs have density 1. The span and size of the m large jobs is k
and the m2 −m small jobs is ε. (a) CRR schedules all the large jobs to processor M0 and
m small jobs to each of M1, · · · ,Mm−1. (b) The optimal schedule dispatches one large job
and m− 1 small jobs to each processor.

span of the jobs to be k. We further set the sizes of all jobs to be the same as
their span, in other words, all jobs have density 1.

Algorithm CRR classifies all m2 jobs into the same class C0 since they
have the same density and dispatches jobs according to round robin by their
release time. Thus the first processor receives the m jobs of large span k and
large size k. The energy used by the first processor is therefore kmα as ε→ 0
and the energy of the remaining processors approaches 0.

On the other hand, we can dispatch one large span job and m−1 small span
jobs to each processor. As ε tends to 0, the energy used by each processor is
k and the total energy of the schedule is km. Therefore, the competitive ratio
of CRR is at least mα−1. ut

We note that even if we classify jobs according to their sizes, such a classifi-
cation plus round robin still does not perform well. We give a similar adversary
with m2 jobs of the same size, m of them having a small span (thus large den-
sity) and the rest with very large span. One job of small span arrives followed
by m− 1 large span jobs and this repeats for m times. Then CRR assigns all
the small span jobs to the same processor, dominating the energy used by the
algorithm. The optimal offline algorithm can dispatch one small span job to
each processor, distributing the energy used much better and thus the same
lower bound can be obtained.

Corollary 1 For arbitrary size jobs with arbitrary deadlines, modifying CRR
to classify on the jobs sizes leads to a competitive ratio of at least mα−1.

4 Dual-Classified Round Robin (DCRR)

4.1 The Algorithm

We now describe our algorithm DCRR (Dual-Classified Round Robin). In
addition to classifying jobs into density classes, DCRR also classifies jobs ac-
cording to sizes. Let Γ be the maximum job size of a job set J . Jobs with

6 Paul C. Bell, Prudence W.H. Wong

size in (Γ/2h+1, Γ/2h] are classified into size-class-h, for some integer h ≥ 0
(note the difference from the definition of density-classes). We then define the
set Ck,h to be the set of jobs in density-class-k and size-class-h. For simplicity,
we assume that ∆ and Γ are known in advance.2 With the definition of Ck,h,
DCRR dispatches jobs in the same Ck,h in a round robin manner, indepen-
dent of other classes. Then all jobs (of different classes) dispatched to the same
processor are run using a speed determined by AVR (see Algorithm 1).

Algorithm 1 Algorithm DCRR
Let ∆ and Γ be (respectively) the maximum density and maximum size of all jobs.

Classification: A job is classified into Ck,h if its density is in [∆/2k,∆/2k−1) and its size

is in (Γ/2h+1, Γ/2h].

Job dispatching: Jobs of the same class Ck,h are dispatched (upon their arrival) to the m
processors using a round-robin strategy, i.e., the i-th job in Ck,h is dispatched to processor-
(i mod m), and different classes are handled independently.

Speed running: The speed of each processor is determined by AVR on the jobs dispatched
to that processor and the speed is split equally among these jobs (note that this gives a
feasible schedule).

Let us consider how DCRR acts upon the example we saw in Figure 1. In
Figure 1(a), algorithm CRR dispatches all jobs in the same density class and
thus the m jobs with long span went to the same processor. However, we see
that DCRR would dispatch those m (long span) jobs into one class and the
remaining m2 −m (short span) jobs in a separate class due to their differing
sizes. Algorithm DCRR applies Round-Robin to these classes independently
leading to the situation of Figure 1(b) which is optimal in terms of energy.

4.2 Framework of the Analysis and Nice Job Sets.

To analyze the performance of DCRR, we transform job set J to a nice job
set J ∗ (to be defined) and show that such a transformation only increases the
energy usage modestly. Furthermore, we show that for a nice job set J ∗, we
can bound DCRR(J ∗) by OPTm(J ∗) and in turn by OPTm(J). Then we can
establish the competitive ratio of DCRR.

A job set J ∗ is said to be a nice job set if every job j∗ in J ∗ satisfies the
following properties.

– The density den(j∗) = ∆/2k, for some positive integer k.
– The size w(j∗) = Γ/2h, for some positive integer h.

2 If ∆ and Γ are not known in advance, the class definition could be modified slightly.
Specifically, the first job which arrives will define the initial density and size classes ∆′ and
Γ ′. New jobs may have larger sizes or density than these ∆′ and Γ ′ and thus we may have
classes with a negative index, but the analysis can be seen to still hold and increasing the
competitive ratio by at most a factor of 2, see [6] for further details.

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines 7

Given a job set J , we transform each job j ∈ J into a job j∗ as follows.
Suppose j is in class Ck,h.

– We set the release time of j∗ to be the same as j, i.e., r(j∗) = r(j).
– We round up the size of j to the maximum in the class Ck,h, i.e., w(j∗) =
Γ/2h. Then, we have w(j) ≤ w(j∗) ≤ 2w(j).

– We round down the density of j to the minimum in the class Ck,h, i.e.,
den(j∗) = ∆/2k. Then, we have den(j)/2 ≤ den(j∗) ≤ den(j).

– Effectively, we set the deadline d(j∗) = r(j∗) + (Γ
2h
· 2

k

∆).

In other words, job densities only decrease and sizes only increase. The follow-
ing lemma relates the optimal schedule for J and J ∗, as well as the DCRR
schedule for J and J ∗. The implication of the lemma is that we can focus on
analyzing the performance of DCRR on nice job set J ∗.

Lemma 2 For any job set J and its corresponding nice job set J ∗, we have
(a) 2αOPTm(J) ≥ OPTm(J ∗); (b) DCRR(J) ≤ 2αDCRR(J ∗).

Proof (a) We construct from OPTm(J) a feasible schedule S for J ∗, and
show that this increases the energy slightly. The dispatching of S follows the
dispatching of OPTm(J). For any processor, at any time t, S runs at double
the speed that OPTm(J) does. S is feasible for J ∗ because w(j∗) ≤ 2w(j) and
span(j) ≤ span(j∗), the latter implies that whenever j is run, it is within the
span of j∗. Because of the double speed, S = 2αOPTm(J). As S is a feasible
schedule for J ∗, we have S ≥ OPTm(J ∗). Then the statement follows.

(b) First we notice that a job j and its corresponding j∗ belong to the
same class. The release time of j∗ is also kept the same as j. Therefore, j∗ will
be dispatched to the same processor as j. In the schedule of DCRR(J ∗), at
any time when the job j∗ is active, it contributes den(j∗) to the speed of that
processor. If we consider a schedule S′ that runs double the speed at any time
and on any processor as AVR(J ∗) does, the job j∗ contributes 2 × den(j∗)
to the speed. As for energy usage, S′ = 2αDCRR(J ∗). On the other hand,
in DCRR(J), at any time that j is active, it contributes den(j) to the speed
of that processor. Since 2 den(j∗) ≥ den(j) and span(j∗) ≥ span(j), for any
processor, the schedule S′ runs at least the same speed as DCRR(J), and
probably higher. Therefore, S′ ≥ DCRR(J), and the statement follows. ut

4.3 Analysis of DCRR

With Lemma 2, the analysis of DCRR on a general job set J can be done
via the analysis of DCRR on J ∗. Recall that we defined MIN(J) to be
the minimum energy to run each job of J independently of other jobs, i.e.,
MIN(J) =

∑
j∈J denα(j)span(j). First, we show in Lemma 3 a property about

how DCRR dispatches jobs in a class to the m processors. Then, in Lemma 4,
we relate the sum of energy usage of AVR on jobs DCRR dispatched to each
machine with MIN(J) and AVR1(J). Finally, together with Lemma 2, we can
then conclude in Theorem 2 the competitive ratio of DCRR.

8 Paul C. Bell, Prudence W.H. Wong

The following is a modification to a lemma from [6]. Since all spans within
a class are identical, they have agreeable deadlines and a similar proof follows
as is shown in [6] which we include here for completeness.

Lemma 3 For any time t, DCRR assigns to each processor at most dCk,h(t)/me
jobs in J ∗ from Ck,h(t), where Ck,h(t) is the set of jobs from Ck,h active at
time t.

Proof Recall that within any class Ck,h all jobs have agreeable deadlines
since we are using nice job set J ∗. Since DCRR dispatches each job class
using Round Robin independently, they will be dispatched according to non-
decreasing release time and thus every m-th job goes to a particular fixed
processor. This implies each processor receives at most dCk,h(t)/me jobs. ut

Let J ∗i be the subset of J ∗ that is dispatched to processor i by DCRR.
Then DCRR(J ∗) =

∑
1≤i≤m AVR1(J ∗i). We now relate

∑
1≤i≤m AVR1(J ∗i)

with MIN(J ∗) and AVR1(J ∗).

Lemma 4 For any nice job set J ∗, the following inequality holds

∑
1≤i≤m

AVR1(J ∗i) ≤ 22α((logα P ∗) MIN(J ∗) + AVR1(J ∗)/mα−1)

where P ∗ = max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} .

Proof We adapt the proof of CRR in [6]. Let Ck,h,i(t) for 1 ≤ i ≤ m be the
set of jobs from class Ck,h assigned to processor i active at time t dispatched
by DCRR. Let si(t) denote the speed of the average rate AVR algorithm on
processor i at time t. Since the speed of AVR is the sum of densities of all
active jobs at each time point, we see that:

si(t) =
∑
k≥0

∑
h≥0

|Ck,h,i(t)|
∆

2k
. (1)

Running jobs according to the Earliest Deadline First policy yields a feasible
schedule. Let s(t) denote the speed of the AVR algorithm for the whole job
set J ∗ on a single machine. Then s(t) =

∑
k≥0

∑
h≥0 |Ck,h(t)|∆/2k.

Fix a time t ≥ 0 and a processor 1 ≤ i ≤ m. Let K1 be the set of job
class indices (k, h) such that |Ck,h,i(t)| = 1 and K2 be the indices (k, h) such
that |Ck,h,i(t)| ≥ 2. Define k1 = min{k | (k, h) ∈ K1} for some h ≥ 0 and

P ∗ = max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} . The analysis for K2 is similar to [6] while that for K1 is

different. Note that
∑

(k,h)∈K1

∆
2k
≤ (logP ∗)

∑
k≥k1

∆
2k

= (logP ∗) ∆
2k1−1 . Using

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines 9

Equation (1) and Lemma 3, we see that

si(t) =
∑

(k,h)∈K1

∆

2k
+

∑
(k,h)∈K2

|Ck,h,i(t)|
∆

2k

≤ (logP ∗)
∆

2k1−1
+

∑
(k,h)∈K2

⌈
|Ck,h(t)|

m

⌉
∆

2k
(by Lemma 3)

≤ (logP ∗)
∆

2k1−1
+

∑
(k,h)∈K2

2|Ck,h(t)|
m

∆

2k

≤ 4 ·max

{
(logP ∗)

∆

2k1
,
s(t)

m

}
(2)

We shall integrate si(t)
α first over all t when the first term of Equation (2)

is dominating to give an upper bound on required energy of:

(4 log(P ∗))α
∑
k≥0

∑
h≥0

|Ck,h ∩ J ∗i |
(
∆

2k

)α(
2k−h

Γ

∆

)
.

The integration sums over all classes and for each class over the time that the
first term dominates. Note that the duration of such time is bounded by the
span of the jobs in the corresponding class, which is 2k−h Γ∆ .

Integrating si(t)
α when the second term of Equation (2) is dominating gives(

4
m

)α
AVR1(J ∗). We then sum over 1 ≤ i ≤ m to give

∑m
i=1 AVR1(J ∗i) ≤

4α((logα P ∗)MIN(J ∗) +m1−αAVR1(J ∗)) as required. ut

Together with Lemma 2, we can conclude the competitive ratio of DCRR
in the following theorem.

Theorem 2 For an arbitrary job set J , the competitive ratio of algorithm
DCRR is at most 24α(logα P + αα2α−1), where P is the ratio between the
maximum and minimum job size.

Proof By Lemma 4, we know that:∑
1≤i≤m

AVR1(J ∗i) ≤ 22α((logα P ∗) MIN(J ∗) + AVR1(J ∗)/mα−1).

Since MIN(J ∗) ≤ OPTm(J ∗) and AVR1(J ∗) ≤ αα2α−1mα−1OPTm(J ∗) by
Lemma 1 (b) (ii), we therefore conclude that

DCRR(J ∗) =
∑

1≤i≤m

AVR1(J ∗i) ≤ 22αOPTm(J ∗)((logα P ∗) + αα2α−1).

By Lemma 2 (a) and (b), DCRR(J) ≤ 2αDCRR(J ∗) and OPTm(J ∗) ≤
2αOPTm(J). Then, we have

DCRR(J) ≤ 24αOPTm(J)((logα P ∗) + αα2α−1).

Note that from the proof of Lemma 4, logP ∗ is essentially the number of size
classes used by DCRR which does not change under J or J ∗, therefore logP
and logP ∗ can be taken to be equal and the theorem holds. ut

10 Paul C. Bell, Prudence W.H. Wong

5 Conclusion

We consider energy efficient deadline scheduling for jobs with arbitrary sizes
and deadlines in the multiprocessor setting. We analyze the performance of
the deterministic algorithm DCRR and show that it is O(logα P)-competitive.
On the other hand, the lower bound we obtain so far for DCRR is no more
than a constant. In the proof of Theorem 2, the logP factor comes in the case
K1, yet this bound is rather loose and we believe that it can be improved.

To improve the result, one may consider how DCRR can be coupled with
OA instead of AVR to improve the results. Another open question is to con-
sider speed bounded processors [18], in which case, not all the jobs can be
completed by their deadlines. The concern becomes to maximize the through-
put (number of jobs completed by their deadlines) and to minimize the energy
used to achieve this throughput. The problem has been considered in the single
processor setting [10,18] and a two processor system [28]. It would be interest-
ing to derive algorithms that are competitive both in throughput and energy
in the multiprocessor setting.

References

1. Albers, S.: Algorithms for energy saving. In: S. Albers, H. Alt, S. Näher (eds.) Efficient
Algorithms, Lecture Notes in Computer Science, vol. 5760, pp. 173–186. Springer (2009)

2. Albers, S.: Energy-efficient algorithms. Communication ACM 53(5), 86–96 (2010)
3. Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a sleep

state. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1266–1285 (2012)

4. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration:
extended abstract. In: Proceedings of ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 279–288 (2011)

5. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM
Transactions on Algorithms 3(4), 49 (2007)

6. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proceed-
ings of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
289–298 (2007)

7. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors
with migration. In: Proceedings of International Conference Euro-Par 2012 Parallel
Processing, pp. 128–140 (2012)

8. Antoniadis, A., Huang, C.C.: Non-preemptive speed scaling. In: Proceedings of Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), pp. 249–260 (2012)

9. Bampis, E., Letsios, D., Milis, I., Zois, G.: Speed scaling for maximum lateness. In:
Proceedings of Annual International Computing and Combinatorics Conference (CO-
COON) (2012). To appear

10. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded processors.
In: Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pp. 409–420 (2008)

11. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In:
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 693–701
(2009)

12. Bansal, N., Chan, H.L., Pruhs, K., Rogozhnikov-Katz, D.: Improved bounds for speed
scaling in devices obeying the cube-root rule. In: Proceedings of International Collo-
quium on Automata, Languages and Programming (ICALP), pp. 114–155 (2009)

Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines 11

13. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature.
Journal of the ACM 54(1), 3 (2007)

14. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Com-
puting 39(4), 1294–1308 (2009). Preliminary version appeared in Proceedings of Sym-
posium on Discrete Algorithms (SODA), pages 805–813, 2007.

15. Becker, H.W., Riordan, J.: The arithmetic of Bell and Stirling numbers. American
Journal of Mathematics 70, 385–394 (1948)

16. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with
migration. In: Proceedings of IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA), pp. 153–161 (2008)

17. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu,
A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture:
Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6),
26–44 (2000)

18. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Optimizing
throughput and energy in online deadline scheduling. ACM Transactions on Algorithms
6(1), 10 (2009). Preliminary version appeared in Proceedings of Symposium on Discrete
Algorithms (SODA), pages 795–804, 2007.

19. Chan, S.H., Lam, T.W., Lee, L.K.: Scheduling for weighted flow time and energy with
rejection penalty. In: Proceedings of International Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 392–403 (2011)

20. Chan, S.H., Lam, T.W., Lee, L.K., Liu, C.M., Ting, H.F.: Sleep management on multiple
machines for energy and flow time. In: Proceedings of International Colloquium on
Automata, Lanaguages and Programming (ICALP), pp. 219–231 (2011)

21. Cole, D., Im, S., Moseley, B., Pruhs, K.: Speed scaling for stretch plus energy. Operations
Research Letters 40(3), 180–184 (2012)

22. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor
scheduling. In: Proceedings of ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 11–18 (2009)

23. Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous pro-
cessors. In: Proceedings of International Colloquium on Automata, Lanaguages and
Programming (ICALP), pp. 312–323 (2010)

24. Han, X., Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Deadline scheduling and
power management for speed bounded processors. Theoretical Computer Science
411(40–42), 3587–3600 (2010)

25. Irani, S., Pruhs, K.: Algorithmic problems in power management. ACM SIGACT News
32(2), 63–76 (2005)

26. Irani, S., Shukla, S., Gupta, R.K.: Algorithms for power savings. ACM Transactions on
Algorithms 3(4), 41 (2007)

27. Lam, T.W., Lee, L.K., Ting, H.F., To, I.K.K., Wong, P.W.H.: Sleep with guilt and
work faster to minimize flow plus energy. In: Proceedings of International Colloquium
on Automata, Lanaguages and Programming (ICALP), pp. 665–676 (2009)

28. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Energy efficient deadline scheduling
in two processor systems. In: Proceedings of the International Symposium of Algorithms
and Computation (ISAAC), pp. 476–487 (2007)

29. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow time
scheduling based on active job count. In: Proceedings of European Symposium on
Algorithms (ESA), pp. 647–659 (2008)

30. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Improved multi-processor scheduling
for flow time and energy. Journal of Scheduling 15(1), 105–116 (2012). Preliminary
version appeared in Proceedings of ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 256–264, 2008.

31. Mudge, T.: Power: A first-class architectural design constraint. Computer 34(4), 52–58
(2001)

32. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence con-
straints. In: Proceedings of International Workshop on Approximation and Online Al-
gorithms (WAOA), pp. 307–319 (2005)

12 Paul C. Bell, Prudence W.H. Wong

33. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pp.
374–382 (1995)

