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The Rayleigh-type wave solution within a widely
used differential formulation in nonlocal elasticity is
revisited. It is demonstrated that it does not satisfy the
equations of motion for non-local stresses. A modified
differential model taking into account a nonlocal
boundary layer is developed. Correspondence of the
latter model to the original integral theory with
the kernel in the form of the zero order modified
Bessel function of the second kind is addressed.
Asymptotic behaviour of the model is investigated
resulting in a leading order nonlocal correction to the
classical Rayleigh wave speed due to the effect of
the boundary layer. The suitability of a continuous
setup for modelling boundary layers in the framework
of nonlocal elasticity is analysed starting from a toy
problem for a semi-infinite chain.

1. Introduction
The theory of nonlocal elasticity originated from the
works of Eringen [7,10] and earlier contributions, e.g.
[16] and [17], has attracted significant attention in recent
decades in view of applications in high-tech domains,
including nano-technology, see [8,15,22] and references
therein.

The majority of numerous publications on the subject
uses differential formulations, e.g see [2,13,18] which
appear to be better suited for analytical treatment
than initial integral ones. Moreover, due to the nature
of nonlocal models governed by integral equations,
the issue of their solvability naturally emerges. In
particular, integral settings were shown to lead to ill-
posed problems for beam bending, see e.g. [23,24,26], and
also an earlier analysis for a rod [3]. The 1D problems
for beams and rods can seemingly be regularized by
adapting the so-called "two-phase" formulations, see [4,
19,20], although a further analysis of the purely nonlocal
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limit is still required, see [26].
The recent contribution [14] questioned in more general context the widely accepted

expectation of equivalence between the integral nonlocal model and the associated differential
one, suggested by [10], for an elastic halfspace subject to antiplane shear. Straightforward analysis
for a 1D exponential kernel revealed that a time-harmonic solution of the differential model
does not satisfy the equation of motion for nonlocal shear stresses. Moreover, it was shown that
the differential and integral theories are only equivalent provided extra conditions hold on the
surface. However, all of the extra conditions could not be satisfied, since one of the shear stresses
was already constrained through a boundary condition on the surface. A differential model
embedding an extra condition on the non-constrained shear stress component was developed.
It was also shown that such a differential model supports a shear surface wave, contrary to the
classical ’local’ elasticity. This observation seems to be in line with recent considerations dealing
with shear surfaced waves, e.g. see [9].

In this paper, we extend previous findings to comparative analysis of integral and differential
nonlocal models for a plane-strain problem for an elastic half-space with traction free faces. The
adapted integral model relies on the 2D kernel in the form of a zero-order modified Bessel
function of the second kind introduced in [10]. A typical wave length along the surface is
assumed to be much greater than the internal size. In this case the double integrals can be
expanded into asymptotic series in terms of single integrals. Throughout the paper we start
from two-term expansions involving integrals with the exponential kernel. Using the derived
expansions for integral relations, the Eringen’s solution [10] for a nonlocal surface wave obtained
within the differential model is revisited. Similarly to [14], it is demonstrated that this solution
does not satisfy the equations of motion in integral nonlocal stresses resulting in a discrepancy
corresponding to a nonlocal boundary layer localised near the surface.

The equivalence between the integral and differential formulations is then further investigated
exploiting a similarity with the limiting 1D integral setup for the exponential kernel studied in
[14]. However, now we have to deal with pseudo-differential equations instead of differential ones
in [14]. In addition, three extra conditions (not two as in [14]) have to be imposed on the surface.
Obviously, all of them cannot be satisfied in view of two constraints already prescribed in the
form of the boundary conditions on a traction-free surface. In the paper such an extra condition
is imposed on the remaining non-constrained normal stress.

The related improved differential model, including singularly perturbed differential equations
of motion, traction-free boundary conditions, as well as the aforementioned extra boundary
condition for the non-constrained stress, is examined using a conventional asymptotic procedure.
Specifying fast and slow variables, see e.g. [6], a three-term asymptotic expansion is derived,
once again illustrating that the correction arising from the boundary conditions is asymptotically
greater than that due to the nonlocal corrections in the equations of motion, as it was first noticed
in [5]. A leading-order nonlocal correction to the Rayleigh wave speed is calculated and compared
to the results in [5], relying on the Gaussian kernel. Finally, we address the validity of continuous
models for analysing nonlocal boundary layers of the width of a microscale. As an example, a
model problem for a semi-infinite chain is presented. An exponential decay rate is taken as an
independent problem parameter, along with the step of the chain. The parameter range suitable
for homogenisation is evaluated. Outside this range, a discrete boundary layer is determined.

2. Problem statement
Consider a nonlocally elastic half-space, defined by −∞<x1, x3 <∞ and x2 ≥ 0. Below we
adopt the plane-strain assumption, within which the displacement components are of the form
um = um(x1, x2, t), (m= 1, 2), and u3 ≡ 0. The equations of motion are given by

∂tm1

∂x1
+
∂tm2

∂x2
= ρ

∂2um
∂t2

. (2.1)
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Here ρ is volume mass density, and tmn (m,n= 1, 2) are the nonlocal symmetric stresses (i.e.
t21 = t12). The latter are expressed through the conventional local stresses σmn as

tmn =
1

2πa2

∞∫
0

dx′2

∞∫
−∞

K0


√

(x′1 − x1)2 + (x′2 − x2)2

a

σmn
(
x′1, x

′
2

)
dx′1. (2.2)

In the above K0 is a modified Bessel function of the second kind of order zero, with a denoting
the internal characteristic length, see e.g. [10]. For isotropic elastic solids, the local stresses are
written conventionally in terms of the displacements as

σmn = λ δmn

(
∂u1
∂x1

+
∂u2
∂x2

)
+ µ

(
∂um
∂xn

+
∂un
∂xm

)
, m, n= 1, 2, (2.3)

where δmn is the Kronecker symbol, and λ and µ are the Lamé constants.
We consider the boundary x2 = 0 to be traction-free, i.e.

t21 = t22 = 0. (2.4)

We will refer to the conditions (2.2) as integral model of nonlocal elasticity with 2D kernel, and
aim to compare them with the related differential model suggested by [10] in the form

(a2∇2 − 1)tmn =−σmn, (2.5)

where ∇2 =
∂2

∂x21
+

∂2

∂x22
is the 2D Laplacian in x1 and x2. The associated governing differential

equations of motion are conventionally taken in the form

∂σm1

∂x1
+
∂σm2

∂x2
− ρ

(
1− a2∇2

) ∂2um
∂t2

= 0. (2.6)

Note that under the assumption of slow variation of local stresses σmn along the longitudinal
variable x1, the following table integral (see 6.596 in [12])

∞∫
0

x2κK0

(
α
√
x2 + z2

)
dx=

π

2α2κ+1
(1 + καz) e−αz , κ= 0, 1, (2.7)

may be employed to reduce the double integral in (2.2) to a single one. Indeed, on introducing the
dimensionless spatial coordinates

ξn =
xn
l
, n= 1, 2, (2.8)

where l is a typical wavelength, and the related small parameter associated with nonlocality

ε=
a

l
≪ 1, (2.9)

a two-term Taylor expansion in ξ′1 of the local stress components in the integrand around the
point ξ′1 = ξ1 may be constructed, which, after using (2.7), gives

tmn =
1

2πε2

∞∫
0

dξ′2

∞∫
−∞

K0


√

(ξ′1−ξ1)2+(ξ′2−ξ2)2

ε

[
1+

(ξ′1−ξ1)2

2

∂2

∂ξ21
+. . .

]
σmn

(
ξ1, ξ

′
2

)
dξ′1

=
1

2ε

∞∫
0

[
1 +

ε2

2

(
1 +

|ξ′2 − ξ2|
ε

)
∂2

∂ξ21
+ . . .

]
σmn(ξ1, ξ

′
2)e

− |ξ′2−ξ2|
ε dξ′2.

(2.10)

In above the terms ofO(ε4) corresponding to higher order terms for Taylor series for σmn in (2.10)
are omitted.
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3. Revisit of Eringen’s solution
Following [10], let us consider a simple example of nonlocal time-harmonic Rayleigh waves,
starting from the differential equations of motion (2.6), subject to boundary conditions (2.4).

Using the local constitutive relations (2.3), and introducing the conventional Lamé elastic
potentials for the displacement field through

u1 =
∂ϕ

∂x1
+

∂ψ

∂x2
, u2 =

∂ϕ

∂x2
− ∂ψ

∂x1
. (3.1)

the wave equations for the potentials may be deduced from (2.3) in the form

c21 ∇2ϕ−
(
1− a2∇2

) ∂2ϕ
∂t2

= 0, c22 ∇2ψ −
(
1− a2∇2

) ∂2ψ
∂t2

= 0, (3.2)

where

c1 =

√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
. (3.3)

The solutions of (3.2) are now sought for in the form of a travelling harmonic wave of
exponential profile, i.e.

ϕ=Aeik(x1−ct)−kq1x2 , ψ=Beik(x1−ct)−kq2x2 , (3.4)

where Re(qn)> 0 (n= 1, 2) ensures exponential decay away from the surface. Here we assume a
long-wave regime, such that the wave number k= 1/l, hence the small parameter becomes ε= ka.
Substituting (3.4) into (3.2) implies

q2n = 1− c2

c2n − ε2c2
, n= 1, 2. (3.5)

Combining (3.4) with (3.1) and (2.3), the local stresses σmn are given explicitly by

σ11 = eik(x1−ct)k2
[
(λq21 − (λ+ 2µ))Ae−kq1x2 − 2iµq2Be

−kq2x2

]
,

σ12 = σ21 = eik(x1−ct)k2µ
[
−2iq1Ae

−kq1x2 + (q22 + 1)Be−kq2x2

]
,

σ22 = eik(x1−ct)k2
[(

(λ+ 2µ)q21 − λ
)
Ae−kq1x2 + 2iµq2Be

−kq2x2

]
.

(3.6)

Then, from (2.2) the non-local stresses can be expressed as

t11 = k2
[
(λq21 − (λ+ 2µ))AM1 − 2iµq2BM2

]
,

t12 = t21 = µk2
[
−2iq1AM1 + (q22 + 1)BM2

]
,

t22 = k2
[
((λ+ 2µ)q21 − λ)AM1 + 2iµq2BM2

]
,

(3.7)

where (see [10])

Mn =
1

2πa2

∞∫
0

dx′2

∞∫
−∞

K0


√

(x′1 − x1)2 + (x′2 − x2)2

a

 eik(x
′
1−ct)−kqnx

′
2dx′1, n= 1, 2. (3.8)

Clearly, substitution of the nonlocal stresses (3.7) into the boundary conditions (2.4) gives c= cR
to within the error of O(ε2), where cR satisfies the classical Rayleigh equation

4q10 q20 −
(
1 + q220

)2
= 0, (3.9)

with

qn0 =

√
1− c2R

c2n
, n= 1, 2. (3.10)
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Now, let us verify that the (3.7) satisfies the equations of motion (2.1). Assuming slow variation
along the x′1 direction and using the integral (2.7) the double integrals in (3.8) may be evaluated,
giving

Mne
ik(ct−x1)=

1

2πa2

∞∫
0

e−kqnx
′
2dx′2

∞∫
−∞

K0


√
(x′1−x1)2+(x′2−x2)2

a

[1−k2
2
(x′1−x1)2+. . .

]
dx′1

=
1

2a

∞∫
0

[
1− ε2

2

(
1 +

|x′2 − x2|
a

)
+ . . .

]
e−kqnx

′
2−

|x′
2−x2|
a dx′2

=
[
1 + ε2(q2n0 − 1) + . . .

]
e−kqnx2 − 1

2

[
1 + εqn0 + ε2

(
q2n0 − 1− x2

2a

)
+ . . .

]
e−

x2
a .

(3.11)

In the latter, the coefficients at e−
x2
a are clearly associated with the nonlocal boundary layer.

Now we are in position to substitute the nonlocal stresses (3.7), combined with the leading
order approximation (3.11), into the equations of motion (2.1), with the constantsA and B related
as

A=
1 + q220
2iq10

[
1 + (q10 − q20) (ε− ε2q20) + . . .

]
B, (3.12)

following from the boundary condition for the shear stress. Consider the first equation in (2.1) in
more detail. As a result, we have at leading order

e−
x2
ε B(1 + q220)

(
1− 2q210 + q420

)
̸= 0. (3.13)

The latter corresponds to the nonlocal boundary layer in the near-surface vicinity. Thus, the
solution for the surface wave constructed in [10] does not satisfy the original equations of motion
(2.1) in nonlocal stresses.

Thus, similarly to the antiplane case [14], it may be concluded that the integral nonlocal model
for an elastic half-space is inconsistent, since the nonlocal stresses provided by these theory, do
not satisfy the equations of motion. At the same time, the consideration in antiplane shear allowed
exact treatment, whereas the current problem of plane-strain elasticity was treated approximately,
expanding the integrand as Taylor series along the longitudinal variable.

4. Singularly perturbed differential model
The equivalence between the integral nonlocal model (2.2) and the differential formulation (2.5)
is known for the case of unbounded media. At the same time, the 2D differential model (2.5) can
be formally represented in 1D format, i.e.

a2
∂2tmn

∂x22
−

[
1− a2

∂2

∂x21

]
tmn =−σmn, (4.1)

implying

η2
∂2tmn

∂x22
− tmn =−σ′mn, (4.2)

where a pseudo-differential operator η ( e.g. see [25]) is defined as

η= a

[
1− a2

∂2

∂x21

]−1/2

(4.3)

and

σ′mn =

[
1− a2

∂2

∂x21

]−1

σmn. (4.4)

It is worth mentioning that in case of harmonic dependence on the longitudinal coordinate x1, i.e.
of the form eikx1 , the operator η simplifies to a constant multiple represented by a(1 + ε2)−1/2,
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where, as before, ε= ka. Hence, we may formally employ the results of the recent analysis of 1D
nonlocal models in [14], implying that the nonlocal differential model (4.2) is equivalent to the
integral model of the form

tmn =
1

2
η−1

∞∫
0

e−η−1|x′
2−x2|σ′mn(x1, x

′
2)dx

′
2, (4.5)

with σ′mn defined in (4.4), provided that the additional conditions([
1− η

∂

∂x2

]
tmn

)∣∣∣∣
x2=0

= 0, (4.6)

hold. Moreover, expanding the integrand in (4.5), we deduce that in the long-wave range (ε≪ 1)

tmn =
1

2
η−1

[
1− a2

∂2

∂x21

]−1 ∞∫
0

[
1−(η−1− a−1)|x′2 − x2|+ . . .

]
σmn(x1, x

′
2)e

− |x′
2−x2|
a dx′2

=
1

2a

∞∫
0

[
1 +

a2

2

(
1 +

|x′2 − x2|
a

)
∂2

∂x21
+ . . .

]
σmn(x1, x

′
2)e

− |x′
2−x2|
a dx′2,

(4.7)

which may be recognised as a dimensional form of the two-term representation of the 2D integral
model (2.10).

Clearly, all three conditions (4.6) cannot be satisfied, because of the two constraints (2.4)
already imposed on t21 and t22. Therefore, in what follows we are adopting the extra condition
(4.6) for the non-constrained stress t11, considering it together with the traction-free boundary
conditions (2.4). In particular, we will be using the two-term expansion of (4.6) for t11, i.e.([

1− a
∂

∂x2
− a3

2

∂3

∂x21∂x2

]
t11

)∣∣∣∣
x2=0

= 0. (4.8)

Thus, the differential and integral formulations are equivalent for t11 only.

5. Asymptotic analysis
We introduce dimensionless variables as following

ζp =
x2
l
, ζq =

x2
a
, ξ1 =

x1
l
, τ = t

c2
l
, (5.1)

where ζp and ζq are transverse variables elucidating behaviour along the vertical coordinate in
a half-space and in the vicinity of the boundary, respectively. Indeed, these two variables are
connected through ζp = εζq , where ε is defined in (2.9).

The fast variable ζq supports boundary layers, localized over a narrow vicinity of the surface
of the size of order internal characteristic length a. In this case, the validity of the analysed
continuous model in nonlocal elasticity should be further addressed. Ideally, the latter originates
from homogenisation of a discrete lattice, see e.g. [11] assuming that a typical wave length is much
greater than the microscale a. Peculiarities of such homogenisation procedure are studied in the
Appendix for the model example of a semi-infinite regular chain.

Below, the following dimensionless quantities are adopted

u∗m =
um
l
, σ∗mn =

σmn

µ
, t∗mn =

tmn

µ
, m, n= 1, 2. (5.2)
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Then, the non-local stresses are split into slow and fast components, p∗mn = p∗mn(ξ1, ζp, τ) and
q∗mn = q∗mn(ξ1, ζq, τ), as follows

t∗11 = p∗11 + q∗11,

t∗12 = p∗12 + εq∗12,

t∗22 = p∗22 + ε2q∗22.

(5.3)

Substituting these into the governing equations (2.1), (2.3) and (2.5), and splitting into slow and
fast varying quantities, we obtain

∂p∗m1

∂ξ1
+
∂p∗m2

∂ζp
=
∂2u∗m
∂τ2

,

p∗mn − ε2
(
∂2p∗mn

∂ξ21
+
∂2p∗mn

∂ζ2p

)
= σ∗mn,

(5.4)

with

∂q∗m1

∂ξ1
+
∂q∗m2

∂ζq
= 0,

q∗mn − ∂2q∗mn

∂ζ2q
− ε2

∂2q∗mn

∂ξ21
= 0,

(5.5)

where

σ∗11 = κ−2 ∂u
∗
1

∂ξ1
+ (κ−2 − 2)

∂u∗2
∂ζp

,

σ∗12 =
∂u∗1
∂ζp

+
∂u∗2
∂ξ1

,

σ∗22 = (κ−2 − 2)
∂u∗1
∂ξ1

+ κ−2 ∂u
∗
2

∂ζp
,

(5.6)

and κ= c2/c1. Traction-free boundary conditions on the surface ζp = ζq = 0, together with
additional condition (4.8) for t11 are re-written as

p∗11 + q∗11 − ∂q∗11
∂ζq

− ε
∂p∗11
∂ζp

− 1

2
ε2

∂3q∗11
∂ξ21∂ζq

= 0,

p∗12 + εq∗12 = 0,

p∗22 + ε2q∗22 = 0.

(5.7)

Now, the sought for quantities may be expanded as asymptotic series

f∗mn = f
(0)
mn + εf

(1)
mn + ε2f

(2)
mn + ..., (5.8)

where f∗mn = {p∗mn, q
∗
mn, σ

∗
mn, u

∗
mn}.

Next, the problem can be formulated for various orders of magnitude in the form

∂p
(r)
m1

∂ξ1
+
∂p

(r)
m2

∂ζp
=
∂2u

(r)
m

∂τ2
,

p
(r)
mn − ∂2p

(r−2)
mn

∂ξ21
− ∂2p

(r−2)
mn

∂ζ2p
= σ

(r)
mn,

(5.9)

with

∂q
(r)
m1

∂ξ1
+
∂q

(r)
m2

∂ζq
= 0,

q
(r)
ij − ∂2q

(r)
mn

∂ζ2q
− ∂2q

(r−2)
mn

∂ξ21
= 0,

(5.10)
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where

σ
(r)
11 = κ−2 ∂u

(r)
1

∂ξ1
+ (κ−2 − 2)

∂u
(r)
2

∂ζp
,

σ
(r)
12 =

∂u
(r)
1

∂ζp
+
∂u

(r)
2

∂ξ1
,

σ
(r)
22 = (κ−2 − 2)

∂u
(r)
1

∂ξ1
+ κ−2 ∂u

(r)
2

∂ζp
,

(5.11)

at the boundary we also have

p
(r)
11 + q

(r)
11 −

∂q
(r)
11

∂ζq
−
∂p

(r−1)
11

∂ζp
− 1

2

∂3q
(r−2)
11

∂ξ21∂ζq
= 0, (5.12)

p
(r)
12 + q

(r−1)
12 = 0, (5.13)

p
(r)
22 + q

(r−2)
22 = 0. (5.14)

In the above r= 0, 1, 2, . . . , and all the terms with negative superscripts are taken to be zero. Here
we restrict ourselves to three-term expansions.

At zero order (r= 0) we have from equations (5.9)

p
(0)
mn = σ

(0)
mn, (5.15)

resulting in a classical plane-strain boundary value problem. Using equations (5.10) and boundary
condition (5.12), we obtain

q
(0)
mn =Q

(0)
mn(ξ1, τ)e

−ζq , (5.16)

where

Q
(0)
11 =−1

2
σ
(0)
11

∣∣∣
ζp=0

, Q
(0)
12 =−1

2

∂σ
(0)
11

∂ξ1

∣∣∣∣∣
ζp=0

, Q
(0)
22 =−1

2

∂2σ
(0)
11

∂ξ21

∣∣∣∣∣
ζp=0

. (5.17)

Thus, all of the fast quantities q(0)mn are determined through the local stresses σ(0)mn.
At first order (r= 1), we have

p
(1)
mn = σ

(1)
mn, (5.18)

again resulting in classical plane-strain equations of motion. The corresponding boundary
conditions, however, contain an additional term

σ
(1)
12 =

1

2

∂σ
(0)
11

∂ξ1
, σ

(1)
22 = 0 at ζp = 0, (5.19)

where σ(1)mn can be found in terms of displacements, see (5.11). For the quantities related to the
boundary layer we have

q
(1)
mn =Q

(1)
mn(ξ1, τ)e

−ζq , (5.20)

where

Q
(1)
11 =

1

2

 ∂σ
(0)
11

∂ζp

∣∣∣∣∣
ζp=0

− σ
(1)
11

∣∣∣
ζp=0

 ,

Q
(1)
12 =

1

2

 ∂2σ
(0)
11

∂ξ1∂ζp

∣∣∣∣∣
ζp=0

−
∂σ

(1)
11

∂ξ1

∣∣∣∣∣
ζp=0

 ,

Q
(1)
22 =

1

2

 ∂3σ
(0)
11

∂ξ21∂ζp

∣∣∣∣∣
ζp=0

−
∂2σ

(1)
11

∂ξ21

∣∣∣∣∣
ζp=0

 .
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At the second order (r= 2), we obtain from (5.9)2

p
(2)
mn = σ

(2)
mn +

∂2σ
(0)
mn

∂ξ21
+
∂2σ

(0)
mn

∂ζ2p
. (5.21)

Then equation of motion (5.9)1 can be recast as

∂σ
(2)
m1

∂ξ1
+
∂σ

(2)
m2

∂ζp
=
∂2u

(2)
m

∂τ2
− ∂4u

(0)
m

∂τ2∂ξ21
− ∂4u

(0)
m

∂τ2∂ζ2p
, (5.22)

where (5.15) was used. Combining equations (5.15), (5.18) and (5.22), we obtain the refined
equations of motion in terms of the local stresses

∂σ∗m1

∂ξ1
+
∂σ∗m2

∂ζp
=
∂2u∗m
∂τ2

− ε2
(
∂4u∗m
∂τ2∂ξ21

+
∂4u∗m
∂τ2∂ζ2p

)
, (5.23)

where stresses σ∗mn and displacements u∗m are related through (5.6). Next, using boundary
conditions (5.13) and (5.14), we arrive (at ζp = ζq = 0)

σ
(2)
12 =

1

2

∂σ
(1)
11

∂ξ1
− 1

2

∂2σ
(0)
11

∂ξ1∂ζp
−
∂2σ

(0)
12

∂ξ21
−
∂2σ

(0)
12

∂ζ2p
, (5.24)

and

σ
(2)
22 =

1

2

∂2σ
(0)
11

∂ξ21
−
∂2σ

(0)
22

∂ξ21
−
∂2σ

(0)
22

∂ζ2p
. (5.25)

As a result, the refined second order boundary conditions may be formulated as

σ∗12 − ε

2

∂σ∗11
∂ξ1

+ ε2
(
1

2

∂2σ∗11
∂ξ1∂ζp

+
∂2σ∗12
∂ξ21

+
∂2σ∗12
∂ζ2p

)
= 0, (5.26)

and

σ∗22 − ε2
(
1

2

∂2σ∗11
∂ξ21

− ∂2σ∗22
∂ξ21

− ∂2σ∗22
∂ζ2p

)
= 0. (5.27)

6. Nonlocal correction to the Rayleigh wave speed
In terms of the original variables, a refined boundary value problem, including (5.23), (5.26) and
(5.27) is presented as

∂σi1
∂x1

+
∂σi2
∂x2

= ρ
∂2ui
∂t2

− a2ρ

(
∂4ui
∂t2∂x21

+
∂4ui
∂t2∂x22

)
, (6.1)

subject to

σ12 − a

2

∂σ11
∂x1

+ a2
(
1

2

∂2σ11
∂x1∂x2

+
∂2σ12
∂x21

+
∂2σ12
∂x22

)
= 0, (6.2)

and

σ22 − a2
(
1

2

∂2σ11
∂x21

− ∂2σ22
∂x21

− ∂2σ22
∂x22

)
= 0 at x2 = 0, (6.3)

where stresses and displacements are connected through (2.3). For simplicity, let us neglect all the
terms higher thanO(a). Then, in the long-wave limit ε≪ 1 as before, ε= ka, the problem reduces
to classical plane-strain equations of motion (cf. (3.2) at a= 0) subject to

σ12 = 2aµ(1− κ2)
∂2u1
∂x21

, σ22 = 0 at x2 = 0. (6.4)

These boundary conditions follow from (6.2)-(6.3), with the second condition used to obtain a
simpler expression for σ11.
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Using (3.1), the problem is reformulated in terms of the Lamé potentials. Next, taking the
travelling harmonic ansatz (3.4), where qn = qn0, see (3.10), the associated dispersion relation can
be obtained in the form

4q10q20 − (1 + q220)
2 + 2ε(1− κ−2)(1− q210)q20 = 0. (6.5)

Not surprisingly, the leading order gives a classical Rayleigh wave equation, see (3.9). Introducing
the dimensionless speed

C =
c

c2
, (6.6)

equation (6.5) becomes

4
√

1− C2
√

1− κ2C2 − (2− C2)2 + 2ε(κ2 − 1) C2
√

1− C2 = 0. (6.7)

Now, expanding C as asymptotic series

C =C(0) − C(1)ε+ . . . , (6.8)

we obtain the first two terms

C(0) =CR =
cR
c2
, C(1) =

2CR

(
1− C2

R

)
(κ2 − 1)

√
1− κ2C2

R(
2− C2

R

)3 − 4(1 + κ2 − 2κ2C2
R)

, (6.9)

with κ2 = (1− 2ν)/(2(1− ν)). The variation of the correction coefficientC(1) versus the Poisson’s
ratio ν is presented in Figure 1.

 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

ν

C(1)

Figure 1. Correction coefficient C(1) to Rayleigh wave speed versus the Poisson’s ratio ν, see equation (6.9).

It is worth mentioning, that for the Gaussian kernel, see [5], an effective boundary condition
for shearing stress is of the form

σ12 =
2a√
π
µ(1− κ2)

∂2u1
∂x21

at x2 = 0, (6.10)

being different from (6.4) only by the factor 1/
√
π, as it has been also observed within the

antiplane problem in [14]. Obviously, the correction coefficient C(1) for the Gaussian kernel will
differ from that in (6.9) by the same factor.
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7. Conclusion
The original relations for the nonlocal stresses expressed through double integrals with the
modified Bessel kernel are reduced to asymptotic expansions in terms of single integrals with
the exponential kernel subject to the assumption that a typical wave length along the surface is
much greater than the microscale. Two-term expansions are adapted to demonstrate that the well
known Eringen’s solution for the nonlocal Rayleigh wave, see [10], does not satisfy the equations
of motion for nonlocal stresses.

A modified singular perturbed differential model in nonlocal elasticity is developed taking
into considerations boundary layers localised near the surface. In this case an extra boundary
condition arises as a constraint on the normal stress component that does not enter the traditional
boundary conditions along a traction free surface. This constraint ensures the equivalence of
integral and differential relations for this normal stress.

An asymptotic solution within the framework of the aforementioned model is derived
indicating that the leading-order nonlocal correction to the classical elasticity originates from
boundary layers. Thus, the nonlocal corrections to boundary conditions appear to be more
significant than those for the equations of motion. The associated refined formula for the surface
wave speed is obtained and compared with the results for the Gaussian integral kernel.

The delicate issue of the validity of a continuous setup for modelling boundary layers with
the widths of the microscale size is also examined. A toy problem for a semi-infinite chain is
considered assuming that the exponential decay rate and the chain step are independent problem
parameters. The possibility of asymptotic homogenisation is studied, and discrete boundary
layers are calculated.

Analysis of nonlocal near surface effects on Rayleigh wave propagation is related to various
modern formulations in the surface wave theory. in particular, we mention mathematical
modelling of Rayleigh waves in micro-structured elastic systems, see [21] and references therein.

Appendix A: Discrete nonlocal formulation
Consider a 1D model problem for a semi-infinite chain of particles xk = kb, k= 0, 1, 2, . . . , placed
evenly with step b, similar to treatment in [11]. Let the discrete counterpart of the nonlocal integral
model (2.2) be given by

sk =A

∞∑
j=0

σje
−

|xk−xj |
a , (A.1)

where sk = s(xk) is a nonlocal stress, σj = σ(xj) is a local stress, a is the rate of decay which does
not necessarily coincide with step b, and

A=
eγ − 1

eγ + 1
. (A.2)

with γ =
b

a
. In addition, we introduce a small geometrical parameter ε=

a

l
, where l denotes the

typical scale characterising the variation of the local stress.
First, assume that γ ∼ 1. In this case, only the terms in the series (A.1) with |k − j| ∼ 1 will not

be exponentially small. For these terms

σj = σk (1 +O(ε|k − j|)) . (A.3)

Therefore, we may deduce from (A.1)

sk ≈Aσk

k−1∑
j=0

e
(j−k)b

a +
∞∑
j=k

e
(k−j)b

a

= σk

(
1 +

A

1− eγ
e−kγ

)
. (A.4)
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This exponential term e−kγ in (A.4) corresponds to a boundary layer localised near the origin. It
decays at k≫ 1, leading to the expected far-field behaviour sk ≈ σk. In fact, the latter justifies a
choice of the normalising constant A in the original formula (A.1).

It is worth noting that although no homogenised nonlocal relation corresponding to (A.1)
is possible since the decay rate of the boundary layer is of order of the chain step, we still
observe a discrete exponential boundary layer. The latter may be combined with a homogenised
slow-varying interior solution predicted at leading order within the framework of classical local
elasticity.

Next, we consider γ≪ 1, for which more terms (satisfying |k − j|≲ γ−1 ≫ 1) should be
retained in the sum (A.1). In this case,

σj = σk
(
1 +O(εγ|k − j|)

)
, (A.5)

resulting in

sk ≈ σk

(
1− 1

2
e−

xk
a

)
, (A.6)

which corresponds to the 1D integral homogenised model with exponential kernel, see [14] along
with consideration in Section 4, for which, as might be expected, s0 ≈ 1

2σ0. It can be easily verified
that (A.6) describes the limiting behaviour of (A.4) as γ→ 0.

The range γ≫ 1 is not of interest because of exponentially small nonlocal interactions, which
is also clearly seen from Fig. 2 demonstrating the ratio of local and nonlocal stresses taken in the
form (see (A.4))

δk(γ) =
sk(γ)

σk(γ)
= 1 +

A

1− eγ
e−kγ , k= 0, 1, 2, 3, (A.7)

This Figure is oriented to elucidating the effect of the distance from the chain origin k and relative
decay rate γ on the intensity of the boundary layer.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  1  2  3  4  5  6  7  8

k = 0

k = 1

k = 2

k = 3

γ

δk

Figure 2. The ratio of local and nonlocal stresses δk(γ) for k= 0, 1, 2, 3, see equation (A.7).
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