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Abstract: The antiplane shear of a semi-infinite multi-layered elastic strip with traction free faces and
edges subject to prescribed stress is studied. A high contrast is assumed in the stiffnesses of two types
of homogeneous isotropic layers. Explicit conditions on the edge load are derived, ensuring the decay
of stress components at the distance of order strip thickness. One of these conditions corresponds to
the canonical Saint-Venant’s principle, manifesting the self-equilibrium of the load. The rest of the
decay conditions consider the presence of high contrast and are of an asymptotic nature, in contrast
to the exact former condition. The number of asymptotic conditions is the same as that of soft layers.
An example of the implementation of the proposed decay conditions for calculating the solution for
the interior (outside of a boundary layer zone) domain of a three-layered semi-strip, considering
geometric asymmetry, is presented.

Keywords: Saint-Venant’s principle; decay conditions; multi-layered structures; high contrast;
asymptotic

1. Introduction

The classical Saint-Venant’s principle, as stated by Love [1] is formulated as follows:
“According to this principle the strains that are produced in a body by the application, to a
small part of its surface, of a system of forces statically equivalent to zero force and zero
couple, are of negligible magnitude at distances which are large compared with the linear
dimensions of the part”. For our current purposes, we employ an equivalent formulation,
namely that the stresses produced by the self-equilibrated load applied along the edge
become negligibly small at distances larger than the edge size. The static equilibrium
of an isotropic elastic semi-strip under the action of a self-equilibrated load along the
edge, see [2], is of the utmost importance among other examples, demonstrating this
principle. The particular value of this approach is related to the fact that it allows for
important generalizations using perturbation along a small parameter. For example, plane
and anti-plane boundary layers are constructed on the basis of this method, resulting in
the derivation of asymptotic boundary conditions in elastic plates and shells, e.g., see [3–5]
and also [6,7] and references therein. Moreover, it is possible to derive low-frequency
corrections for static decay conditions, corresponding to dynamic generalizations of the
Saint-Venant’s principle for a semi-infinite strip; see [8,9].

Another important asymptotic generalization of the aforementioned problem for an
isotropic semi-strip is the problem of layered composites with high-contrast in the stiffness
of the layers. In this case, boundary layers corresponding to self-equilibrated static loads
might decay quite slowly and may propagate along the whole strip; see [10]. In dynamics,
additional low-frequency modes may appear as a result of high contrast in material or the
geometrical properties of the layers; see [11–14].

In the paper [14] the canonical problem for the antiplane shear of a three-layered semi-
infinite strip is considered, resulting in the derivation of two decay conditions. The first
corresponds to the conventional Saint-Venant’s principle, assuming self-equilibrium of a
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shear edge load. The additional condition is of an asymptotic nature and precludes shear
deformation over a soft inner layer.

In this paper, the decay conditions obtained in [14], are extended to a multi-layered,
high-contrast laminate with alternating soft and stiff layers, with the faces of the outer
stiff layers subject to traction free boundary conditions. As might be expected, one of the
resulting decay conditions is associated with the Saint-Venant’s principle, whereas the
number of additional decay conditions is equal to the number of soft layers. The latter
conditions generalize the results in [14].

The paper is organized as follows. The problem is formulated in Section 2. The decay
condition corresponding to the Saint-Venant’s principle is derived in Section 3. The addi-
tional asymptotic decay conditions are obtained in Section 4. Finally, an illustrative example
for a three-layered asymmetric laminate is presented in Section 5.

2. Statement of the Problem

Consider a laminate composed of N isotropic layers of thickness 2hq, q = 1, 2, . . . , N.
The laminate is constructed as a series of alternating soft and stiff layers, with the outer
layers being stiff; see Figure 1. In the case of antiplane shear, equations of equilibrium for
each layer in the domain 0 6 x1 < ∞, −hq < x2q < hq can be written as follows:

∂σ
q
13

∂x1
+

∂σ
q
23

∂x2q
= 0, q = 1, 2, . . . , N, (1)

where σ
q
j3, j = 1, 2 are stresses in layer q, defined as:

σ
q
13 = µq

∂uq

∂x1
and σ

q
23 = µq

∂uq

∂x2q
. (2)

In the above, uq = uq(x1, x2q) are displacements orthogonal to x1x2 plane; µq are Lamé
parameters, such that µq = µ1 for odd values of q and µq = µ2 for even ones, corresponding
to stiff and soft layers, respectively. A small parameter, arising from the high contrast of
the layers’ stiffnesses, is introduced as

µ =
µ2

µ1
� 1. (3)

layer 1

layer 2

layer 3

...
...

layer N

0 x1

x2

Figure 1. N-layered semi-strip.

In what follows, we consider a laminate with traction-free faces

σ1
23
∣∣
x21=−h1

= 0, σN
23
∣∣
x2N=hN

= 0, (4)

and prescribed shear load p(x2) along the edge x1 = 0

σ
q
13

∣∣
x1=0 = p(x2q + Hq), q = 1, 2, . . . , N, (5)
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where the local variables x2q, −hq 6 x2q 6 hq and the global one x2 are related through

x2q = x2 − Hq, (6)

with

H1 = h1, Hq = hq + 2
q−1

∑
n=1

hn, q = 2, 3, . . . , N. (7)

The continuity conditions of the interfaces are given by

uq
∣∣
x2q=hq

= uq+1
∣∣
x2q+1=−hq+1

and σ
q
23

∣∣
x2q=hq

= σ
q+1
23

∣∣
x2q+1=−hq+1

, (8)

for q = 1, 2, . . . , N − 1. The aim of the paper is to formulate the so-called decay conditions
on the load p(x2), such that

σ
q
13

∣∣
x1=∞ = 0. (9)

Moreover, we derive conditions for a ‘strong’ decay of the boundary layer with the
decay region, localized over O(h) edge vicinity, where h ∼ h1 ∼ h2 ∼ . . . ∼ hN , with the
sign ∼ staying for asymptotic equivalence. Thus, in what follows, we assume

∂

∂x1
∼ ∂

∂x2q
∼ 1

h
. (10)

3. Classical Decay Condition

We are going to integrate an equation of motion for each layer q over its domain
0 6 x1 < ∞, −hq < x2q < hq using the continuity conditions (8), together with the
boundary conditions (4), for outer layers. Starting with the first layer q = 1 we obtain

∫ ∞

0

∫ h1

−h1

(
∂σ1

13
∂x1

+
∂σ1

23
∂x21

)
dx1dx21 =

∫ h1

−h1

σ1
13
∣∣∞
x1=0 dx21 +

∫ ∞

0
σ1

23
∣∣h1
x21=−h1

dx1 =

−
∫ h1

−h1

p(x21 + H1)dx21 +
∫ ∞

0
σ1

23
∣∣
x21=h1

dx1 = 0,

(11)

resulting in a relation

∫ ∞

0
σ1

23
∣∣
x21=h1

dx1 =
∫ h1

−h1

p(x21 + H1)dx21. (12)

Similarly, for the upper layer q = N, we have

∫ ∞

0
σN−1

23

∣∣
x2N−1=−hN−1

dx1 = −
∫ hN

−hN

p(x2N + HN)dx2N . (13)

Now, integrating for the interior layers q = 2, 3, . . . , N − 1, we arrive at

∫ ∞

0
σ

q
23

∣∣
x2q=hq

dx1 =
∫ ∞

0
σ

q−1
23

∣∣
x2q−1=hq−1

dx1 +
∫ hq

−hq
p(x2q + Hq)dx2q. (14)

It is possible to re-arrange the latter, expressing integrals for stresses in layers q− 1
through the integrals for edge loading, starting from (12). This results in the
following expression

∫ ∞

0
σ

q
23

∣∣
x2q=hq

dx1 =
∫ Hq+hq

0
p(x2)dx2, q = 2, 3, . . . , N − 1. (15)
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Next, using this relation for q = N − 1 together with (13), the classical Saint-Venant’s
condition for the decay of stresses away from the loaded edge can be derived in the form∫ H

0
p(x2)dx2 = 0, (16)

where H is a thickness of a strip given by

H = 2
N

∑
n=1

hn. (17)

The essence of the problem considered is that similar to the treatment in [14], we may
expect more decay conditions that are specific to the considered high-contrast setup.

4. Additional Decay Conditions

To derive additional conditions, let us integrate products of the equation of motion and
the vertical coordinate for each soft layer, namely, for q = 2, 4, . . . , N − 1. Hence, we have

∫ ∞

0

∫ hq

−hq
x2q

(
∂σ

q
13

∂x1
+

∂σ
q
23

∂x2q

)
dx1dx2q =

∫ hq

−hq
x2qσ

q
13

∣∣∞
x1=0 dx2q +

∫ ∞

0

∫ hq

−hq
x2q

∂σ
q
23

∂x2q
dx1dx2q =

−
∫ hq

−hq
x2q p(x2q + Hq)dx2q + hq

∫ ∞

0

(
σ

q
23

∣∣
x2q=hq

+ σ
q
23

∣∣
x2q=−hq

)
dx1

−
∫ ∞

0

∫ hq

−hq
σ

q
23dx1dx2q = 0.

(18)

In the above, the integral

I =
∫ ∞

0

∫ hq

−hq
σ

q
23dx1dx2q (19)

is asymptotically negligible in comparison to the integral

J =
∫ hq

−hq
x2q p(x2q + Hq)dx2q. (20)

Indeed, expressing the stress through displacement in (19) and evaluating the inner
integral, we obtain

I = µ2

∫ ∞

0
uq
∣∣hq
x2q=−hq

dx1. (21)

Next, from the continuity condition, we can see that uq
∣∣
x2q=hq

= uq+1
∣∣
x2q+1=−hq+1

, also

uq+1
∣∣
x2q+1=−hq+1

∼ hσ
q+1
23

µ1
, since σ

q+1
23 = µ1

∂uq+1
∂x2q

, where
∂uq+1

∂x2q+1
∼ uq+1

h due to the original

assumption (10) on the localization of the boundary layer over O(h) edge vicinity. In addi-
tion, it is obvious that σ

q+1
23 ∼ p(x2q+1), thus uq

∣∣
x2q=hq

∼ hp
µ1

and similarly uq
∣∣
x2q=−hq

∼ hp
µ1

.

Again, considering the aforementioned remark of the localization area, we can finally obtain
that I ∼ h2 pµ.

At the same time, it is obvious that J ∼ h2 p, resulting in the sought-for estimation
I ∼ µJ. Therefore, neglecting the last term in (18), and using continuity conditions (8) for
stresses, we arrive at the following conditions for q = 2, 4, . . . , N − 1

∫ hq

−hq
x2q p(x2q + Hq)dx2q − hq

∫ ∞

0

(
σ

q
23

∣∣
x2q=hq

+ σ
q−1
23

∣∣
x2q−1=hq−1

)
dx1 = 0. (22)
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Now, using previously derived relations (15), together with the classical decay
condition (16) and relations (6), the latter may be re-written in the form

∫ Hq+hq

Hq−hq
(x2 − Hq)p(x2)dx2 − hq

∫ Hq−hq

0
p(x2)dx2 + hq

∫ H

Hq+1−hq+1

p(x2)dx2 = 0, (23)

where q = 2, 4, . . . , N − 1.

5. Example

Consider a three-layered asymmetric semi-infinite strip. In this case, decayy
conditions (16) and (23) reduce, respectively, to

∫ H

0
p(x2)dx2 = 0, H = 2

3

∑
n=1

hn, (24)

and ∫ H2+h2

H2−h2

(x2 − H2)p(x2)dx2 − h2

∫ H2−h2

0
p(x2)dx2 + h2

∫ H

H3−h3

p(x2)dx2 = 0. (25)

Let us now consider the problem (1), (4), (5) and (8) with N = 3. First, by taking
displacements as uq = Uq(x2q)e−kx1 , q = 1, 2, 3, where k > 0, we can obtain a set of linear
equations with the coefficients, given by the matrix

M =



C1 0 0 S1 0 0
0 0 C3 0 0 −S3
S1 S2 0 C1 −C2 0
0 S2 S3 0 C2 −C3

C1 −µC2 0 −S1 −µS2 0
0 µC2 −C3 0 −µS2 −S3

, (26)

where
Cq = cos(khq), Sq = sin(khq), q = 1, 2, 3, (27)

with µ = µ2/µ1 � 1 as above. The characteristic equation follows from the condition
Det M = 0 and finally takes the form

µ{tan(2h1k) + tan(2h3k)}+ µ2 tan(2h2k)− tan(2h1k) tan(2h2k) tan(2h3k) = 0, (28)

where µ = µ2/µ1. There is a small root given at the leading order by

k ≈ 1
2

√
(h1 + h3)µ

h1h2h3
, (29)

corresponding to a slowly decaying solution

uA = A e−kx1


−h3

h1
, 0 6 x2 6 2h1,

x2(h1 + h3)− 2h2
1 − 2h3(h1 + h2)

2h1h2
, 2h1 6 x2 6 2h1 + 2h2,

1, 2h1 + 2h2 6 x2 6 H,

(30)

due to the effect of high contrast in stiffnesses of the layers, see also the discussion in [10].
It is well-known that such small roots are not a feature of non-contrast laminates. The asso-
ciated stress state corresponds to the interior solution but not to a boundary layer localized
in the narrow vicinity (of order of the laminate’s thickness) at the edge of a semi-strip.
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Another solution to the original problem, which is not localized near the narrow
vicinity of the edge x1 = 0, takes the traditional polynomial form

uB = Bx1 + C. (31)

Figures 2 and 3 demonstrate dimensionless displacements uA/A and uB/C at x1 = 0
for h1 = 0.03 m, h2 = 0.02 m, h3 = 0.01 m and µ = 0.1. The first one shows a homogeneous
transverse shear deformation of the soft layer and rigid-body motions of the outer stiff
layers, while the second one corresponds to the rigid-body motion of a semi-strip. For the
former, the slope of the straight line in the Figure 2 is related to the value of the stiffness
contrast; see also [14] for further details.

x2

uA/A

Figure 2. Dimensionless displacement variation (30) across the width of a semi-strip.

x2

uB/C

Figure 3. Dimensionless displacement variation (31) across the width of a semi-strip.

The stress components at the edge x1 = 0 corresponding to the displacements (30) and
(31) are given, respectively, by

σA
13 =A

µ1

2

√
(h1 + h3)µ

h1h2h3

×


h3

h1
, 0 6 x2 6 2h1,

−µ

(
x2(h1 + h3)− 2h2

1 − 2h3(h1 + h2)
)

2h1h2
, 2h1 6 x2 6 2h1 + 2h2,

−1, 2h1 + 2h2 6 x2 6 H,

(32)
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and

σB
13 = Bµ1


1, 0 6 x2 6 2h1,
µ, 2h1 6 x2 6 2h1 + 2h2,
1, 2h1 + 2h2 6 x2 6 H,

(33)

see Figures 4 and 5 for the scaled stresses σA
13/Aµ1 and σB

13/Bµ1.

x2

σA
13/Aµ1

Figure 4. Scaled stress variation (32) across the width of a semi-strip.

x2

σB
13/Bµ1

Figure 5. Scaled stress variation (33) across the width of a semi-strip.

Next, assume that the stress σ13 = Q(x2) is prescribed along the edge. To determine
the constants A0 and B0 in the formulae (30)–(31), characterising the sought-for interior
stress field, we substitute the deviation p = Q−Qinterior, where Qinterior = σA

13 + σB
13 into

the decay conditions (24)–(25). As a result, we have, at leading order,

A =
1

µ1
√

µ

√
h1

h2h3(h1 + h3)3

(
2h2h3

∫ H2−h2

0
Qdx2 − 2h1h2

∫ H

H3−h3

Qdx2

−
∫ H2+h2

H2−h2

(
x2(h1 + h3)− 2h2

1 − 2h3(h1 + h2)
)

Qdx2

) (34)

and

B =
1

2(h1 + h3)µ1

∫ H

0
Qdx2. (35)
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At the same time, a constant C, corresponding to rigid body motion will remain undefined.

6. Conclusions

The sought-for N+1
2 end decay conditions for an N-layered, high-contrast, semi-infinite

strip are found in a simple closed form. The decay condition (16) corresponds to the
conventional Saint-Venant’s principle, stating the overall self-equilibrium of the prescribed
end load. The remaining decay conditions, given by (23), in contrast to the aforementioned
condition (16), are not exact. Each of them has an asymptotic error O(µ). They aim to
preclude slowly decaying solutions due to specific behaviours within each of the N−1

2 soft
layers. The central point in the asymptotic derivation consists of the evaluation of the
integral (19), which was proved to be negligible at leading order.

The derived decay conditions were developed to formulate the boundary conditions
for the interior solution, starting from the Saint-Venant’s principle. The example presented
in the paper briefly illustrates this procedure; for more details, see [4,6,15]. It is worth
noting that such boundary conditions are also valid at leading order for dynamics problems,
since the low-frequency corrector to decay conditions only comes at a higher order, e.g., [9].

The proposed approach allows for various useful generalizations. It may be extended
to a similar plane-strain problem. A multi-parametric analysis inspired by the high contrast
in the layers thickness is also of obvious interest. Finally, the laminates of different layouts,
e.g., with soft outer layers, might be also studied.
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