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Abstract

The 3D dynamic equations in elasticity for a thin transversely inhomogeneous

plate are subject to asymptotic analysis over the low-frequency range. The

leading and first order approximations are derived. The former is given by

a biharmonic equation on the mid-plane generalizing the classical Kirchhoff

equation for plate bending. A simple explicit formula for the effective bend-

ing stiffness is presented. The refined first order equation involves the same

biharmonic operator, as the leading order one, along with corrections expressed

through Laplacians. However, the constant coefficients at these corrections take

the form of sophisticated repeated integrals across the plate thickness. The

formulae for the transverse variations of the displacement and stress compo-

nents, especially relevant for FGM structures, are also obtained. The scope for

comparison of the developed asymptotic results and the existing ad hoc con-

siderations on the subject seems to be limited, in contrast to the homogeneous

setup, due to a more substantial deviation between the predictions offered by

these two approaches.

Keywords: thin plate, functionally graded, asymptotic, higher order,

1. Introduction

Functionally graded materials (FGM) find various applications in modern

technology, in particular, in aerospace [1, 2], automotive [3, 4], defence [5, 6]
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biomedicine and electronics [7, 8, 9, 10], motivating mathematical modeling of

transversely inhomogeneous elastic structures. Numerous publications consider5

thin functionally graded plates, e.g. see [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. All

the cited papers start from a popular ad hoc approach implementing physical

assumptions on stresses and displacements. To the best of our knowledge, more

rigorous developments on the subject have not yet been presented. At the same

time, analysis of the existing state of art indicates that a number of fundamental10

issues do not seem to be fully addressed.

First of all, a general 2D equation for plate bending still needs to be properly

derived, including a key formula for bending stiffness generalizing the classical

one in homogeneous, isotropic set-up. At the same time, many of the papers

on the subject, see, for example, [21, 22, 23, 24], operate with rather cumber-15

some coupled equations combining bending and stretching motions. In partic-

ular, [25] unnecessarily suggests to determine a special neutral plane inside the

plate for the uncoupling of bending and stretching. Another important problem

is concerned with the evaluation of the cross thickness variations of displace-

ments and stresses. It is particularly relevant namely to functionally graded20

plates for which these variations may take highly nontrivial forms, in contrast

to their homogeneous counterparts supporting simple polynomial variations. In

addition, the advantages of ad hoc refined theories, e.g. various shear defor-

mation models, appear to be even less obvious than in the homogeneous set-up

from the mathematical point of view, e.g. see comparative analysis in [26] and25

also [27, 28]. Finally, the aforementioned publications dealing with functionally

graded plates do not make a further effort to justify the adapted assumptions

using more consistent arguments, as well as to present convincing comparisons

with 3D benchmark solutions.

At the same time, 2D models for thin homogeneous structures are being30

derived from the associated 3D equations of elasticity, using mathematically

consistent asymptotic methodologies, since long ago. Initially, the asymptotic

approach was established for static plate bending deformation [29, 30, 31, 32].

Later on, the asypmtotic approach was extended to a broad range of boundary
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value problems in mechanics of plates and shells taking into account dynamic35

phenomena along with a number of other effects, e.g. see research monographs

[33, 34, 35, 36, 37, 38] and references therein.

In particular, for a plate, 2D shortened forms of the original 3D dynamic

equations have been derived in [26]. It is demonstrated that the leading order

approximation is identical to the classical Kirchhoff theory for plate bending. It40

is remarkable that the higher order approximations in this paper are governed

by a fourth order biharmonic equation as the Kirchhoff equation. Recently, an

asymptotic composite 2D dynamic equation for plate bending has been estab-

lished in [39]. This equation governs not only longwave motion but also predicts

the short-wavelength limit related to the Rayleigh wave propagating along the45

plate faces.

In this paper, we extend the homogeneous framework in [26, 35] to a thin

functionally graded plate characterized by arbitrary variation of the material

parameters across the thickness. The consideration starts from the associated

3D dynamic equation assuming that a typical wavelength is much greater than50

the plate thickness while a typical time scale corresponds to low-frequency bend-

ing motion. The latter is taken the same as in the homogeneous case, as well as

the scaling of stresses and displacements.

At leading order, we arrive, seemingly for the first time, at a biharmonic

equation with an effective bending stiffness and density explicitly expressed55

in the paper. In contrast to the current state of art, it elucidates that the

peculiarity of transverse shear stresses enables the separation of bending motion

from the stretching one. First order corrections, although given by sophisticated

formulae, are also derived. As for the homogeneous case, they do not change

the order of the leading order equation.60

As a numerical illustration, a functionally graded plate with the problem

parameters taken in the form of a volume fraction, earlier adapted in [40, 41],

is considered. Dispersion curves for leading and first order approximations are

plotted along with the graphs demonstrating the effect of the first order correc-

tion for static sinusoidal loads applied along plate faces.65
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2. Statement of the Problem

Consider a transversely inhomogeneous elastic layer of thickness 2h in Carte-

sian coordinates −∞ ≤ α1, α2 ≤ ∞, −h ≤ α3 ≤ h. The layer is assumed to

be subject to transverse loads P± at its faces α3 = ±h. The problem variable

parameters, characterizing mechanical properties of the layer, involve Young’s70

modulus E = E(α3), Poisson’s ratio ν = ν(α3) and density ρ = ρ(α3).

3D equations of motion in linear elasticity in terms of stresses and displace-

ments are presented as

∂σii

∂αi
+

∂σij

∂αj
+

∂σ3i

∂α3
− ρ

∂2vi
∂t2

= 0, i ̸= j = 1, 2 (1)

∂σi3

∂αi
+

∂σj3

∂αj
+

∂σ33

∂α3
− ρ

∂2v3
∂t2

= 0, (2)
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Figure 1: A functionally graded thin plate.

In what follows, stress-displacement relations are taken in the form oriented

to asymptotic analysis, e.g. see [26], namely

σii =
E

1− ν2

(
∂vi
∂αi

+ ν
∂vj
∂αj

)
+

ν

1− ν
σ33, (3)

σij =
E

2(1 + ν)

(
∂vi
∂αj

+
∂vj
∂αi

)
, (4)

∂v3
∂α3

=
1

E
(σ33 − ν (σii + σjj)) , (5)

∂vi
∂α3

= −∂v3
∂αi

+
2(1 + ν)

E
σ3i. (6)

The boundary conditions at α3 = ±h are

σ3i = 0, σ33 = P±, α3 = ±h. (7)
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The traditional small geometric parameter in the plate theory is given by

η = h/L ≪ 1, (8)

where L is a typical wavelength. In addition, we define a typical time scale

T =
L

ηc20
, (9)

where c20 = {E0/2(1 + ν0)ρ0}1/2 with E0 = E(0), ρ0 = ρ(0) and ν0 = ν(0).

This scale corresponds to bending vibrations of interest and is taken the same

as for homogeneous plates, see [26], also [35].

3. Asymptotic Scaling75

Let us scale the original spatial and temporal variable according to the set-

ting in the previous section. Consequently,

αi = Lξi, α3 = hζ, t =
L

ηc20
τ. (10)

The stress and displacement components are nondimensionalized as for homo-

geneous plate bending (see reference above) using the formulae

σii = E0ησ
∗
ii, σij = E0ησ

∗
ij ,

σ3i = E0η
2σ∗

3i, σ33 = E0η
3σ∗

33, (11)

vi = Lηv∗i , v3 = Lv∗3 .

In what follows, we also set

E = E0E∗, ρ = ρ0ρ∗, P± = E0η
3P±

∗ . (12)

As usual, all the starred quantities above are assumed to be of order unity. Then,

equations (1)–(6) and boundary conditions (7) in the previous section, taking

into account the relations (10)–(12), can be rewritten in the dimensionless form

as

∂σ∗
3i

∂ζ
= −∂σ∗

ii

∂ξi
−

∂σ∗
ij

∂ξj
+ η2

ρ∗
2(1 + ν0)

∂2v∗i
∂τ2

, (13)

∂σ∗
33

∂ζ
= −∂σ∗

3i

∂ξi
−

∂σ∗
3j

∂ξj
+

ρ∗
2(1 + ν0)

∂2v∗3
∂τ2

, (14)
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and

σ∗
ii =

E∗

1− ν2

(
∂v∗i
∂ξi

+ ν
∂v∗j
∂ξj

)
+ η2

ν

1− ν
σ∗
33, (15)

σ∗
ij =

E∗

2(1 + ν)

(
∂v∗i
∂ξj

+
∂v∗j
∂ξi

)
, (16)

∂v∗3
∂ζ

= − η2

E∗

(
ν
(
σ∗
ii + σ∗

jj

)
− η2σ∗

33

)
, (17)

∂v∗i
∂ζ

= −∂v∗3
∂ξi

+ η2
2(1 + ν)

E∗
σ∗
3i (18)

with

σ∗
3i = 0, σ∗

33 = P±
∗ , at ζ = ±1. (19)

The starred stress and displacement components are expanded in an asymp-

totic series of the form

f∗ = f (0) + η2f (1) + η4f (2) + · · · (20)

resulting in shortened forms of the original 3D equations of various order of

accuracy.

4. Leading order approximation

Consider the leading order approximation of the problem formulated in the

previous section keeping only the terms with the suffix (0) in the asymptotic

series (20). First, integrating (17) and (18) along the thickness, we have, re-

spectively,

v
(0)
3 = V

(0)
3 (ξ, τ) and v

(0)
i = −ζ

∂V
(0)
3

∂ξi
+ V

(0)
i (ξ, τ). (21)

The last term in (21) is typical for functionally graded plates due to lack of

symmetry across the midplane. For homogeneous plates, such term does not80

appear due to separation of bending and extension deformations, see [35].

Next, inserting displacements (21) into equations (15) and (16), we obtain

at leading order

σ
(0)
ii = − E∗

1− ν2

[
ζ

(
∂2V

(0)
3

∂ξ2i
+ ν

∂2V
(0)
3

∂ξ2j

)
−

(
∂V

(0)
i

∂ξi
+ ν

∂V
(0)
j

∂ξj

)]
, (22)
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and

σ
(0)
ij = − E∗

1 + ν

[
ζ
∂2V

(0)
3

∂ξiξj
− 1

2

(
∂V

(0)
i

∂ξj
+

∂V
(0)
j

∂ξi

)]
. (23)

Prior to the next round of transformation, it is useful to specify the vector

notations

σ
(k)
sh =

(
σ
(k)
31 , σ

(k)
32

)
, V (k) =

(
V

(k)
1 , V

(k)
2

)
, k = 0, 1, . . . (24)

and also define the in-plane leading order rotation angle by

θ(0) =
1

2

(
∂V

(0)
1

∂ξ2
− ∂V

(0)
2

∂ξ1

)
. (25)

As a result, we deduce from equation (13)

∂σ
(0)
sh

∂ζ
=

E∗

1− ν2

(
ζ grad2 ∆2V

(0)
3 + ν curl2(θ

(0))−

−1

2

(
∆2V

(0) + grad2 div2 V
(0)
))

(26)

where curl2(·) = (∂(·)/∂ξ2,−∂(·)/∂ξ1) and other operators are natural 2D coun-

terparts of the conventional 3D ones.

Now, integrating (26) across the thickness and satisfying the boundary con-

ditions (19)1 we have

e∗10

(
∆2V

(0) + grad2 div2 V
(0)
)
− 2e∗20 curl2 θ

(0) = 2e∗11 grad2 ∆2V
(0)
3 (27)

where the constant coefficients e∗mn are defined as

e∗mn = emn/E0 =

1∫
−1

snνm−1(s)E∗(s)

1− ν2(s)
ds, n = 0, 1, 2 . . . , m = 1, 2. (28)

The last equation is the solvability condition for 1D boundary value problem

(26) and (19)1. Taking the div2 of (27) and keeping in mind that div2 curl2 ≡ 0,

we arrive at a simpler formula

div2 V
(0) =

e∗11
e∗10

∆2V
(0)
3 . (29)
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Then, we have from (26) and the homogeneous boundary conditions (19)

subject to (29)

σ
(0)
sh =

(
e∗11
e∗10

E∗
10(ζ)− E∗

11(ζ)

)
grad2 ∆2V

(0)
3 +

1

2

(
e∗20
e∗10

E∗
10(ζ)− E∗

20(ζ)

)
curl2 θ

(0).

(30)

where

E∗
mn(ζ) = Emn(ζ)/E0 =

1∫
ζ

snνm−1(s)E(s)

1− ν2(s)
ds, n = 0, 1, 2 . . . , m = 1, 2 (31)

Finally, the solvability of the problem (14) and (19)2 is written as

1∫
−1

div2 σ
(0)
sh ds− m∗

0

2(1 + ν0)

∂2V
(0)
3

∂τ2
= P−

∗ − P+
∗ (32)

where

m∗
n = mn/ρ0 =

1∫
−1

snρ∗(s) ds, n = 0, 1, . . . (33)

Expressing from (30) the left hand side of (32), and again benefiting from the

identity div2 curl2 ≡ 0, we arrive at the sought for plate bending equation

remarkably separated from the effect of extensional deformation. It is

D∗∆
2
2V

(0)
3 +

m∗
0

2(1 + ν0)

∂2V
(0)
3

∂τ2
= P+

∗ − P−
∗ (34)

where

D∗ =
e∗10e

∗
12 − e∗11

2

e∗10
> 0. (35)

Below, we discuss in greater detail the derived equation. Now, for completeness,

we also present the formula for σ
(0)
33 coming from equations (14), boundary

conditions (19)2. It is

σ
(0)
33 =

e∗11
e∗10

1∫
ζ

E∗
10(s) ds−

1∫
ζ

E∗
11(s) ds

∆2
2V

(0)
3 − M∗

0(ζ)

2(1 + ν0)

∂2V
(0)
3

∂τ2
+ P+

∗ .

(36)
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where

M∗
n(ζ) = Mn(ζ)/ρ0 =

1∫
ζ

snρ(s) ds, n = 0, 1, . . . . (37)

It is obvious that the last formula satisfies the boundary condition (19)2 at85

ζ = −1 as well due to (32).

5. First order approximation

We now proceed to the next order starting with equation (17). Taking into

account (22), we obtain

v
(1)
3 = N1(ζ)∆2V

(0)
3 −N0(ζ) div2 V

(0) + V
(1)
3 , (38)

where the function Nn(ζ) is given by the formula (65) in the appendix.

Then, we have from (18)

v(1) = grad2

F∗
1(ζ)∆2V

(0)
3 +

ζ∫
0

N0(s) dsdiv2 V
(0) − ζV

(1)
3


+ F∗

2(ζ) curl2(θ
(0)) + V (1) (39)

where v(1) = (V
(1)
1 , V

(1)
2 ) and the function F∗

1(ζ) is given by (66) in the ap-

pendix, whereas

F∗
2(ζ) =

ζ∫
0

2(1 + ν(s))

E∗(s)

(
e∗20
e∗10

E∗
10(s)− E∗

20(s)

)
ds. (40)

Next, we obtain from (15) and (16)

σ
(1)
ij =

E∗

1 + ν

[
F∗
1(ζ)

∂2∆2V
(0)
3

∂ξi∂ξj
− ζ

∂2V
(1)
3

∂ξi∂ξj
+

(−1)i F∗
2(ζ)

2

(
∂2θ(0)

∂ξ2i
− ∂2θ(0)

∂ξ2j

)

+

ζ∫
0

N0(s) ds
∂2 div2 V

(0)

∂ξi∂ξj
+

1

2

(
∂V

(1)
i

∂ξj
+

∂V
(1)
j

∂ξi

) (41)
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and

σ
(1)
ii =

E∗

1− ν2

F∗
1(ζ) +

e∗11
e∗10

ζ∫
0

N0(s) ds

∆2
2V

(0)
3 − ζ

(
∂2V

(1)
3

∂ξ2i
+ ν

∂2V
(1)
3

∂ξ2j

)
+

(
∂V

(1)
i

∂ξi
+ ν

∂V
(1)
j

∂ξj

)
− E∗

1 + ν

F∗
1(ζ)

∂2∆2V
(0)
3

∂ξ2j
+ (−1)i+1F∗

2(ζ)
∂2θ(0)

∂ξi∂ξj
+

ζ∫
0

N0(s) ds
∂2 div2 V

(0)

∂ξ2j


+

ν

1− ν


e∗11
e∗10

1∫
ζ

E∗
10(s) ds−

1∫
ζ

E∗
11(s) ds

∆2
2V

(0)
3 − 1

2(1 + ν0)
M∗

0(ζ)
∂2V

(0)
3

∂τ2
+ P+

∗

 .

(42)

The derivation of (41) and (42) relies on the relation (29).

The solvability of the boundary value problem involving equation (13) and

the boundary conditions (19)1 becomes at the first order

1∫
−1

(
∂σ

(1)
ii

∂ξi
+

∂σ
(1)
ij

∂ξj

)
ds− 1

2(1 + ν0)

∂2

∂τ2

(
m∗

0V
(0)
i −m∗

1

∂V
(0)
3

∂ξi

)
= 0. (43)

Now, inserting (41) and (42) into the latter, we arrive at

grad2

 1∫
−1

G∗(s) ds ∆2
2V

(0)
3 − e∗11∆2V

(1)
3 +

e∗10
2

div2 V
(1)

− 1

2(1 + ν0)

 1∫
−1

ν(s)

1− ν(s)
M∗

0(s) ds−m∗
1

 ∂2V
(0)
3

∂τ2

+

1∫
−1

ν(s)

1− ν(s)
ds P+

∗

+
e∗10
2

∆2V
(1) − e∗20 curl2 θ

(0)

+
1

2
∆2 curl2 θ

(0)

1∫
−1

E∗(s)

1 + ν(s)
F∗
2(s) ds−

m∗
0

2(1 + ν0)

∂2V (0)

∂τ2
= 0 (44)
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with the function G∗(ζ) given by (64). Consequently,

σ
(1)
sh =

1∫
ζ

G∗(s) ds ∆2
2 grad2 V

(0)
3 − E∗

11(ζ)∆2 grad2 V
(1)
3 +

+
1

2

1∫
ζ

E∗(s)

1 + ν(s)
F∗
2(s) ds ∆2 curl2 θ

(0)+

+
E∗
10(ζ)

2

(
∆2V

(1) + grad2 div2 V
(1)
)
− E∗

20(ζ) curl2 θ
(0)−

− 1

2(1 + ν0)

 1∫
ζ

ν(s)

1− ν(s)
M∗

0(s) ds−M∗
1(ζ)

 grad2
∂2V

(0)
3

∂τ2
−

− M∗
0(ζ)

2(1 + ν0)

∂2V (0)

∂τ2
+

1∫
ζ

ν(s)

1− ν(s)
ds grad2 P

+
∗ . (45)

Finally, equation (14) with homogeneous boundary condition (19)2 is solv-

able at first order provided that

1∫
−1

div2 σ
(1)
sh ds− 1

2(1 + ν0)

1∫
−1

ρ∗ ds
∂2v

(1)
3

∂τ2
= 0. (46)

Expressing here σ
(1)
sh through (45) and v

(1)
3 by (38) we obtain

1∫
−1

(
s− e∗11

e∗10

)
G∗(s) ds ∆3

2V
(0)
3 −D∗∆

2
2V

(1)
3 +

+
1

2(1 + ν0)

e∗11
e∗10

 1∫
−1

ν(s)

1− ν(s)
M∗

0(s) ds+

1∫
−1

ρ∗(s)N0(s) ds+

+
e∗11
e∗10

m∗
0 − 2m∗

1

)
−

1∫
−1

sν(s)

1− ν(s)
M∗

0(s) ds−
1∫

−1

ρ∗(s)N1(s) ds+m∗
2

 ∂2∆2V
(0)
3

∂τ2

− m∗
0

2(1 + ν0)

∂2V
(1)
3

∂τ2
+

1∫
−1

(
s− e∗11

e∗10

)
ν(s)

1− ν(s)
ds ∆2P

+
∗ = 0. (47)

Let us derive 2D equation along the mid-surface (ζ = 0) denoting w∗ =

V
(0)
3 + η2V

(1)
3 . To this end, first express ∆2

2V
(0)
3 in (47) from (34) as

∆2
2V

(0)
3 = − m∗

0

2D∗(1 + ν0)

∂2V
(0)
3

∂τ2
+

1

D∗

(
P+
∗ − P−

∗
)

(48)
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and then add equations (34) and (47) to get within the truncation error O(η4)

D∗∆
2
2w

∗ +
m∗

0

2(1 + ν0)

(
1 + η2a∗∆2

) ∂2w∗

∂τ2
=
(
1 + η2b+∗ ∆2

)
P+
∗ −

(
1 + η2b−∗ ∆2

)
P−
∗

(49)

where the constant coefficients a∗, b
+
∗ and b−∗ are defined in appendix by (63)90

and (67), respectively.

6. 2D equations of motion

Let us write down the 2D derived equations in the previous two sections

in dimensional form. In particular, the leading order biharmonic equation (34)

becomes

D∆2
2w + hm0

∂2w

∂t2
= P+ − P− (50)

where w = LV
(0)
3 , m0 is given by (33) and

D = E0h
3D∗ = h3 e10e12 − e211

e10
(51)

with emn defined by (28). Here and below all operators will be understood in

dimensional form, e.g. ∆2 = ∂2/∂α2
1 + ∂2/∂α2

2.

Equation (50) is a natural extension of that in the classical Kirchhoff theory

for thin homogeneous plates. For the latter, we have from the appendix

D =
2E0h

3

3(1− ν20)
, m0 = 2ρ0 (52)

as might be expected.95

To the best of our knowledge, the existing publications on the subject, e.g.,

see, [21, 22, 23, 24], usually operate with coupled equations combining bending

and extensional deformation. Seemingly, biharmonic equation (50) with the

stiffness given by the general formula (51) has not earlier been suggested.

At next order, we have from (49)

D∆2
2w + hm0

(
1 + h2a ∆2

) ∂2w

∂t2
=
(
1 + h2b+∆2

)
P+ −

(
1 + h2b−∆2

)
P−

(53)
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where w = L(V
(0)
3 +η2V

(1)
3 ) and the constant coefficients a, b+ and b− are given

in the appendix. In case of a homogeneous plate, D and m0 are given by (52)

as above and

a =
7ν0 − 17

15(1− ν0)
, b+ = b− = − 8− 3ν0

10(1− ν0)
(54)

leading to the equation

2E0h
3

3(1− ν20)
∆2

2w + 2ρ0h

[
1 + h2 7ν0 − 17

15(1− ν0)
∆2

]
∂2w

∂t2
=

[
1− h2 8− 3ν0

10(1− ν0)
∆2

]
(P+ − P−),

(55)

which is identical to that earlier derived refined plate equation taking into ac-100

count transverse shear deformation, rotation inertia along with other corrections

of the same asypmtotic order, e.g., see, [26, 35]. In the general case, the cor-

rection coefficients a, b+ and b− take a sophisticated form and hardly can be

derived relying just on physical assumptions, e.g., see, [21], outside the scope of

a consistent asymptotic setup.105

The advantage of the proposed approach is not restricted to the derivation of

the 2D asymptotically consistent equations along the plate mid-surface. In addi-

tion, nontrivial explicit formula for through thickness variations of displacement

and stress components are established in sections 4 and 5. They are of partic-

ular importance in functionally graded structures for which simple polynomial110

variations, typical for homogeneous plates, are not justified.

7. Examples

Consider a functionally graded plate for which

E = (E1 − E2)

(
ζ + 1

2

)p

+ E2, (56)

ν = (ν1 − ν2)

(
ζ + 1

2

)p

+ ν2, (57)

and

ρ = (ρ1 − ρ2)

(
ζ + 1

2

)p

+ ρ2, (58)
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with the material properties of the plate varying from Nickel at the lower surface

ζ = −1 with E2 = 223.95 × 109 N/m2, ν2 = 0.31 and ρ2 = 8900 kg/m3

to stainless steel at the upper surface ζ = 1 with E1 = 201.04 × 109 N/m2,115

ν1 = 0.3262 and ρ1 = 8166 kg/m3, e.g., see, [40], also [41]. In this case, we have

for the coefficients in equations (50) and (53)

Table 1: The values of the coefficients appearing in (53) for h = 0.01m.

p = 1 p = 5 p = 15

D 157471 160786 162916

m0 17066 17555.3 17708.3

a −1.44329 −1.41269 −1.41915

b+ −1.01872 −0.99460 −1.00651

b− −1.04532 −1.01291 −1.0149

Below, we plot the dispersion curves corresponding to the solutions of equa-

tions (50) and (53) taken in the form w = exp(i(kα1 −ωt)) where ω is circular

frequency and k is wavenumber. They are given, respectively, by

K =

(
m0h

3E2

Dρ2

)1/4 √
Ω (59)

and

K =

√ Dρ2
m0h3E2

+

(
aΩ

2

)2

− aΩ

2

1/2 √
m0h

3E2

Dρ2
Ω (60)

In Figure 2, we specify the dimensionless parameters K = kh and Ω =

ωh
√
ρ2/E2 setting ν1 = 0.31 and ν2 = 0.3262 .

14



0 0.5 1 1.5 2

  

0

1

2

3

4
 K

 
p=1

p=5

p=15

p=1

p=5

p=15

Figure 2: Dispersion curves corresponding to (59) and (60) corresponding to FG plate char-

acterized by (56)–(58) for various values of volume fraction exponent p.

We also look at the solution of the static problem for which P+ = −P− =

Dδ4h−4 cos(δα1/h)/2. In this case, equations (50) and (53) result in the nor-

malized displacement amplitude given, respectively, by

w = w1 = 1 (61)

and

w = w2 = 1− δ2

2
(b+ − b−). (62)

In Figure 3, the relative error r = |(w2−w1)/w1|×100% = δ2|b+−b−|×50%120

is plotted versus the dimensionless parameter δ.
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Figure 3: Relative error between the leading and refined normalized displacement amplitudes

(61) and (62).

8. Conclusion

The asymptotic technique developed in the paper naturally generalizes pre-

vious considerations for homogeneous plates, e.g. see [26, 35]. The established

framework is also similar to the conventional homogenisation procedure for pe-125

riodic media adapted for thin layers, e.g. see [42, 43], and also [44] dealing

with an inhomogeneous viscoelastic bar and the most recent consideration in

[45] concerned with a plane strain problem for a thin-walled functionally graded

cylinder.

The leading order approximation of the original 3D equations of motion is130

given by biharmonic plate bending equation (34) on the mid-plane. It is shown

that the separation of the bending motion of interest from the stretching one is

16



due to the decomposition of the transverse shear stress vector into irrotational

and solenoidal components, see (30). This fact has not been noted in the earlier

publications, see [21, 22, 23, 24, 25, 40, 41].135

The refined equation for plate bending (49) contains first order corrections

given by lengthy formulae presented in the appendix. They can hardly be

derived outside the proposed asymptotic scheme, relying just on an intuitive

physical insight. This observation is also true for intricate formulae in sections

4 and 5 expressing the variations of the displacement and stress components.140

The implementation of the obtained results is not restricted to a typical FGM

plate considered in section 7. In particular, they can readily be adapted for the

asymptotic justification and refinement of many of the existing laminated plate

models, e.g. see the substantial monograph [46], of course, with the exception

of high-contrast laminates [47], for which the assumed scaling above must be145

altered.

The asymptotic approach works for functionally graded plates and can be

extended to functionally graded shells, coatings, and interfaces;

There is little room for ad-hoc considerations on the subject, especially for

refined models.150

9. Appendix

The correction coefficients appearing in equation (53) can be written as

a = a∗ =
h3

D

1∫
−1

(
s− e11

e10

)
G(s) ds− 1

m0

e11
e10

( 1∫
−1

ν(s)

1− ν(s)
M0(s) ds

+

1∫
−1

ρ(s)N0(s) ds+
e11
e10

m0 − 2m1

)
−

1∫
−1

sν(s)

1− ν(s)
M0(s) ds (63)

−
1∫

−1

ρ(s)N1(s) ds+m2


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where

G(ζ) = E0G
∗(ζ) =

E(ζ)

1− ν2(ζ)

F1(ζ) +
e11
e10

ζ∫
0

N0(s) ds

 (64)

+
ν(ζ)

1− ν(ζ)

1∫
ζ

(
e11
e10

E10(s)− E11(s)

)
ds

and

Nn(ζ) =

ζ∫
0

snν(s)

1− ν(s)
ds, n = 0, 1, 2, . . . (65)

with

F1(ζ) = F∗
1(ζ) =

ζ∫
0

2(1 + ν(s))

E(s)

(
e11
e10

E10(s)− E11(s)

)
ds−

ζ∫
0

N1(s) ds (66)

and other quantities above presented in the main body of the paper, whereas

b+ = b+∗ =

1∫
−1

(
s− e11

e10

)
ν(s)

1− ν(s)
ds+

h3

D

1∫
−1

(
s− e11

e10

)
G(s) ds (67)

b− = b−∗ =
h3

D

1∫
−1

(
s− e11

e10

)
G(s) ds.
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