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TRAPPIST-1 is an ultra-cool dwarf that hosts seven known tran-
siting planets. We present photometry of the system obtained using
three telescopes at ESO La Silla (the Danish 1.54 m telescope and
the 2.2 m MPI telescope) and Paranal (Unit Telescope 1 of the
Very Large Telescope). We obtained 18 light curves from the Dan-
ish telescope, eight from the 2.2 m and four from the VLT. From
these we measure 25 times of mid-transit for four of the planets (b,
c, f, g). These light curves and times of mid-transit will be useful
in determining the masses and radii of the planets, which show
variations in their transit times due to gravitational interactions.

Introduction

TRAPPIST-1 is an ultra-cool dwarf of mass 0.089 + 0.006 M), radius 0.121 £+
0.003 R, and effective temperature 2516 & 41 K!. Two transiting planets were
found in this system by Gillon et al.?, based on photometry from the 0.6-m
TRAPPIST telescope®. A further five transiting planets were found by Gillon
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et al.* and Luger et al.’ from observations with the Spitzer and K2 satellites
augmented by ground-based data.

Based on analysis of transit light curves, the radii of the planets have been
found to range from 0.76 Rg to 1.13 Rg and their orbital periods from 1.5 d to
18.8 d 8. All seven planets are in orbital resonances with each other”?, causing
dynamical interactions between the planets which depend on their masses and
orbital characteristics. This has allowed measurement of their masses, which
range from 0.33 Mg to 1.37 Mg "%, from analysis of transit timing variations
(e.g. Refs.1011).

TRAPPIST-1 remains the lowest-mass stellar object known to host a transiting
planet®, so the system is an important one for further study. Aside from mass
and radius measurements, it is an important tracer of tidal effects!®> !5, the
formation and interior structure of rocky planets'®1? and the characterisation of
atmospheres via transmission spectroscopy 2’ 23. TRAPPIST-1 is a high-priority
target for observations with the James Webb Space Telescope?* 28,

The faintness of the TRAPPIST-1 system (V' = 18.8, I = 14.0) and the low
planet masses means that it is difficult to measure the masses of the planets
using high-precision spectroscopic radial velocities. Therefore measurements of
the times of mid-transit for these planets are crucial for improving measurements
of their masses, and thus densities and surface gravities. In this work we present
extensive photometry of transits of TRAPPIST-1 obtained in the 2017 and 2018
observing seasons using three telescopes.

Observations with the Danish telescope

A total of 18 light curves of TRAPPIST-1 were obtained in 2017 June-August
using the 1.54m Danish Telescope at ESO La Silla, Chile, equipped with the
DFOSC imager. The data were obtained whilst the telescope was being operated
by the MiNDSTEp Consortium?® in the context of the transit project running
as a side project in this consortium?3®3!. A Cousins I filter was used for all
observations of TRAPPIST-1, which is an extremely red star. A total of 13
transits were detected, with others lost to poor weather or the shifting of the
transit outside the observing interval due to dynamical effects.

Data reduction was performed using the DEFOT pipeline®®32, which uses an
IDL implementation of the DAOPHOT aperture photometry routine®?. The ob-
servations were taken in focus and were debiassed and flat-fielded. Differential
photometry versus multiple comparison stars was obtained by optimising the
weights of the comparison stars simultaneously with a low-order polynomial to
minimise the scatter around zero differential magnitude outside transit.

An observing log is given in Table I. The light curves are shown in Fig. 1. The
timestamps have been placed on the BJD(TDB) timescale using routines from
Eastman et al.?*. The times written into the FITS files were manually checked
during the observation of the majority of the transits to confirm their reliability.

*Based on data obtained from the Transiting Extrasolar Planet Catalogue (TEPCat!? at
https://www.astro.keele.ac.uk/jkt/tepcat/) on 2022/05/11.
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Observations with the MPI 2.2 m telescope

TRAPPIST-1 was observed on four night using the MPI 2.2 m telescope at
ESO La Silla. The GROND imager?3® was used to obtain observations simultane-
ously in seven passbands, approximating the Gunn g, , ¢ and z and near-infrared
J, H and K filters. The g and r bands suffer from a high scatter due to the
faintness of the target. Conversely, the J, H and K bands do not yield good
light curves because the target is much brighter than the available comparison
stars. We therefore present light curves from only the ¢ and z bands here.

We encountered a problem with the presence of transient bad pixels in the
r and z bands caused by a bug in the CCD controller software. These bad
pixels comprise approximately 0.5% of the pixels in an image and cause the
pixel count rate to be either the bias level or unusually high. Left uncorrected,
the bad pixels significantly increase the scatter in the light curves. Fortunately,
the bad pixels occurred randomly in each image. We were therefore able to find
them by comparing each pixel value in two successive images to detect those
that differed by more than a manually-chosen threshold. The count rates in
the affected pixels were then replaced by the means of the count rates in the
surrounding eight pixels.

Aside from the bad-pixel correction, the data were reduced using the DEFOT
pipeline as described above. The observing log is given in Table IT and the data
are plotted in Fig. 2.

Observations with the VLT

One transit of TRAPPIST-1 b and three more of TRAPPIST-1 ¢ were observed
using the Very Large Telescope (VLT) Unit Telescope 1 (UT1) equipped with
the FORS2 imager?®®. The data were obtained through either a Zspecial filter with
a central wavelength of 916 nm and a full-width at half maximum of 18 nm, or
a night-sky suppression filter with a central wavelength of 813 nm and a full-
width at half maximum of 13 nm. These observations were obtained in order to
search for a variation in radius with wavelength indicative of the presence of a
planetary atmosphere, as tentatively found for GJ 113237, but this test could
not be performed due to the scatter of the observations plus complications with
the scheduling of these time-critical observations in service mode.

The data were reduced using the DEFOT pipeline as described above. The
observing log is given in Table II and the data are plotted in Fig. 3. These data
have a relatively large scatter because all comparison stars had significantly
lower count rates than the target star.

Transit timing measurements

Each light curve was modelled individually using version 38 of the JKTEBOP!

code3*39, We fitted for the sum of the fractional radii (ra + 7, where ry = %,

Ty = %, Ry is the radius of the star, Ry, is the radius of the planet in question,

thttp://www.astro.keele.ac.uk/jkt/codes/jktebop.html
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and a is the semimajor axis of the relative orbit), their ratio (k = ;) and the
time of transit mid-point. We fixed the orbital periods and inclinations to the
values measured by Gillon et al.*. Limb darkening was accounted for using the
quadratic law with coefficients fixed at « = 0.25 and v = 0.60.

The light curve from the Danish telescope on the night of 2017/08/17 con-
tains two transits, the first by planet ¢ and the second by planet b. These were
modelled separately after removing the data for the other transit from the light
curve before fitting.

Four of our transit observations were obtained simultaneously in the ¢ and z
passbands using GROND. This provides an opportunity to check if the two light
curves from each night yield timings in mutual agreement. We calculated the
level of agreement to be 1.50 for the night of 2017/06/10, 0.3¢ for 2017/08/02,
0.80 for 2017/10/06 and 2.90 for 2017/10/13. This agreement is acceptable but
suggests that the errorbars of our timing measurements may be slightly too
small.

The resulting transit times are given in Table III. The reduced light curves
will be made available at the Centre de Données astronomiques de Strasbourgt.
Because all planets in the TRAPPIST-1 system show complex transit timing
variations caused by gravitational interactions, and because good ephemerides
are available from elsewhere (Refs.#%8), we have not performed any analysis on
the transit timings in the current work. They are instead presented here so they
may be used in future studies of this system.
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Table IIT:  Times of mid-transit measured for the planets in the TRAPPIST-1 system.

Telescope  Filter ~ Planet Time of mid-transit (BJD/TDB)

GROND 1 c 2457914.90035 £ 0.00039
GROND z c 2457914.89956 £ 0.00034
Danish I c 2457914.90084 £ 0.00047
Danish I b 2457917.80266 + 0.00049
Danish I b 2457923.84702 + 0.00042
Danish I f 2457956.80753 £ 0.00054
Danish I c 2457960.91366 £ 0.00036
Danish I g 2457961.82616 £ 0.00067
GROND 1 b 2457967.66265 £ 0.00098
GROND z b 2457967.66231 + 0.00042
Danish 1 c 2457982.70928 £ 0.00051
Danish I b 2457982.77099 £ 0.00039
Danish 1 b 2457985.79287 £ 0.00042
Danish I b 2457991.83630 £ 0.00032
Danish I c 2458011.77209 + 0.00046
Danish I b 2458017.52100 £ 0.00039
Danish I b 2458020.54178 £ 0.00030
GROND 1 b 2458032.63003 £ 0.00044
GROND z b 2458032.62955 + 0.00038
GROND 1 f 2458039.65854 £ 0.00064
GROND z f 2458039.66100 £ 0.00057
VLT Zspecial c 2458062.62830 £ 0.00031
VLT Zspecial c 2458367.77302 £ 0.00023
VLT 815 / 13 c 2458372.61662 + 0.00027
VLT Zspecial b 2458437.54799 £ 0.00028
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Figure 1: Plot of the light curves of TRAPPIST-1 from the Danish Telescope. Each
panel shows one light curve on the same scale (0.16d and 0.05mag). The data are
shown using open circles and the JKTEBOP best fits using solid lines. For clarity, the
errorbars are not plotted. The designation(s) of the planet(s) transiting are shown at

the top-right of each panel.
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Figure 2: Plot of the light curves of TRAPPIST-1 from the MPI 2.2 m telescope. The
data are shown using open circles and the JKTEBOP best fits using solid lines. Panels
on the same row show data from the same transit.
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Figure 3: Plot of the light curves of TRAPPIST-1 from the VLT. The data are shown
using open circles and the JKTEBOP best fits using solid lines.



