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Abstract

We present new alternative complete asymptotic expansions for the time harmonic low—frequency magnetic
field perturbation caused by the presence of a conducting permeable object as its size tends to zero for the
eddy current approximation of the Maxwell system. Our new alternative formulations enable a natural
extension of the well known rank 2 magnetic polarizability tensor (MPT) object characterisation to higher
order tensor descriptions by introducing generalised MPTs (GMPTs) using multi-indices. In particular, we
identify the magnetostatic contribution, provide new results on the symmetries of GMPTs, derive explicit
formulae for the real and imaginary parts of GMPT coefficients and also describe the spectral behaviour
of GMPT coefficients. We also introduce the concept of harmonic GMPTs (HGMPTSs) that have fewer
coefficients than other GMPT descriptions of the same order. We describe the scaling, translation and
rotational properties of HGMPTs and describe an approach for obtaining those HGMPT coefficients that
are invariant under the action of a symmetry group. Such an approach is one candidate for selecting
features in object classification for hidden object identification using HGMPTs.

Keywords: Asymptotic analysis, eddy current, inverse problems, magnetic polarizability tensor, metal
detection, spectral problems.

MSC Classification: 35R30; 35B30

1 Introduction

Characterising highly conducting objects from low frequency magnetic field perturbations is important
in metal detection, where the goal is to locate and identify concealed inclusions in an otherwise uniform
background material. Applications of metal detection include airport, transport hub and event security,
the search for artefacts of archaeological significance, the investigation of crime scenes using forensic sci-
ence, the recycling of metals and in the search for landmines and unexploded ordnance. Being able to
better characterise objects offers considerable advantages in reducing the number of false positives in metal
detection and, in particular, to accelerate and improve object location and discrimination.

Ammari, et al [2} 3] have established the leading order term in an asymptotic expansion of the perturbed
magnetic field (H, — Hg)(x) due to the presence of a highly conducting permeable object as its size, «,
tends to zero, which describes the metal detection problem. In [6] we have shown that the leading order
term in the expansion includes a complex symmetric rank 2 magnetic polarizability tensor (MPT), which
provides an object description. We have obtained explicit formulae for the MPT coefficients that depend
on the object geometry, its size, material properties and frequency of excitation. In a series of works,
we have explored the properties of MPTs including providing several different splittings and formulations
for obtained MPT coefficients [7, @] and also investigated the spectral properties of their coefficients [9].
Together with Wilson, we have also developed efficient computational algorithms for the computation of
the MPT coefficients and their spectral signature [I4] that have allowed us to generate a large dictionary
of object characterisations [I2] and apply machine learning algorithms to identify hidden objects using
classification [15], which exploit the MPT’s spectral signature.

While using an MPT’s spectral signature offers considerable benefits to using an object characterisation
based on an MPT at a fixed frequency, the object description, in this case, is only through at most
6 independent complex coefficients as a function of frequency, limiting the amount of information that
can be said about hidden object and preventing its material description to be separated from its shape.
To improve this, a complete asymptotic expansion of (H, — Hy)(x) due to the presence of a highly



conducting permeable object as & — 0 has been established in []], extending the expansion obtained by
Ammari et al. in [2,[3]. This expansion provides improved object characterisation through the introduction
of generalised magnetic polarizability tensors (GMPTs), which, in their simplest form, agree with the
MPT object characterisation. The higher order terms in the expansion play an important role when the
background field at the position of the object is non-uniform. This is indeed the case in many practical
metal detection scenarios where the fields generated by coils at the position of concealed objects is far
from uniform and the GMPTs allow this information to be used in a smart way. Recent work has also
shown that GMPT coeflicients can also be measured in practice and the measurement coeflicients agree
with numerical simulations [I3]. For a related scalar electrical impedance tomography (EIT) problem, it is
known that the complete set of generalised polarisation/polarizability tensors (GPTs) uniquely determine
an object’s shape and its admittivity [5].

While explicit formulae for GMPT coefficients have been established in [§], the properties of GMPTs
and the choice of suitable invariants for object classification remains open. This work addresses the prop-
erties of GMPTs and introduces the concept of harmonic GMPTs (HGMPTs) building on the harmonic
generalised polarizability tensors, which we have introduced for a simpler scalar EIT problem and the con-
cept of (contracted) generalised polarizability tensors ((C)GPTs) [4]. These object descriptions have fewer
independent coefficients than other GPTs of the same order. We also describe an approach for determining
the independent coeflicients of HGMPTSs that are invariant under the action of a symmetry group, which
offers possibilities for object classification using (H)GMPTs. Specifically, the novelties of this work are:

1. We derive complete asymptotic expansions of (H, — Ho)(x) as a — 0 using both tensorial index
and multi-index notation, which lead to improved object characterisations using higher order GMPTs
that are a natural extension of the rank 2 MPT description first obtained in [6].

2. We provide a splitting of the GMPT obtained in 1., extending the result for MPTs in [7], which
makes the magnetostatic contribution to the GMPT explicit.

3. We derive symmetry properties of GMPTs, extending the known complex symmetric property of
MPTs previously obtained in [6].

4. We derive explicit formulae for the real and imaginary parts of GMPTs, extending those known for
MPTs previously obtained in [9].

5. We derive a result giving insights in to the spectral behaviour of the GMPT coefficients, extending
what is known for the spectral behaviour of MPT coefficients in [9].

6. We derive a new form of GMPTs called harmonic GMPTs (HGMPTs), which have coefficients that
are invariant under rotation for objects that are a member of a particular symmetry group.

The work is organised as follows: We first fix some notation in Section Then, in Section [3] we
briefly recall the mathematical model. In Section [4] we present a series of alternative complete asymptotic
expansions for (H, — H)(x) and introduce alternative forms of GMPTs using both tensorial and multi-
indices. In Section [5] we explore some properties of GMPTs. This is followed by the introduction of the
concept of HGMPTs in Section [f] We finish with some concluding remarks.

2 Notation

We denote by ey the unit basis vector associated with the kth coordinate direction in a standard orthonor-
mal coordinate system @ = (z1,z2,x3) and, hence, the kth component of a vector field v in this system
isep-v = (v)y = vk. We will often use Einstein index summation notation so that a vector can be
described as v = viey, and a rank 2 tensor using a calligraphic font as M = My e, ® e;. We will use
a Gothic font for higher order tensors so that a rank 3 tensor using tensorial indices can be described
as ® = Djjre; @ e; ® e,. We will also use Gothic font for higher rank tensors that use both tensorial
and multi-indices. For example, when considering expressions of the form Z x? @Z—Bjéy‘sei ® e;,
By, 1Bl=|v]=0
involving the coefficients @?j‘; of a rank 2 + || + |0] rank tensor, with the subscripts ¢ and j being ten-
sorial indices and the superscripts § and « being multi-indices, and summation is implied over ¢ and j
and is explicit over 8 and . Here, the multi-indices 8 = (51, 82, 83) and 6 = (41, da,d3) have properties
B! = B1182!83!, |B| = B1 + B2 + B3, x° = xf1x§2x§3, B() = (?fll@fg@fg() Finally, we also use Gothic font
for higher rank tensors that use both tensorial indices and additional indices associated with instances m
and n of polynomials P;)”(a:), Pq"(ac) of degree p and ¢. Hence, when considering expressions of the form



Z Z Z Z P (x)D7"" P, (y)e; ® e, involving the coefficients D7 of a rank 2 + p + ¢ rank
p=0¢=0m=—pn=—q

tensor, summation is implied over the tensorial indices while that over the indices associated with instances
of the polynomials is explicit.

3 Mathematical model

We briefly recall from [2] [6] the mathematical model of interest in this work: Our interest lies in the char-
acterisation of a single homogeneous conducting permeable object. Following previous work, we describe
a single inclusion by B, := aB + z, which means it can be thought of as unit sized object B, scaled by «
and translated by z. We assume the background is non—-conducting and non-permeable and introduce the
position-dependent conductivity and permeability as

) O in B, L _ ) psx in By
9%«=10 mBE=R\B, ° H*T | p B

where pg := 47 x 1077H/m is the permeability of free space, 0 < u, < o and 0 < 04 < 0. In principal,
s and o, do not need to be homogeneous in B,, and we have previously considered this situation for
MPT object characterisations in [I0]. In this work, we assume p, and oy are homogeneous in B, for
simplicity of presentation. We will also use the position dependent relative permeability (i, := po/po with
[y = pr i= py/po inside B, and fi,, = 1 in BS. For metal detection, the eddy current approximation
of Maxwell’s equations is appropriate, since oy is large and the angular frequency w = 27 f is small (a
rigorous justification involves the object topology [I]). In this case, the electric and magnetic interaction
fields, E, and H , respectively, satisfy

VxHy=0,E,+ Jo, vXEa:iwﬂ'aHav (1)

in R? and decay as O(1/|z|) as |¢| — 0. In the above, Jy is a solenoidal external current source with
support in BS. In the absence of an object, the background fields Ey and H satisfy with a = 0.

The task is to find an economical description of (H, — Hg)(x) at a position  away from B,, which
characterises the object’s shape and material parameters by a small number of parameters separately from
its position z for the regime where

V= wa*uoa2,

is order one, u, is also order one as a — 0.

4 Complete asymptotic expansion

In the following, we present several different equivalent complete asymptotic expansions for (H,, — Hg)(x)
as a — 0, which allow us to introduce different object characterisations.

4.1 Original form using tensor indices

For comparison with subsequent sections, we first recall the complete asymptotic expansions for (H, —
H)(x) as a — 0 previously derived in [§].

Theorem 4.1 (Ledger and Lionheart [§]). For any M > 0, the magnetic field perturbation in the presence
of a small conducting object B, = aB + z for the eddy current model when v and p, are order one and x
is away from the location z of the inclusion is completely described by the asymptotic formula

1 M-

M—=1M-1-m
(Ho—Ho)(®)i= Y, Y, (DFG(@,2))i kmi1)Mk(m 1)+ 1) (DEHo(2))) 5o 1)+
m=0 p=0
(R(x)):, (2)
J(p+ ) :[j"](p)] [j7j17j2a"' 7jp]7

K(m+1):=[k,K(m)] = [k, k1, ka, - , km],



with |R(x)] < Ca®* ™ |Ho|lwa1.0(p,), Gz, 2) := 1/(47|x —2|). In the above, J(p) and K (m) are p— and
m~—tuples of integers, respectively, with each element taking values 1,2,3, and Finstein index summation is
implied over K(m + 1) and J(p + 1). Also

(DG, 2))i K (m1) = (H 0:1:;«4,,) (O (0n: (G(2, 2)))),
=1

(DY%(Ho(2))) sp+1) = (H %) (Ho(2) - €5),
l=1

and the coefficients of a rank 2 + p + m generalised magnetic polarizability tensor (GMPT) are defined by
M (m+1)I(p+1) = — Cr(mr1)T(p+1) + NE(m+1)1(p+1)>
where ,

iya3+m+p(71)m

2(m+ 1)lpl(p +2)

Cr(m+1)J(p+1) = — ey

jBe % ((TLE)) sy (Brpr 1y + (TI(E)) s ey % €)) . (3a)

a3+m+p(_1)m

Nk (m+1)a(p+1) *= (1 —pt ol e

1
fB(H(E))K(m) (Mvg X 05pt1) + (H(ﬁ))J(p)€j> dg€. (3b)

Furthermore, 0 j, 1y satisfy the transmission problem
Ve x ,u;IV§ X OJ(p+1) — iVOJ(p+1) = iV(H(é))J(p)ej x & m B, (4a)
Ve - 9J(p+1) =0, Ve X Ve x 0J(p+1) =0 in B = RS\P, (4b)
[ % 0;4p41)lr =0 onI':= 0B, (4c)
[ x i, Ve x 050 1)]r = —(p + 2)[i; e (n x €;(11(€))s))  onT, (4d)
J‘F n - GJ(p+1)d£ = 0, (46)
011 = O(I€]71) as |§| — oo, (4f)

p
(H(E))J(p) = nfﬁ = 5,85, -+ &), and in the case J(p) = & then (H(&))J(p) = 1. Furthermore, i(§) :=

{=1
w(&)/uo so that fi, = p, for € € B and i, = 1 otherwise, and [-Jr = |+ — |~ denotes the jump with |+
denoting evaluation just outside of I’ and |- just inside.

Note that, compared to [8], we have chosen simplified the notation so that ¢ is now written as € and
M as M.
Remark 4.2. In the case where M =1, reduces to
(Ho — Ho)(2); =(D3G(x, z))iMu; (Ho(2)); + (R())s,

where |R(z)| < Co*|Hol w22 (p,) and M = My er®e; is the complex symmetric rank 2 MPT previously
obtained in [6] with alternative explicit expressions for My; derived in [7] and [9] agreeing with those of
ME (m+1)J(p+1) 0 this case.

4.2 Multi-index form

The asymptotic expansion presented in Theorem can be alternatively obtained using a combination of
tensor and multi-indices. This is achieved by using tensor indices, to reflect the vectorial nature of the
problem, and multi-indices, to reflect summation over higher order derivatives of D2G(z, z) and H(z).
The alternative form is presented as the following result:



Theorem 4.3. For any M > 0, the magnetic field perturbation in the presence of a small conducting
object B, = aB + z for the eddy current model when v and p, are order one and x is away from the
location z of the inclusion is completely described by the asymptotic formula

M—-1 M-—1—|3]

(Ho—Ho)(@)i= > Y 2(D2G(z,2)a) M2 (Ho(2));) + (R(x));, (5)
B,18l=0 4,|5]=0

with |R(x)| < Co®™™M | Ho|lym+1.05,). In the above, B = (B1, B2, B3) and § = (61, 62,03) are multi-indices
and the coefficients of a rank 2+ |B| + 9| generalised magnetic polarizability tensor (GMPT) are defined by

M) = — €+ N,

where

iva3tIBI+Ll(—1)IAl

_ 50 y
w!a!<|m+><|6|+2 fﬁ £'0] +&'e; <) de,

3+1BI+181(—1)l8l

Furthermore, 0‘; satisfy the transmission problem

¢80 ._

5 | 46,

Ve x py 'Ve x 00 —iv8) = iv€’e; x € in B, (6a)

Ve 0=0, VexVex8)=0 in B, (6h)
[n x 0?]1“ =0 on T, (6¢)

[n x fi; Ve x 610 = —(16] + 2) [ Ir(n x ;)¢ on T, (6d)

Ln -9%d¢ =0, (6e)

05 = O(l¢] ™) as [§] — 0. (6f)

Proof. This result can be obtained by following similar steps to the proof of Theorem 4.1 in [8], except
instead of the form of the Taylor’s series used in (23), (24) in [8], the alternative forms

al+l8l
Ao(0€ +z) = MZ ) 02 ((Ho(2));)¢"e; < &, (Ta)
alf!
V x Ao(ag +2) =poHo(a€ +2) = o »; 02 (Ho(2));)€"e;, (7b)

!
B,1B81=0 A

where 8 = (81, B2, B3) are multi-indices. Similarly, (47) and (48) in [§] are replaced by

% —1)18l
V.G = Y Ul ) - ), (8)
67|ﬁ|:0 ’
2 (=1 8/ 12 8
Bv‘ﬁ‘=0 ’

then, by following the steps in [8], we arrive at the alternative form of the asymptotic formula provided in
(43) as

Mol M8l il glel+l

(H, — Ho)(z) = —iva® Z Z 1BYIBI + 1)(|6] + 2)

B,1Bl=0 4,|6]=0

fB<af<DiG<w7z>)£>£ﬁ % (00 + Ee; x £ (Fo(2)),)
Mo S Cysalsiel

a3 (1 _M;l) Z /8'5' w((DiG($,Z>)ik)€i®ek
B,1BI=0 6,]6]=0

JB ¢’ <5| - QV X 95 +& ej> A€ ((Ho(2));) + R(z). )




Then, by introducing,

MlMl\B\

(Ho — Ho)( 2 Z (D3G(m,2))e )2 mwaé(Ho( )i)
B,|B|=0 4,]6|=0
M—1 M-1—|g]

+ O Y BDAG(x, 2)i) MO (Ho(2),) + (R(x))s,
B,181=0 4,6|=0

where

(—1)IBla3 18110l

v . Be, x (0° bo. %
SEB[+ D] +2) L(g”ﬁ o (8, + &ej x £)dz,

—1)IBl 3 +181+15]

and following similar steps to Lemma 6.3 and Lemma 6.4 in [§] we obtain

Bs . _
Qlifk:j S

x 0] d
|6|+2v +£ ej> 57

1 S
Q[?gkj = Giertﬂ

rlj
B6
CMJ ffrkckjy

where ¢€;;;, denotes the standard Levi-Cevita permutation symbol. Combining this with properties of
D2G(z, ) leads to the final result. O

4.2.1 Split field formulation

In order to separately identify the contributions to the GMPTs associated with conducting and magnetic
effects we derive the following.

Theorem 4.4. For any M > 0, the magnetic field perturbation in the presence of a small conducting
object B, = aB + z for the eddy current model when v and p,. are order one and x is away from the
location z of the inclusion is completely described by the asymptotic formula

M—-1 M-—1—|3]

(Ho —Ho)(z)i= Y. Y B(D2C(x, 2))i) My 02 (Ho(2));) + (R(z))s, (10)
B,18]=0 6,/6]=0

with |R(x)| < Ca®*™ |Ho|yas1.0(p,). In the above, B = (B1, B2, B3) and § = (61,02,85) are multi-indices
and the coefficients of a rank 2+ |B| + |0| generalised magnetic polarizability tensor (GMPT) are defined by

1 o o o ) )
MY = — (€7%)72 + (N7*)2 + (M)},

where parenthesis have been used to make the presentation clearer and

o5\B8 . _ i G O B,0p(0).6 | o(1)6
€ =~ g e s ], 6 (€@ v e ) e (11a)
o _q\ o8 TIBIEIL(1)IB] 1
(M) = (1= ") TekL ¢’ <|5| 5 Ve x 6" 5) de, (11b)
L aBlBIHe () l8l
(mo)fj = (1 — My 1) aTek : JB 5’8 <|5| n 2V5 0) 6) d€. (11c)

In the abowve, 0§1)’5 and 05.0)’6 satisfy the transmission problems

Ve x 13 'Ve x 897 (0 1+ %) = 0 in B, (12a)
Ve 00 =0, VexVex 00 =0 in B, (12b)
[n % 0§1)’6]p =0 onT, (12¢)
[n x i, Ve x 0§1)’5]p =0 on T, (12d)
J n-6°dg =0, (12e)

r

(1),6 _ -1

6; 7" =0(¢7) as [§| — oo, (12f)



and

Ve x i, ' Ve x 0§O)’5 =0 in B, (13a)
Ve 097 =0, VexVex 69 =0 in B°, (13b)
[n x 0§O)’5]p =0 on T, (13c¢)
[n x i, 'V, x 0;0)’5]p =0 on T, (13d)
f n-0°d¢ =0, (13e)

. ‘
07" —&e; x &= 0(g]™) as |€] — o, (131)

respectively.
5 p(1),s 0),6 45 . . 5 .

Proof. We cannot set 65 = 0, + 6 £°e; x £ in Theorem [4.3|since V¢ - (€°e; x &) # 0 in general.

Instead, we need to replace (39) in [§] with

Lis 18]
. (6%
wo(€) = wy (€) + wl(§) = Y w2 (Ho(2)),)€ e x &,
8,|6]=0 ’
where we can show that
- . alfl 5 5
Ve - Z IWMOT@((HO(Z))J‘)& e; x & |[=0,
3,|8|=0 ’

which, instead of the transmission problem for wg, allows the introduction of the transmission problems

for w(()l) and w(()o) as
Ve X Ve x (wéo) + wél)) . iu(wéo) + wél)) =0 in B,
Ve x Ve x wél) =0 in B¢,
Ve -wh) =0 in B°,
[n x 'w(()l)]p =0, [n x fi, 'V x 'w(()l)]p =0 onT,
wy = (g™ as [€] = o0,
and
Ve x i ' Ve x w(()o) =0 in B,
Ve x Ve x w(()o) =0 in B¢,
Ve -wl” =0 in Bu B,
[n x wéo)]p =0, [n x i 'V x ’LUE)O)]I‘ =0 on T,
© SR 5 o
wy) = )] iwpo—0:((Ho(2));)€%e; x € | = O(I€]7) as || — oo,

8,|61=0
respectively. By introducing

P [o]
. «
wy! = Y} w02 ((Ho(2)),)05"",
5,|8|=0 ’

Lis |6]
1 . [e% 1),6
wg = 3 dwpo s 02((Ho(2)),)85",
5,|8]=0 ’
and following similar steps to the proof of Theorem the result then follows. O

Remark 4.5. Theorem [£.4] provides a natural extension of the splitting of an MPT, described in Lemma
1 of [1], to the case of GMPTs in terms of multi-indices.



5 GMPT properties

In this section, we consider some properties of GMPTs including their symmetries, explicit formulae for
their real and imaginary parts and also consideration of their spectral behaviour.

5.1 GMPT symmetries

Introducing
@K(m+1)J(p+1) =(=1)"2(m + 1)!p!(p + 2)¢K(m+1)J(p+1)
= — jpadtmire, J € % (&) k (m) (O 5 (ps1) + (TL(E)) sy €5 % €)) dE,
B

then we have the following result on the symmetry of the tensor coefficients:

Lemma 5.1. For objects with py = po the following symmetry holds

DK (m+1)T(p+1) = D I(p+1)K(m+1)- (14)

Proof. By using the transmission problem we get

DK (mr1) (1) = — TP fB i (0p+1) + (L)) sy x &) - er x E(TL(E)) K (m)dE

= —3tmtp JB V x u;lv X 0 10p41) - i (V X u;lv X Ok (my1) — il/0K<m+1)) d€.
Next, by applying integration by parts
| 9519 0 O = | 11V By ¥ ¢ Oy
+ JB V- (M;lv X 0 1p41) ¥ 9K(m+1)) dg,
and then using the transmission conditions in gives
JBV' (1r 'V X 85 (p 1) X Oxc(my1) dE = LOK(mH) (T X 'V X 041)) | -dE
:JF Or(m+1) (N7 XV x 0541)) |+ dE + L(P +2)[i, TrOkman) - (0 % €5) (11(€)) ) dé
= f . V- (VX 5p11) X Ok (me1)) d€ + JB(p +2)[5 10V - (€5 (TH(€)) sy % Orc(me1)) A€
:JBC V x0jp41) -V X Og(mi1)d€

| @+ 200 Bacinry V% (€O s00) = V % ey - €5 () ) .

Considering the product (D2T™G(zx, 2))i, K (m+1)D K (m+1)J(p+1) and the above expression, we have

(Di*’"G(w,z))i,mmmf Vo (1Y X 0541y X Ok (s ) dE =
B
(D;Qv+mG($7z))i,K(m+1) (J- VX 9J(P+1) "Vox HK(m+1)d£
BC
[ 0+ D (5 % Oy s €D s) a).

So that

1 _ _
Dk (mr1)a(pr1) = —a>TFP (JB EV X "V X 0 5(pi1) - V X 'V X O (m1yd€

- JB . i 'V % 0 5p11) - V X Ok (my1)d€ + JB(P +2)[i, e (V X Ok msy - €5(11(€)) ) dﬁ) :

with the required symmetry following for py, = pg. O



Corollary 5.2. If using mutli-indices, we can introduce

077 =(=1)126101(18] + 1)(I8] + 2)e7;
= —iva’ T8+l . f £ x (55(0;5 + £6ej X 5)) dg, (15)
and following analogous steps to the proof of Lemma[5.1] obtain

@,](3;5 = —a3tmtp ( —V x pu 'V x 05 V x u, 'V x BﬁdE
B v

[ mrexes v xoiaes [ o+ Dl e (V<6 es(6)) ds) ,
BuBe© B

and, hence, s s
2 =2, (16)
for ps = po.
Corollary 5.3. In the case of general ps,
5. 85 5
M = — €+ 9,
3+mtp(_1)IAl 1
—V x 1 'V x 05V x 1V x 00d
815! <2<|5| + 1) +2) <JB s o :

| el v ol [ o]+ 20 (7 x 0 - es(6)°) e
BuB¢©

il [ @ (¥ 00+ € ) e

Thus, we see that we have the symmetry

5 é
my gy
(=18l (=1)ldl

— 998
=My,

if 16] = 28|.
The analogous form of for the split fields is

0,0 :=(=1)P128181(18] + 1)(16] + 2)€7

= —iva® e f ex (€6 +0())a,
B

and a related symmetry result for this case can be established also.

Remark 5.4. The symmetry properties listed in this section extend the known complex symmetric prop-
erty of rank 2 MPTs obtained in [9] [6].

5.2 Real and imaginary parts of GMPTs

In this section, we establish explicit formulae for the real and imaginary parts of the coefficients of GMPTs
through the following result:

Lemma 5.5. For objects with uy = o, the coefficients of @’g? satisfy
D9 = — oPHAD (J “V % V x 00F x i x 9l 5d§>
BV

ff e R d£> (17)
BuBC

and can be written in the form @g}g = iﬁfj + ljfj where

0 )
it -0y - a0 [

jg;_i :]m(@£?> — o3t < VV % u—lv x 0 WB |y « M;lv « 0§-1)’6d§) 7 (18b)
B

iV x 007 v x 04! dg) (18a)
u B¢

and the overbar denotes the complex conjugate.



Proof. The ﬁrst part of the proof follows similar steps to Lemma but we note that since py = po then
EPe x & = 0 # and since 0(0) # € R? we have

er x =077 =" = — (v X 1V x 007 0,2”’5) :
Thus, we obtain
D = —a el ( Vv X 11V % 000 s 1y x 9 e — f Vo p; v x 64! Ej)ﬁdg) ,
B

and a further application of integration parts gives . Next, we proceed in an analogous way to the
proof of Theorem 5.1 in [9] and introduce the real and imaginary parts of Dg? as

1 -
R = Re(Dy7) =a*H1FI101m <J V%V x 0% .7 x 171V x egmd&)
B
+ aB3FIBIFI8IRe (J GV % 0§1),5 U x o(kl)ﬁdg> 7
BuB¢©

and

1 -
jf;‘s = Im(Qf}s) = — 3TIPIHPIRe <f ;V x p 'V x 05.1)"5 -V X 'V x Oél)ﬁdé)
B
+ BBy (J GV x 007 0(;)’5%) |
BuBe¢

respectively. Continuing to follow the proof of Theorem 5.1 from [9], and by using properties of the complex
conjugate and our earlier symmetry result for the tensor in multi-index form, we achieve the desired
result. O

Remark 5.6. Lemma 5.5 shows that for p, = o, explicit formulae for the real and imaginary parts of a
GMPT can be obtained that are similar to those known for a rank 2 MPTs obtained in Theorem 5.1 of [9].

5.3 Spectral behaviour of GMPT coefficients

(1),8

The spectral behaviour of 8, " as a function of v presented in the lemma below can be obtained in an

analogous way to that of Hk ) derived in Lemma 8.2 of [9].

Lemma 5.7. The weak solution to (@) for v e [0,00) can be expressed as the convergent series

& v & v
N I
n=1 n=1

-\,
where Pn( ) b, <0(0) ﬂ,qﬁ VL2(B)s (W, V)r2(B) i= SBu -vdE, (An, @,,) satisfy (39) in [9] and

V2 VA,

v2+ A2’ Im(ﬁ"):u2+/\%'

Re(B,) = —

Furthermore, by applying similar arguments to the proof of Lemma 8.5 in [9], we can also obtain the
following result on the spectral behaviour of 9‘{2;5 and 9“\2}5 with v:

Lemma 5.8. The coefficients of 9‘{'2)? and 3'2)? can be expressed as the convergent series

[ee}
o3 H1BI+19]

R = S 2 BB 00 2590005 1),
n=1

. Q3 +IBI+I8] 2

T = = e 3 B, 0 1)1 0 1.
n=1

Remark 5.9. Lemma shows that the spectral behaviour of the GMPT coefficients is very similar to
that of the MPT coefficients previously obtained in Lemma 8.5 of [9]. This has also been borne out in both
the measurement and computation of GMPT coefficients that has been presented in [13].
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6 Harmonic GMPTs

For the purpose of this section, we assume that
e The object is located at the origin so that z = 0.

e The background H is generated by a small exciting coil at position s sufficiently far from the object
so that it can be described as dipole source with moment d in the form

(Ho(0)); =(D2G(2,8))i;(d);
=(D3G(2, 5))ij|z—0(d);, (19)
at the position of the object with derivatives

02 ((Ho(2))i)|z_0 =02 (D3G (2, 8))ij)z—0(d);
=(-1)P1o(D3G(5,0))i5)(d);.

Application of these assumptions to gives

M—-1 M-1— IB\
(Ho — Ho)@); = Y, Y, (-)Plof(DiG(x,0))i) 0202 ((DIG(s,0))0)(d)e + (R(x))i-  (20)
B,18]=0 4,]5|=0

6.1 Green’s function expansions

Recall that the Laplace free space Green’s function G(x, '), where & and x’ are the points with spherical
coordinates (r,0,1) and (r',8’,1'), respectively, can also be expressed in terms of the (complex) spherical
harmonics Y, (0, ¢) and Y, (#’,¢’) of homogeneous degree n and order m, with —n < m < n and then in
terms of the functions K™(x) = 1/r"*1Y,"(0,%) and H™(z') = r'"Y,™(¢,4') as (e.g. [11])

(0, 9)Y; (0", ¢")

3
Il
=)

«Q
“&2
8\
I
D18
8
=
=
DM
!
d3

(21)

3
Il
o
3
I
|
3

I
18
[N}
_
7=
£
&
=
&

provided that |#’| < |z|. Noting that H"(x’) are homogenous harmonic functions and that K*(x) are also
harmonic, we observe that . is harmonic with respect to «’ and x, respectlvely Furthermore, G(x, ')
can be expressed in terms of real valued harmonic polynomials I (x) and IX (z') as

i i 1Y (2 )alf I ()

Q
8
&\
Il
3 .
P8
[N}
3
+ —
—-

8
¥l
+
s

2,

I
D18
[\
3
~

2 +1
= 1|z[?"
since the coefficients a satisfy Y, _ a%naem S¢r¢, provided that I’ (x) are normalised appropri-

ately [L1]. Furthermore "from [11], we Thave
|81

Gaa)= S — 1 Y Km(@)al(a). (22)

sl AP+ 1 2y

For |2’| in a compact set and as |x| — o0, a Taylor expansion [B][pg. 77] gives

©  (_py
Glz,z) = 3 (;?Blafc(w,o)@')ﬁ, (23)
B,18|=0 ’
so that
1 18] 118l
T L KB@a =S e.0). o)
m=—|3] '

11



Building on the above, we can also relate higher derivatives of DiG(az, 0) to higher order derivatives of
K[ () by differentiating term by term, since it is absolutely and uniformly convergent, giving

/ 0 1 18] . —
DiG(x,x') = , %::0 A+ 1 m=z|ﬁ| D3 (K[ (z))ag ('), (25)

and constructing a Taylor series expansion of D2G(x, 2’) for |2/| in a compact set as || — o in the form

DG(ea) = 3. (_;ﬁ'ﬁ o9(D2G(=,0)) (@), (26)
B,18]=0
Thus, by comparing (25) and (26),
CO s D@y - L S DEEE@N -~ L S k@)@l ()
A 2A81+1, 2, 18l Am o181+ 1 s 18l pm

since D2G(z, x') is real.

6.2 Harmonic GMPT expansion

Using the alternative forms of Green function expansions allow us to introduce what we call a harmonic
GMPT (HGMPT) expansion for the assumptions listed in Section @ The advantage of HGMPTs is that
they require fewer coefficients than GMPTs to characterise an object for a given rank.

Theorem 6.1. For any M > 0, the magnetic field perturbation in the presence of a small conducting object
B, = aB + z for the eddy current model when v and p, are order one and x is away from the location z
of the inclusion under the assumptions in Section [0 is completely described by the asymptotic formula

o zz (02 ((gprtr) ) ot (02 (i ))>jod“
( ( (28)

with |R(x)| < Ca®*™ | Ho|yas1.0p,). In the above, S)JTH P19 ure the coefficients of rank 2+ 0+t HGMPTs
given by

H tptg _ e’ (-1)* 0)ta (Dot
T I s DEr T J, € (O ) ae

3 a3+€+t(_1)€ » 1 (1.t
+ (11—t mek : JB I7(€) (mvﬁ X q> d¢

B a3+€+t(_1)€ 1 (o).t
+ (1=t mek . JB ;&) (szg x ) ‘1> de¢, (29)

where @bgo)’t’q and 1/J§1)’t’q satisfy the transmission problems

Ve %, 1V5><1/:0)t’q 0 in B, (

Ve -pOh =0, VexVexyplDhi=o in B°, (30b
[nx ¢ =0

[n x i 'Ve x P = 0 (

"~ I (E)e; x €= O(1[ ) as €] = o, (30e

on I,

on T,

12



and

Ve X Ve x 111( )t w(v,b( "+ 1/7(0) by — 0 in B, (31a)
Ve -y =0, Vex Vexyphi=o in B, (31D)
[n x ’llJ§-1 Pha)L— o onT, (31c)
[n x i, Ve x " = 0 onT, (31d)
f n- gyt 0dg =0, (31e)
T
P = 0(lg| 7Y as |€] — oo. (31f)

Proof. Starting from and using we get

M-1 M-1-|8|

(Ho— Ho)(@)i = ),

B,181=0 4,[6|=0 m=—|8| n=—|4]
<D2<Krg\ ()i ay M2 (D2 (K5 (9))) jpdpal™ + (R(x)):,

14

816! 18| |91

(28] +1)(2/8] + 1)

E

t

D (DR (@) ™ (DK (8)) jodo + (R())i,  (32)

I
o

where, unlike in [I1], we do not choose to take the complex conjugate of D2 (K (s))a g/IH since the contracted

type GMPTs M€ are themselves complex, and have coefficients

1
kg (20+1)(2t + 1) B;H%: , kg ~on

ivaS Bl ()18l

_ B(p(0),6 (1),0
*(2€+1)(2t+ Z Z <5m2|ﬂ|+1)(|5|+2 JE § 0 +; ))d£ o

B\B\ £6,]0]=t
+afit (1= pt) @® PRI 1) Pl f 5"( Ve ”5) dga)l
5 Ve x 0§°>’5) d&a};le)

+ag,/17nlj (1 _ ‘u;l) a3+|ﬁ\+\5l(_1)|ﬂ\ek J é:ﬁ < 5
B 1 3+£+t( _ ( .
_(2€+1)(2t+1)< (€+1)(t+2 e ng (@) + o)) de

+(1—M ) 3+1’+t ek .[H £<VEX¢ )d§

L m (O)tn
s [T e )

In the above, we have used _ aMHﬁﬁ = H}*(&). The vector fields ¢(-0)’t’n £) and cl)(-l)’t’n £) satisfy
Bi|Bl=¢ ' Bm £ J j
the transmission problems

\6|+2

Ve x i1 x o0 = 0 in B, (33a)
Ve - ¢§0),t,n —0, Ve x Ve x ¢(0) o in B¢, (33b)
[n x ¢§o )t "p =0 on T, (33¢)

[ /e x 67" = 0 on T, 1354

"~ H7 (€)e; x € = O(€| ™) as [¢] — o, (33¢)

13



and

Ve x 1y Ve x o0 (gl 4 00y — 0 in B, (34a)
Ve ¢ =0, VexVex o =0 in B, (34b)
[n x ¢§.1)’t’"]p =0 onT, (34c)
[nx i, Ve x ¢""p = 0 onT, (34d)
f n- ¢ = o0, (34e)
T
¢} = 0(lel™) as [¢] — oo, (34f)

respectively. Recall from [I1] that

D agme’ = HME) = ) aunIH(E), (35)
8.11=t =

are harmonic functions, and that I}'(§) are real valued, then we can also write

4

S e (g) =g e) = Y a6,

B,|8|=¢ u=—+£
l
s Am Lu
S a0 (g) =g (g) = Y a0 (6),
B,18|=¢ u=—~

where, after an appropriate replacement of indices, w}io),e,u(g) and wg),e,u(@ are solutions to the trans-
mission problems and , respectively. This means that

C,fmtn HEutv
My = Ze Zt R (36)

3+E+t(_1)é

16 u (0),t,v (1),tv TH
Z Z Gy CrDE+r2)20+ Dt st X (If (€)W, + 1y )) dayn

u=—~Lv=—t

a3+£+t(71)l

+alll, (1= ") mek : fB I;7(&) (t n 2V£ X TP ) déall
— Ly @t (=1)t u (0),t
0= ) e [ 10 (Ve wl®) agalt (37)

and ED?H fut are coefficients of what we call harmonic GMPTs (HGMPTs). We then introduce into

. leadlng to

> (D] (@))wallh, 5 alll

Now, by using (35)), we can write
Km 1 H™ _ 1 IH rp )
() = 2l (x) = |20+ Z Iy (),

and substituting into we get

1
e )) ) ol + (Rla)
jo



Finally, using

L
H TH _
Z pma’um 51’“’

m=—

completes the proof.

O

Corollary 6.2. It immediately follows from Theorem[6.1] that the voltage induced in a small receiving coil
at position x* with dipole moment f due to a small source coil at position x* with dipole moment d, after

truncation, s

w5 S S ()

CAE=)

where we note the use of Roman v and s to denote the receive and source, respectively.

H,lptq
) fmk]
=T/ ik

For what follows, we define the HGMPT matrices Cl,fft and NI,C{;“ with coefficients
(Cl " )p = — ives f ex (@@ +p) dg,
(NG5 o = (1= 11" - f 7€) (vg x V) dg
(=) en- | 7€) (Vex w7 ae.

which are of dimension (2¢ + 1) x (2t + 1), so that

a3+€+r(_1)€ a3+£+t(_1)é 1

mH,Kptq _

- ( H,et
ki 20+ D(t+2)(20+ 1)(2t + 1)

H,0t
kvt (2¢ + 1)(2t+1)t+2(

kj )pa>

for —¢ < p < ¢, —t < ¢ < t. Additionally, we define the 1 x (2t + 1) and 1 x (2 + 1) matrices DI}; an

DI/, with coefficients

1
o), = ¥ (0 (Gamlt@)| ) d cr=ast,
o=1 || x=x°/ j
3
1
(DIfk)P Z <D2 (| |2@+1Ip( )) > f’ia —{ <p<£a
i=1 =T/ ik

d

where again the Roman r and s denote receiver and source, respectively. It then follows from Corollary [6.2]

that, after truncation,

- 3+/+t( 1)[
20+ 1)@ +2)(20+1)(2t +1)

Z DI;,C;5"(DI.,)”

3+€+t( 1)@ 1
2+ 1)2t+1)t+2

2 DIf, N (DI)”
k,j=1

(39)

where T denotes the transpose. An alternative description of Vi, follows from by introducing the

matrices CSJTM and Ng]’.h' with coefficients
(5 = — v | € (HF@+ 90" de,
(NG Jpg = (1= ) e fB HY(€) (Ve x 67) ag

+ (1 - u;l) ey - JB% (Vg % ¢§0),t,q) de,

15
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which are of dimension (2¢ + 1) x (2t + 1), so that
a3+€+t(_1)€
20+ D)(t+2)(20+1)(2t + 1)

3+¢ ¢
mg,'éptq __ ( C Lt a’* (1) 1

ki et (20+1)(2t + 1)t + 2( )

pg>

for —¢ < p <{,—t < q<t, and the 1 x (2t +1) and 1 x (20+ 1) matrices DK}, and DKY, with coefficients

(DKL), = 3 (DUE @)le-a:),,do —t<n<t,
o=1
3
(DKY)m = Y (DAKP (@) |z-ar)y i —L<m<t
=1
Thus,
M—-1M-1—-¢ 3+Z+t( 1)£
g2 Z DK}, Cyj (DKY))"
(=0 t=0 2(£ + 1)(t + 2)(26 + 1)(2t + 1 ) J J
M—-1M-1—-¢ 3+f+t( 1)£ 1
DK N4 DK T

is an alternative form to .

6.3 Transformation formulae for HGMPTs

We present results for the scaling, shifting and rotation of the HGMPT matrices. It is useful to introduce
the (p + 1) x (p + 1) matrices A} with entries

(ALH)mn = aL,I;va —p SN < D, —Pp sm < 2
which is unitary if H* and I/ are chosen appropriately [I1], so that we can write
C, Lt IH ~H, 0t ¢ A TH C,t _ A THnNH, €t/ A TH
Cy; =ACy (A7), N = ANy (Ag7)",
where * denotes the complex conjugate transpose and

H,0t IH\s% ~C, 0t A TH H,lr _ TH\ N\ C. ¢t A TH
Cpj = (AF)'CH AT, N = (A7) N A

6.3.1 Scaling

Lemma 6.3. For any positive integers £,t in the following and a real scaling parameter s > 0 the following
holds

ng’.“ [saB, v, u,] =33ng’-& [aB, s*v, i1, ],
Ngjﬁet [saB, v, u,] :53NSJ’.“ [aB, s*v, i, ],

where [saB, v, u,| indicates evaluation for an object saB with material parameters v and .

Proof. Let ;" (¢') be the solution to (33). Then, since H}'(s¢') = s'H}(€'), we find that

1 0),t,n 0),t,n
b (s€) = B E)),

where ¢§09)E§" is the solution to with B replaced by sB. If ¢§%’t’"[52u] is the solution to with v
replaced by s?v, we find that

SR E) = S (),
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where d)gls)én[u] is the solution to 1} with B replaced by sB. Then, by the application of these results,
we find that

1 : 3+L+t -1 4
fm%zmtn[san’ ] = (wa (—1)

20+ 1)2t+1) \ 2+ 1)(t+2)
+(1—M7 ) Bt (_1)le, - J Hm (Vg ¢JSB [])dE,

en | e (TP + 625" 10D) de

+ (1 _ :U’r ) 3+€+t Hm (v£ ¢j0§)§ n) dé)
B 1 3 11/0[3+Z+t
i neir’ ( 200+ 1)(t + 2) er

| e (Hmss'><¢§?3’,5*"< €) + ¢ 5" W)(s€))) €’
+ (1 — s ) 3+e+t ek J Hm <V x (s 1+t¢;71])3,t,n[52y])) dg’,

t+2
+ (1= p ) (1) ey - J Hp(sE') <t+2SV§ x (s Ht(ﬁff)it’n)) d¢’

_ 1 340+t < (3 V) 3+£+t( 1)€
O CEE 200+ 1)(t +2)

| & (@@ ) + oy 1011 o
# () a1 e [ HPE) (Ve x 604 1)) ae.

+ (1= ) P (1) ey, - me (vs ><(q§,’ )>d5>

344+t Imitn

€L

OéB,S V:NT]v

which, by replacing m with p and n by ¢, and using the definitions of (ng’.“)pq and (Ngj’.“)pq in 1)
completes the proof. O

6.4 Translation

To deal with a translation (shift) of a HGMPT, we first recall the translation of H™"(€) = r™T}" (0, ¢) where
¢ has spherical coordinates (r,6, ). For z with spherical coordinates (7,6.,¢.) and ¢ with spherical
coordinates £ + z = (1,0, ¢’), Ammari et al. [4] provide the following

(n,m)
HME) =Y = Y Copnmt2 MY (62, 02)r Y (6, )
(V1)
(n,m)
= > CopnmH M (2) HE(E),

(V1)

for the translation of a spherical harmonic, which we have chosen to write in terms of H™(-). In the above,
the real coefficient C,,,nm and the special form of summation are as defined in [4].

Building on the translation invariance property of the rank 2 MPT established in Proposition 5.1 of [3],
and the translation properties of HGPTs in Lemma 4.2 of [11], we establish the following for the translation
of HGMPTs.

Lemma 6.4. For any positive integers £,t in the following and a translation of B to B, by a constant
vector z we have

(t,n)
(Cy;"[B:] Z Copem ;" (2) Z Coan HIZ (2)(CF [B)) s
C,0 (Z m) tn) c,
(NGB = 35 Copem Y™ (2) Z Corin HIZ (2) (NG [B]) -

(v,n)
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Proof. Let FO4" satisfy

Vg X MT_1V5/ X FgO),t,n =0 in B,,
Ve - FOE" =0, VexVex FO0m =0 in R*\B.,
[nx FO'L =0 on 0B,,
[n x i, ' Ve x FOt L — 0 on 0B,,
FOL —Hp(€)e, x € = O(I€[™) as [¢] — o,
and FUM0" satisify
Ve x 7 Ve x Ot gy (p)itn 4 pO:tny — g in B,,
Ve - FOP" =0, Vo x Ve x FOE" =0 in R\ B,
[nx F)'"p =0 on 0B.,
[n x i, 'V, x FOtnL — 0 on 0B,,
J n- Ftnag — o
oB
FUEm = 0(g™) as [¢/] — oo,
and F(()O)’t’”7 Fél)’t’" be the corresponding solutions for z = 0. Then,
(t,n)
Hp(€)e; x £ = Z Coptn H{S (2)HE (€)e; x (€ + 2),
(V)
since C, ., is real, we have
(t;n) o (tn) o
Fg0)7t7n - Z Coptn H' ' ( )F( vk Z Copn HI' 1 (2 )G(() )-,V,u7
(v,p) (v,p)
(t,n) (t,n)
l)tn _ Z Cu,uthn ,u )F(l)v oy Z CV[Lt'IlHn lt( )G(l)a "
(Vo) (Vo)
(0),t,n .
In the above, G satisfies
Ve X p Ve x Géo)’t’n =0 in B,
Ve - Géo)’t’n =0, Ve x Ve x Géo)’t’n =0 in B¢,
[n x Géo)’t’n]p =0 on 0B,
[nx 37 'Ve x GO0 r = 0 on 0B,
G —H (€)e; x z = O(I€[™) as [€] — o0,
and G\ satisfies
Ve x p ' Ve x Gél)’t’" - iy(G(()l)’t’n + G(()O)’t’n) =0 in B,
Ve - Gél)’t’n =0, Ve x Ve x G((Jl)’t’n =0 in B¢,
[n x G(()l)"t’n]p =0 on 0B,
[n x i ' Ve x G =0 on 0B,
J“B n-G{de =0,
Gyt =o(g™) as [€] — oo.
Setting Ggo)’t’n = H'(§)ej x z = Vu in B then we can define 4 to be the solution to
V2 =0 in BC,
U = on I,
i=0(l¢™) as €| — oo,
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we have
O)t;n _ H'(&)ejxz inB (Wt _
Gy { Vi in B¢’ Go 0.

This means that
iya3+Z+t( 1

20+ 1)(t+2)(20+ 1) 2t+1
+ (1_ *1) & J Hm(g/) I v SN F(1)7t,n dg/
Fr ) @es e+, 7 t+2 & xFs

+ (1 _ *1) Me f Hm(s/) V. x FO)tn d{l
Fr ) @er e+ ;7 t+2 S
a3+é+t(_1)€

T2+ )t +2) 20+ )2t + 1
3+€+t( 1

_ -1 m (1),t,n /
(1 “’“)(2£+1)(2t+1e’“ f Hy 5)(t+2V§XFZ )d§

L adtlrt(—1)e 7 F(O .
1—u- N m - , n
+ “’“)(2£+1)(2t+1e’“ f 5)(t+2v5 )dg’

by using the transmission problem (42)). Next, using and ([40]), we get

mgjémtn[BZ] _ J £ « T)(FEO),t,n+Fgl),t,n)) dS/

ek.j ¢ x an X Ve x an,t,n) 0

£,m) (t,n)
(nget[BZ])m == Z Cuuemeu“ Z CTAthn )\ )
(V) (72
er f (6 +2) x (FE@)Ve x Ve x F ™) ag
B
o (€,m) (t,n)
(Nkj t[B Z CupZmH?L; Z C‘r)\thn A )
(V1)

((1—ur1)ek'f HY(€) (Vs X F(()l)’T’A) d¢
B
—M;l)ek'JBH‘ €3]
— ! ek’f Hy(

7€) (v;E x GgW) dg) ,

(Ve x FPO™) dg

with our final result immediately following, since, by replacing j with k in G(()O)’V’“ , and recalling V x
G = 0, then
0 - )

er, J z X (H#({)Vg x Ve x Fgl)’t’") d¢ = f Ve x Ve x Fél)’t’" : Géo)’u’“dé' =0
B B
by performing integration by parts. O

6.5 Rotation

Consider a general rotation matrix R in terms of the Euler angles v, 5, @ where the rotations are expressed
in the same manner as Section 4.3 in [4] as

cosy —siny 0 cosf 0 —sing cosa —sina 0
R = siny cosy O 0 1 0 sina¢  cosa O
0 0 1 sinf 0 cosf 0 0 1

Following (4.8) [4] we have

Z P (e, By ) HIY (€), (47)

m/=—n

for where p”™ is as defined in [4].
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In the following, we extend the results for the transformation of CGPTs under the action of R obtained
by Ammari it et al. in their Lemma 3.2 [4] and the transformation of MPTs under R obtained in Theorem

3.1 of [6] to the transformation of HGMPTs.

Lemma 6.5. For any positive integers £,r in the following and a transformation of B to R(B) by an

orthogonal rotation matriz R

C{'R(B)] = (R)iku(R) ;0 (Qe(R)CS[B]Q:(R) ),

N R(B)] = (R)ku(R);0(Qe(R)NG[BIQ:(R) ),

T

T

where
—,—¢ —l+1,—¢ o 0,—¢
pe@ 041 ££+1 041 cw 0+1
pe ’ pz 1 “ e p[
Q((R) :=
—0,0 —0+1,0 0,0
Py Py

Proof. Let Fg?ét;n satisfy

Ve x Ve x FPZ™ =0
Ve FO2" =0, VexVex FOI" =0

B}

[nx Fid"lr =0

[n x iy 'Ve x Fg" e = 0
0),t,n " _
FOL" ~Hi(€)e; x €= 0(lg[ )

and Fg’)étjfn satisfy
Ve x iy Ve x Frlg" —(Figg™ + Figlg™) = 0
Ve FRom =0, VexVex FPZ" =0
[nx FREm e =0
[n x i, ' Ve x Fg?étj’"]p =0
f - Fild"dg = 0,
oB :
Fie" = 0(¢l™)
then, by combining and Proposition 5.3 of [3], we have
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Flne (RE) = ) " (e, B, RF SRl . Falie (RE) =

R(B).e; RTe;’ R(B).e;

n'=—t

20

t

n'=—t

(48)
in B, (49a)
in B°, (49b)
on 0B, (49¢)
on 0B, (494d)
as |&| — oo, (49e)

in B, (50a)

in B, (50b)

on 0B, (50c¢)

on 0B, (50d)

(50e)

as |&| — oo. (50f)
" e B, RF R



for all £ € R3. Hence,

ettt (—1)¢
20+ 1)t +2)20+1)(2t + 1)
Pt (1)t — (1),t,n
mek : .[R(B) H; (RE) (V x Fg R(B).€; > dg
~ Pt (—1)¢ e e (0),t,n
) G o O (Ve P, ) 6
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m'=—¢ n'=—t

il/a3+£+t( 1
<2(£+1)(t+2)(2£+1 2t+1 JE

_ 3+é+t )it
F(-p )(2£+1 2t+1 JH (v Fe. >d€

— 3+Z+t( 1) m/ (0),t,n/
+ (1_‘ur1) @E-}-D(%-&-Ueu.JBHE &) (Vg Bev )d{),

which follows by applying similar arguments to those in the proof of Proposition 5.3 in [3] and Theorem
3.11in [6]. So that

MM R(B)] = et | ex (AFREFQ e, + Filife,) a6
R(B)

+(1—,ur_1)

©Fge" + Fipe™)) de

(CL [R(B)])mn =( Z Py 2 (CGBY)
=R)ku(R)joa;" (CC “[B]) (@),
14 t
(Ngft[R(B)])mn :(R)ku(R)jy Z p;n’,m Z “n'n (NC Et[B])m’n’
m/'=—/4 n'=—t

=(R)iu(R)joay” (N3 [B]) (@)

where

—e, ¢,
Q=" o™

Introducing Q;(R) from completes the proof. O

6.6 HGMPT coefficients invariant under the action of a symmetry group

In this section, we consider how the voltage in a source-receiver pair changes if 1) the coils rotate and the
object is fixed; 2) if object rotates and the coils are fixed and then we also relate the two situations. Next,
we consider a scalar EIT problem where a procedure has already been established for determining HGPTs
coeflicients invariant under the action of a symmetry group before presenting an approach to determine
the HGMPTs coefficients that are invariant under the action of a symmetry group in the vectorial eddy
current case.

6.6.1 Changes in voltage due to object rotation

If a coil arrangement rotates, with the rotation described by R, so that a new transmit location is z* = Ra®
and its dipole moment is m’ = Rm, the background magnetic field at the origin due a transmitter at ="
can be expressed in terms of the field obtained from a transmitter at x° as

(H(0)):

(D3G(@,0)|g_gr )i (M)

= (R)ip(R)j¢(D3G (2, 0)|z=a) g (R) js(m),

= (R)iP(DiG(CBa0))|ﬂl=$s)pq(m)q = (R)ip(H0(0)),,
which follow using and the properties of R.

We can also predict how the the coefficients of HGMPTs that we have derived in Theorem will
transform if the coils are fixed and the object rotates. The coefficients of HGMPT are defined by two sets
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of indices; a set of tensorial indices, which we denote by subscripts &, j, and a further set of indices, denoted
by the subscripts ¢, p,t,q. The rank of the HGMPT is 2+ ¢+t and the indices k, j, p, ¢ are used to identify
different tensors of this rank, specifically 1 < k,7 <3,0< /< M-1,0<t<M-1—-¥0 —C<p</
and —t < g < t. In the simplest case, where M = 1, we have QJTHJEPW = zm,ffmm = MY = My; so that
HGMPTs and GMPTs in this case agree with the rank 2 MPT coefficients (up to a scaling dependent
on the definition of I{(€)). Recall, that in [I1] we chose the harmonic polynomials to be defined so that
A (@), I ()Y 12 (05) = Omk where (u,v)12(5g) := §,g utda denotes the L? inner product over the surface
of the unit sphere S. If an object is rotated as B’ = R(B), the rank 2 MPT coefficients of the transformed
object in terms of those for the original configuration are

M;; = (M[R(B)])ij = (R)ip(R)jg(M[B])pg = (R)ip(R) jgMpq,

with Section [6.5] providing the extension for HGMPTs.

We now consider how the voltage changes if an object B is fixed in position and both transmit and
receive coils simultaneously rotate by the same rotation matrix R. In this case, the voltage induced in a
source-receiver pair (s,r) with dipole moments f and d and the prime indicates the rotated quantities is

M—-1M-1-¢

Z 3 Z Z 1 (D3 (K7 () | —goe) e OB (D3 (K (@) [ ) 5, o

{=0 t=0 p=—~Lqg=—1

Then, noting that K¥(2") transforms in a similar way to HY (z") = HY (Ra"), as described in , we get

_Zt: (R)ivfo(R)iw (R)kn Z oy ’p (D2 (Kp/(a:)) |w=$r)wn (EDT[B])S]’.ZPW

(=0 t=0 p=—~Lqg=—t p'=—0

(R)ow m ou Z pt ,q (D2 (Kfl(fﬂ)) |a:=a:5> du)
¢ =—t mu

M—-1M-—-1-¢

Zt] Jo(R)kn 2 P (D2 (Kfl(m)) |m:mr)vn (m[B])Sjlprq

By 3 i 7(0.8.7) (D2 (K @) loe)_du.

by using properties of orthogonal matrices. Swapping the order of summation gives

M—-1M-1-¢ ¢ 14 t

E Z 2 Z E 2 D2 (K7 (z )|w=mr)mfv( )zmpf’p( ’5,7)(9)?[3])5]{@7%(1/
(=0 t=0 p——lq=—tp'——Lq'——t

(R)jmpd " (@, 8,7) (D2 (K{ () lo=a),,, du
14

Z (D3 (K} (%)) lz—ar) ,, fo(MRT(B)])5* (D7 (K (@) |a—a),,,, duw,

so that V can also expressed in terms of fixed pair of source and receiver coils and a rotation of the object

by RT.
Analogously, we have
)
=/ jo
)
==/ jo

_MElMi E 2 2 fl ( w( ‘2e+11p( )>
IIICICT)

in terms of the HGMPT coefficients.

), OV (2 ()

) e (2 (o)

6.6.2 Scalar problem analogy
For a related scalar EIT problem, where object size is not considered, the induced voltage from a source,
receiver pair due to the presence of an object B with contrast k£ can be described as

© (_1)\a\+\ﬁ|

Vo= 2] !Bl
o.B,|al=|8|=1

ag(G(w’0))|$=$">Ma5(a§(G(w7O))|CE=CBS)7 (51)
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where M, g denote the coefficients of GPTs in terms of multi-indices, which we show in [6], can be expressed
in the alternative form

o6]

Var = 2 |mr|2p+1|ms|2q+l Z Z Il Mgpzlg( *)

pq=1 i=—pj=—q

where M1 4jpi are what we call the coefficients of harmonic GPTs or HGPTs. In [6], we describe an approach
for reducing the number of independent coefficients of a rank 2 symmetric polarizability tensor using the
rotational and reflectional symmetries of an object. This means that in practice for many objects the
number of independent objects is much smaller than 6. Then, in [II], based on the induced voltage in a
source, receiver pair for a related expansion for a scalar EIT type problem involving HGPTs, we developed
an approach for determining the symmetric products of harmonic polynomials I(x) and J(x), of possibly

different degrees, in the form

S(x,y) = S(y,z) = 1(x)J(y) + J(x)I(y),
that have the property that
S(Rz,Ry) = S(z,y),

for all matrix representations R that make up the group &. This was then applied to reduce the number of
independent coefficients of HGPTs associated with objects that are members of a given symmetry group.
In order to establish the connection with HGMPTs it is useful to rewrite in the alternative form

(_1)|a|+|ﬁ\

Vor = (ol + (] + Dalp!

(03 (Va(G(®, 0) )il -z ) M (0] (Vo (G(=, 0)))j|z—a-),  (52)

18

o,B,al=|B8|=0

where summation over the tensorial indices ¢,j = 1,2, 3 is implied and
M= LB Yi ¢5.8(y)dy, 0;8(Y) == (N[ — K§) (v, - V(2))|z—y),  yedB, (53)

In the above, we have used the notation y{* = y;y®. Still further, an alternative form MSB can be
established in terms of the solution ¥, 3 to the scalar transmission problem

V5 =0 in B u B¢, (54a)
[1/1j 5]1’* =0 on F, (54b)
;.8 R Wis| B,
on |, on | = n-(z"e;) on I, (5de)
vipg—0 as x| — oo, (54d)
in the form
M = (k=) | (@) (@e)da + (k= 1)? | Va'e, Virda. (55)

In , we note that of the possible combinations of mef we need only consider those functions that are

harmonic and, since the gradient of a harmonic function is still harmonic, we can restrict ourselves to x”e
with 8 being such that the multi-indices lead to polynomials & that are harmonic. The result in
follows from Lemma 4.3 in [5] since again only those multi-indices « for which x®e; is harmonic need be
considered. Furthermore,

MEP = (k1) fB(aso‘ei) (@Pe;)da — (k —1)? JBC Ve - Vgede — (k- 1)? fB KVY? - Vyrds,

which is obtained by integration by parts.
By beginning from , and repeating similar steps to [6], we arrive at

o 38 8 (% (mtr),, ), v (5 (i)

=—lq=—

:cac)] 7 (50)
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where

M =k — 1)[ (I7 (z)ex) - (I} (x)e;)dx

B

—(k=1?%| Vorep Vo,de — (k—1)? f kN Gkt - Vo iqde, (57)
B¢ B
and
V2¢p.0p =0 in B U BS, (58a)
[k,eplr =0 onT, (58b)
O0bk tp 0Pk tp
: — . =n-(I? r

on |, k on | n- (I)(x)e) on T, (58¢)
¢k,€p -0 as ‘SE‘ — O, (58d)

We observe that has a similar form to with summation over a set of tensorial indices 1 < k,j5 < 3
and additional summation over /,t = 0,1,... with —¢ < p < £ as well as —t < g < t. Still further, for

- = 1, then 1/’120)7[7” = I}(§)er x & and we can write the coefficients of the HGMPTs in the alternative
symmetric form
mHzfptq _ iya3+€+t(_1)£
ki 200+ 1)(t+2)(20+1)
a3+t (— 1)
20+ D)(t+2)(20 + 1) (2t + 1)

[ g g g, (59)
BuB¢©

2t + 1) JB & x (@ + i) ag

1
(J V'V x P T % IV P g
B

by applying similar arguments to Lemma Also, defining g)jtll;lfptq =200+ 1)(t+ Q)Sﬁgjéptq’ then we

mi.epta _ gy H,tqlp
see we have the symmetry 9, =0

6.6.3 Procedure to determine invariant HGMPT coefficients

Given the similarity between to we can proceed as follows to determine the coefficents of HGMPTs
and HGPTs (when expressed in the alternative form (57))) that are invariant under the action of a symmetry
group G:

1. For ¢ = t = 0, when the HGPTs and HGMPTs reduce to (complex) symmetric rank 2 tensors,
we apply the previous procedure from [6] to determine the independent coefficients associated with
indices 1 < k,j < 3.

2. For other cases, and once independent H(G)MPTs coefficients for indices k and j have been identified
as above, we propose to use the previously described approach in [II] to determine the symmetric
products of harmonic polynomials that are invariant under the action of a symmetry group. This, in
turn, allows us to additionally identify the independent coefficients for indices ¢, p, t, ¢ for HGMPTs.

3. Once the independent HGMPT coefficients have been identified, we propose to use these as features
in classification algorithms where objects of the same symmetry group are grouped together to form
classes. We plan to investigate this in a future publication.

Remark 6.6. We envisage that the above procedure could be used to identify unexploded ordnance
(UXOs), landmine components, metallic objects of archeological significance as well as for identifying
objects for security screening and for other metal detection applications. Just as with situation in EIT
described in [T1], in practice the measured V5, will contain unavoidable errors and noise that are associated
with measurements. Still further, buried objects (and other objects that we wish to find) will often be
dented and deformed and so in practice a hidden object’s symmetries may only hold approximately in
practice.

7 Conclusion

In this work we have derived complete asymptotic expansions of (H, — Ho)(x) as a — 0 using both
tensorial index and multi-index notation, which provide improved object characterisations using higher
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order GMPTs as a natural extension of the rank 2 MPT description. We provide splittings of the GMPT
object characterisations obtained, which make the magnetostatic contribution to (H, — Hg)(x) explicit.
We have derived symmetry properties of GMPTs, which extend those already known for rank 2 MPTs, and
have also obtained explicit formulae for the real and imaginary coefficients of GMPTs, again, extending
those already known for MPTs. We have derived results that explain the spectral behaviour of GMPT
coefficients (ie their behaviour as a function of frequency) and shown that their behaviour is similar to that
of the MPT coefficents. We have also introduced the new concept of harmonic GMPTs, which have fewer
coefficients than GMPTs of the same order. We have examined their scaling, translation and rotational
properties and provided an approach for determining the coefficients of HGMPT's that are invariant under
the action of a symmetry group, which could form a basis of object classification for (H)GMPTs.
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