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Abstract The Delft Shoulder and Elbow Model (DSEM),

a musculoskeletal model of the shoulder and elbow has

been extensively developed since its introduction in 1994.

Extensions cover both model structures and anatomical

data focusing on the addition of an elbow part and muscle

architecture parameters. The model was also extended with

a new inverse-dynamics optimization cost function and

combined inverse-forward-dynamics models. This study is

an update on the developments of the model over the last

decade including a qualitative validation of the different

simulation architectures available in the DSEM. To vali-

date the model, a dynamic forward flexion motion was

performed by one subject, of which the motion data and

surface EMG-signals of 12 superficial muscles were mea-

sured. Patterns of the model-predicted relative muscle

forces were compared with their normalized EMG-signals.

Results showed relatively good agreement between forces

and EMG (mean correlation coefficient of 0.66). However,

for some cases, no force was predicted while EMG activity

had been measured (false-negatives). The DSEM has been

used and has the potential to be used in a variety of clinical

and biomechanical applications.

Keywords Shoulder � Elbow � Musculoskeletal model �
Inverse and forward dynamics � Validation � Muscle force �
EMG

Abbreviations

lf Fiber length

ls Sarcomere length

lopt Optimal fiber length

h Reference joint angle
_h Reference joint angular velocity

€h Reference joint angular acceleration

Lm Muscle length

M Net joint moment

rmax Maximum muscle stress

Fm Predicted muscle force

PCSA Muscle physiological cross sectional area

Fmin Minimum permissible muscle force in the inverse

optimization

Fmax Maximum permissible muscle force in the inverse

optimization

e Excitation dynamics

u Hypothetical neural input of the forward muscle

model

a Active state

Lce Length of contractile element (CE)

Mc Correction moment

hc Calculated joint angle
_hc Calculated joint angular velocity
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1 Introduction

Biomechanical models can give insight into the mechanical

basis of musculoskeletal function. In the last few decades, a

variety of models of the entire human musculoskeletal

system, from simple two-dimensional (2D) models [1–5] to

complex three-dimensional (3D) models [6–9], have been

developed. However, of all these models, not many

describe the upper extremity. A major reason for this is the

complex kinematic structure of the upper limb. The many

degrees-of-freedom (DOF) of the shoulder girdle limit the

usefulness of simple 2D models and lead to complex 3D

models.

For clinical applications, sophisticated models are nee-

ded. Such models should be complex enough to realisti-

cally replicate the behavior of the human musculoskeletal

system. Few complex upper extremity models have been

developed such as the Swedish model [10, 11] based on the

model of Hogfors et al. [12, 13], the Newcastle shoulder

model [14], the shoulder part of the AnyBody Modeling

System [6], the Stanford model implemented in SIMM

[15], and the Delft Shoulder Model (DSM) which is the

core of this study.

The Delft Shoulder Model as first described in 1994 [9]

is a comprehensive 3D inverse-dynamic model of the

shoulder complex in which the recorded motions of the

bony segments and external loads are used as input to the

model and muscle and joint contact forces, muscle lengths,

and moment arms are calculated as model outputs through

an inverse-dynamics analysis. To qualitatively validate the

model, estimated force–time curves were compared to

measured EMG signals [16] which showed good agreement

in the timing of muscle activations. Data for the original

model were taken from [17–19]. Later, elbow data were

added based upon a follow-up cadaver study [20]; conse-

quently, the model was renamed to the Delft Shoulder and

Elbow Model (DSEM).

Following a detailed cadaver study on the shoulder [21]

and elbow [22], information about muscle architecture and

optimal fiber length was additionally obtained. It was

expected that this addition would lead to improvements in

the prediction of muscle forces and better insight into the

functioning of specific muscles since force–length and

force–velocity relationships could be implemented. By

including the muscle dynamics, some modifications and

extensions were carried out in the model. First, the inverse-

dynamics model was modified in such a way that the

muscle dynamics were taken into account as constraints on

the maximum permissible muscle force during the inverse

optimization. Second, combined inverse-forward-dynamics

versions of the DSEM [23, 24] could be developed. Third,

a new muscle load sharing cost function for inverse opti-

mization namely the energy-based criterion [25] was

introduced and implemented in the model. This new cost

function is based on the energy-consuming processes in a

muscle needed to produce a contraction.

Although the DSEM has been widely used in a number

of studies, it was not individually addressed in the litera-

ture. The aim of this article is to provide all aspects and

developments of the model since its original introduction in

1994, including the measured elbow data and a qualitative

validation of the three different simulation architectures

available in the DSEM (inverse dynamics optimization—

IDO, inverse-forward-dynamics optimization—IFDO, and

IFDO with controller—IFDOC). The model simulations

will be based on a new anatomical dataset and the appli-

cation of an energy-based load sharing cost function

enabled by the addition of the muscle architecture param-

eters. As such, it fits in the developments sketched in an

Editorial published by Cutti and Veeger [26] in a special

issue of this journal on shoulder biomechanics in which it

was concluded that there is a need for the general biome-

chanical (upper extremity) models to be more thoroughly

validated and tested and in which new cost functions

should be included.

2 Materials and methods

2.1 Anatomical data

The geometrical data for the DSEM were taken from studies

on the shoulder [21] and elbow [22] from the same specimen,

a 57-year-old muscular male cadaver. In these studies a total

number of 31 muscles of the shoulder (23 muscles) and

elbow (8 muscles) were divided into 139 elements. Joint

surfaces and other bony contours were digitized for model-

ing using geometrical forms. Muscle architecture parameters

including tendon length, physiological cross-sectional area

(PCSA), pennation angle, and the fiber length (lf) were

measured. The sarcomere lengths (ls) were also measured

using a laser-diffraction technique [27]. Assuming an opti-

mal sarcomere length of 2.7 lm [28], the optimal fiber length

(lopt) for a muscle was calculated as:

lopt ¼ 2:7
lf
ls

ð1Þ

Since the elbow data have not yet been published other

than in an internal report [22], these data are partly

presented here. These data include the position of bony

landmarks (Fig. 1; Table 1), bony contours for muscle

wrapping (Table 2), and functional axes of rotation of the

elbow (Table 3). For the description of the measurement

methods, the values of the muscle parameters (PCSA, mass

and optimal fiber length), and the relative muscle force-

sarcomere length curves see supplementary materials.
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2.2 Kinematics

The DSEM is a finite-element model which has been

implemented by building on the software packet SPACAR

[29] for the analysis of spatial multi-body mechanisms. For

detailed descriptions of model kinematics and implemen-

tation in SPACAR see Ref. [9].

The total number of DOF of the model is 17, namely six

for the thorax (which is considered as the moving base),

three for the shoulder girdle, three for the glenohumeral-

joint, two for the elbow, and three for the wrist.

There are several options to provide input to the model

among which using the joint angles is the most popular. To

calculate the glenohumeral-joint rotation center, which is

necessary for reconstruction of the local coordinate system

of the humerus, the instantaneous helical axes (IHA)

method [30, 31] is mostly used, although alternatives such

as the use of regression equations [32] or the SCoRE

method [33, 34] are also possible in the DSEM.

For the definition of the clavicular orientation only two

landmarks are generally available, thus, the axial rotation

of the clavicle is estimated by minimizing the rotations in

the AC-joint [35].

The shoulder girdle is a closed-chain mechanism and the

motions are constrained by such factors as the shape of the

thorax over which the scapula glides, the length of the

conoid ligament, the length of the clavicle, and the size of

the scapula. As such, the motions of the shoulder girdle of a

measured subject cannot be exactly reproduced by the

model due to differences in the geometry between subject

and model. To ensure that all positions input to the model

can actually be assumed by the model, the measured angles

are adjusted slightly to fit the constraints of the model by

minimization of the following cost function [36]:

J ¼ W1 dCxð Þ2þ dCy

� �2þ dCzð Þ2
� �

þW2 dSxð Þ2þ dSy

� �2þ dSzð Þ2
� �

ð2Þ

where dCx and dSx are the differences between the mea-

sured and optimized angles for the clavicle and scapula

around the x-axis, respectively. A similar definition is

applied for angles around the y- and z-axes. W1 and W2 are

weight factors, and were set at 1 and 2, respectively. For

detailed description of the optimization procedure, see the

supplementary materials.

2.3 The inverse-dynamics optimization (IDO)

In the original model (DSM), the inertial forces and

moments were included but muscle dynamics were not. In

the modified inverse dynamics model (IDO, Fig. 2a), the

muscle dynamics has been taken into account as constraint

on the maximum permissible muscle force in the inverse

optimization process. The joint angles and external loads

are used as the model inputs. The outputs of the model

include muscle and joint reaction forces, muscle and liga-

ment lengths, and muscle power.

The filtering and differentiation routines of Woltring

(the GVC method) [37] have been implemented to calcu-

late velocities and accelerations from the inputs.

The load-sharing problem is solved using a nonlinear

optimization process in which a cost function is minimized.

The stress cost function (SCF) which is based on minimi-

zation of the squared muscle stress [38] was originally

implemented in the DSM as the default objective function,

but recently a new energy-based cost function (ECF) [25]

has been implemented. In the energy-based cost function,

the energy consumption due to calcium pumping and cross-

bridge function is taken into account.

The calculated forces in the optimization process for

each muscle element (m) are bounded by the inclusion of

muscle force–length relation where minimum force is

taken as zero and the maximum force is a function of

maximum muscle stress (rmax), PCSA, and sarcomere

length (lsm):

Fmax lsmð Þ ¼ f lsmð ÞPCSAmrmax ð3Þ

where rmax is taken as 100 N/cm2 [39]. f(lsm) is the nor-

malized muscle force–length relationship defined as a

Fig. 1 Palpable bony

landmarks on the humerus, ulna,

and radius

Table 1 Positions of palpable bony landmarks (BL) on the humerus,

ulna, and radius in the global coordinate system defined in Ref. [21]

BL X (cm) Y (cm) Z (cm)

Epicondyle medialis (EM) 15.66 -30.79 10.56

Epicondyle lateral (EL) 21.53 -30.21 7.15

Olecranon (OL) 18.97 -30.23 10.58

Styloideus Ulnae (SU) 21.54 -55.71 3.39

Styloideus Radii (SR) 17.29 -55.01 0.01
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Gaussian-type shape function (see [40] for a detailed

description).

The model stability is defined as being maintained when

the joint reaction force vector is directed inside the rim of

the glenoid fossa, modeled by an ellipse.

2.4 The inverse-forward-dynamics optimization

(IFDO)

The combination of an inverse dynamic optimization

approach with inclusion of the muscle dynamics by a for-

ward dynamic muscle model (IFDO) is an efficient way to

obtain dynamically feasible muscle forces and neural

inputs. Happee and van der Helm [41, 42] showed that

inclusion of the muscle dynamics in the inverse optimiza-

tion had considerable effects on the model-estimations of

the neural inputs and individual muscle forces.

The muscle models are required to account for the effect

of muscle electromechanical delays and force–velocity

relationship in an inverse-dynamic optimization. In the

IFDO (Fig. 2b) both forward and inverse muscle models

are used. As for muscle model, a three-component Hill type

model [40, 43] consisting of a second-order activation

dynamics part and a first-order contractile dynamics part is

being used (for a detailed mathematical formulation of the

muscle model see supplementary materials).

At each time-step (i, Fig. 2b), the calculated optimal

muscle forces are constrained by maximum (Fmax,i) and

minimum (Fmin,i) permissible values of the muscle forces

estimated by a forward muscle model with use of the muscle

states of the previous time-step (ei-2, ai,-1, Lce,i-1). At the

same time-step (i), an inverse muscle model is used to

estimate the neural inputs (ei-1, ai, Lce,i) that will be used as

the inputs to the forward muscle model in the next step

(i ? 1). The starting position is assumed to be quasi-static

in which the initial vales of u, e, a, and Lce are estimated

through a steady state equilibrium condition. During the

next time steps, the states are updated in a dynamic opti-

mization procedure. The values of e, a, and Lce are updated

iteratively, while u is estimated analytically.

2.5 The IFDOC

Due to discretization errors and possibly an unstable sys-

tem, the motions calculated by the forward-dynamic part in

the IFDO will not be exactly the same as the recorded

motions which were input to the inverse dynamics part.

Therefore, the IFDO was modified in such a way that the

difference in position and velocity will be fed back to the

inverse-dynamic model. The modified model is called the

IFDOC or simply the IFDOC (Fig. 2c) [23]. At each time

step, the feedback controller will adjust the neural input

signal in the next time step by calculating a correction

moment (Mc) using the errors in angle and angular veloc-

ity. Therefore, a forward-dynamic simulation will be

obtained which should result in exactly the same motion as

the recorded motion. In the forward dynamics part of the

model (Fig. 2c), the forward musculoskeletal model

developed by van der Helm and Chadwick [24] was

implemented. For integration of the motion equations in

forward dynamics analysis, two different algorithms

namely the Adams–Moulton and Euler algorithms have

been implemented in the model. The forward dynamics

simulation based on the Euler method is up to four times

faster than the Adams–Moulton algorithm, but less stable.

In contrast to the IDO model in which each time step is

considered to be independent of the preceding time steps, in

the IFDO and IFDOC analyses each time-step is coupled to the

following time-steps through sets of differential equations.

2.6 Biomechanical applications of the model

The DSEM has frequently been applied. It was used to

study goal-directed movements [42], wheelchair propul-

sion [44, 45], rotator cuff tears [46], tendon transfers [47,

48], loads on the arm [49, 50], rotator cuff changed fol-

lowing scapular neck fracture [51], effect of rotator cuff

dysfunctions on wheelchair propulsion [52], weight trans-

fers in wheelchair users [53], effect of including the neural

activity in the modeling process [54], and stability of ce-

mentless glenoid prostheses [55].

Table 2 Bony contours. [dx dy dz] is the direction of the central axis of the cylinder; [Px Py Pz] is the coordinate of an arbitrary point on the

central axis of the cylinder; R is the radius

Wrapping object Bony structure Px Py Pz dx dy dz R

Cylinder 1 Radius 19.92 -35.32 5.79 0.0993 0.9003 0.4239 0.92

Cylinder 2 Ulna 19.36 -30.80 9.02 0.8531 0.0183 -0.5108 1.90

Cylinder 3 Ulna 19.36 -30.80 9.02 -0.8531 -0.0183 0.5108 1.50

Cylinder 4 Radius 19.79 -43.87 3.87 0.0186 0.9767 0.2136 0.90

Cylinder 5 Ulna 20.77 -51.88 3.88 -0.1157 0.9547 0.274 0.70

Cylinder 6 Radius 19.28 -40.60 3.49 -0.1481 -0.8839 -0.4436 0.71

All values are in cm
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2.7 Evaluation of the DSEM

To qualitatively validate the three different simulation

architectures available in the DSEM (i.e., IDO, IFDO, and

IFDOC), we compared EMG signals with model-predicted

muscle forces. To this end, one patient (male, 64 years,

163 cm, 85 kg) with shoulder hemi-arthroplasty was

measured after giving informed consent. Measurements

included the recording of pose and EMG. The subject was

asked to perform the standard shoulder dynamic tasks

including forward flexion motions up to maximum possible

arm elevation angle. The speed of movement was about

0.1 Hz.

For motion recordings, marker clusters on bony seg-

ments, including thorax, scapula, upper arm, and forearm,

were measured using four Optotrak camera bars (Northern

Digital Inc., Canada, nominal accuracy 0.3 mm) at a

sampling frequency of 50 Hz. Considering the limited
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range of motion of the patient we used an acromion sensor

[56] for scapular motion tracking. Local coordinate sys-

tems of the segments were defined according the ISB

standardization protocol [57].

EMG signals of 12 superficial muscles were measured

using Ambu N-00-S ECG bipolar surface EMG electrodes

and recorded by a 16-channels Porti system (TMS Inter-

national, Enschede, The Netherlands) at the sampling fre-

quency of 1000 Hz. The SENIAM recommendations [58]

were followed for the EMG sensor positioning. We visu-

ally checked the measured signals for possible crosstalk.

The measured muscles included the trapezius ascendens,

transversum, and descendens, the infraspinatus, the deltoid

anterior, medialis, and posterior, the pectoralis major cla-

vicular and thoracic parts, the biceps short head, the triceps

medialis, and the brachioradialis. To determine the maxi-

mum EMG values, maximum voluntary contractions

(MVCs) were also performed.

From the segment poses, joint angles were calculated

based upon the ISB-standard and were used to run the three

models. The ECF was used in all models to solve the muscle

load sharing problem in the inverse dynamic optimization.

To guarantee the stability of the forward dynamics simula-

tions in the IFDOC, the Adams–Moulton algorithm with an

integration time-step of 0.005 s was used. The individual

muscle forces as well as the glenohumeral joint reaction

forces were estimated as the outputs of the model. The cal-

culated muscle forces were normalized (relative muscle

force) to the maximum muscle force (Eq. 3).

Measured EMGs were high-pass filtered, rectified, and

subsequently low-pass filtered. For high- and low-pass

filtering, second-order Butterworth filter with cut-off fre-

quencies of, respectively, 25 and 2 Hz were used. For each

muscle, the measured EMG was normalized with respect to

the maximum value found for that muscle during MVCs.

To evaluate the model, the time series of the relative

forces and normalized EMG were compared. For each

muscle, the comparison was carried out for the muscle

element which was the closest to the position of the EMG

electrodes on the subject body. Since the time series of

forces and EMG were compared, we used the bivariate

two-tailed Pearson correlation coefficient (R) as indicator

of goodness of fit. Moreover, the resultant glenohumeral

joint reaction force was compared between different

modeling architectures.

3 Results

The simulation times for IDO, IFDO, and IFDO were 43.3,

68.2, and 423.12 s, respectively.

3.1 EMG–force comparison

For most conditions the predicted forces followed the

pattern of the EMG signals (for IDO and IFDO mean

R * 0.71, for IFDOC mean R * 0.60). The IDO and

IFDO showed almost the same but in few cases (e.g., tra-

pezius ascendens and pectoralis major clavicular) different

results from IFDOC. In a few cases false-negatives were

found in which no muscle force was calculated by the

model while EMG showed activity for that muscle (Fig. 3).

For IDO and IFDO models, the false negatives occurred for

trapezius descendens, deltoid posterior, and pectoralis

major thoracic muscles. For IFDOC model, the false neg-

atives were related to pectoralis major thoracic part. Except

for false-negatives, three models followed the pattern of

EMG signals. A very high correlation (R * 0.97) was

found between the IDO and IFDO estimated force–time

curves with the EMG signal of trapezius transversum,

deltoid anterior, and triceps medialis. The correlation

between the IFDOC predictions and the EMG was rela-

tively high (R [ 0.80) for deltoid anterior, pectoralis major

clavicular part, and triceps medialis.

The results of comparing the estimated muscle force–

time curves to measured EMG signals during forward

flexion motion in the current study are comparable to the

ones in the study by van der Helm [16]. In the study by van

der Helm, the comparison was performed for the inverse

dynamics model and using the DSM original anatomical

dataset and the SCF for IDO. In both the studies the false-

negatives occurred for deltoid posterior and pectoralis

major thoracic part (for humeral elevation B100�). A very

similar pattern was observed in two studies for the pre-

dicted muscle forces of infraspinatus and deltoid anterior

muscles.

3.2 Glenohumeral joint reaction force comparison

The IFDOC predicted considerably higher (*24%) reac-

tion force in the glenohumeral joint at the peak elevation

angle as compared with the IDO and IFDO (Fig. 4).

Table 3 The position ([Px Py Pz]) and orientation ([dx dy dz]) of the functional axes of rotation of the elbow

Rotation axis Bony structure Px Py Pz dx dy dz

Flexion–extension Humerus-ulna 19.36 -30.80 9.02 0.8531 0.0183 -0.5108

Pronation–supination Ulna-radius 20.11 -32.27 6.87 -0.0604 0.9874 0.1465

All values are in cm
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4 Discussion

This study aimed to, first, report about all developments of

the DSEM since its early introduction and, second, to

compare the force–time curves with the EMG signals to

qualitatively evaluate the three simulation architectures

available in the DSEM.

The qualitative validation was carried out for the generic

model for one subject performing a typical dynamic

shoulder task (i.e., forward flexion). The model was not

scaled to subject’s geometry. Main reasons for this are the

difficulties related to scaling in general, but also the choice

to present the model as currently and up till now mostly

used, which is not scaled, but with scaled (optimized)

kinematics. Results (Fig. 3) showed a relatively good

agreement between the model-predicted normalized forces

and measured EMG of individual muscles, although a few

cases of false-negatives were observed. The IDO and IFDO

showed very similar patterns but somewhat different pat-

terns from IFDOC. The predicted glenohumeral joint

reaction force by the IFDOC was also higher in comparison

to the other two models (Fig. 4).

As discussed earlier, the original DSM was previously

validated by comparing the estimated muscle force–time

curves to measured EMG signals [16]. That comparison

was performed using the DSM original anatomical dataset

and the SCF for IDO, while the specific muscle force–

length relationship was not included in the model. In this
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study, the new anatomical dataset and optimization crite-

rion (the ECF) were used and validation was performed for

the three modeling architectures (IDO, IFDO, and IFDOC).

In the modified IDO model used for the current study, the

muscle force–length relationships were also considered in

the inverse optimization.

Praagman et al. [25] compared the model predicted

muscle forces to measured muscle oxygen consumption.

They used comparable elbow isometric contractions and

applied both the SCF and the ECF. They concluded that the

ECF led to fewer false-negatives and a higher correlation

between predicted muscle forces and measured oxygen

consumption. In a more recent study [50], it was shown

that comparing to the SCF using the ECF makes a better

consistency between the experimentally measured and

model estimated so-called principal action. The results of

these studies suggest that the ECF would be the preferred

optimization criterion for the DSEM. Therefore, in the

current study, the ECF was used in the process of model

evaluation.

The IDO and IFDO predicted similar forces. Therefore,

the effects of considering the muscle force–velocity rela-

tionship in case of low-speed motions (in our case

*0.1 Hz) are not remarkable. One would expect the

muscle force–velocity relationship to be more of influence

during high-speed shoulder movements like throwing a ball

in baseball. However, the IFDOC predictions of the rela-

tive muscle forces as well as the glenohumeral joint
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reaction force were somewhat different from those of the

other two models. Such differences can be due to one of (or

a combination of) the following reasons:

The differences between models can relate to the for-

ward-dynamics optimization and/or the feedback control-

ler which may lead to calculation of noticeably different

neural inputs and/or large additional moment (i.e., Mc,

Fig. 2c). For the motion simulated in this study, the

additional moment at the peak elevation angle is calcu-

lated to be *22% of the net shoulder joint moment (i.e.,

M, Fig. 2c). The additional moment which is added to the

net joint moment in the IFDOC model, can explain the

difference (*24%) between the glenohumeral joint

reaction force estimations from the IDO and IFDOC.

Considerably large additional moment can be related to

either large differences between the optimized angles as

input to IFDOC and the resulting angles from the forward

simulation or to large feedback gains in the feedback

controller.

Another reason could be the differences between the

optimized angles as input to IDO (and IFDO) and IFDOC.

For the motion simulated in this study, all optimized angles

in different versions of the models were almost the same

except the optimized clavicular axial rotation which dif-

fered up to *20� between IDO and IFDOC. Such differ-

ence may explain the different relative muscle force

estimations from IDO and IFDOC in the case of muscles

with an origin/insertion on the clavicle such as pectoralis

major clavicular part. The difference between the opti-

mized angles in IDO and IFDOC may relate to the different

choices of generalized coordinates (for detailed description

about the generalized coordinates see Ref. [9]). Although

different versions of the model have the same number of

generalized coordinates (equal to the total number of

DOF), the choice of these coordinates to describe the

orientation of the scapula and clavicle in IDO is different

form that in IFDOC. In IDO and IFDO, the position

coordinates of the bony landmarks including the y- and

z-coordinates of the most dorsal point on the acromiocla-

vicular (AC) joint and the x-coordinate of the trigonum

spinae (TS) are chosen for generalized coordinates. In IF-

DOC, these coordinates include the rotations around the y-

axis (pro/retraction) and z-axis (elevation/depression) in

the sternoclavicular joint and the rotation around the y-axis

(pro/retraction) in the AC joint.

In a recent study and in an attempt to quantitatively

validate the DSEM [59], the glenohumeral-joint reaction

forces estimated by the IDO model were compared to those

measured by the instrumented shoulder implant [60]. The

results of that study showed that the generic IDO model

generally underestimates the glenohumeral-joint reaction

forces during standard dynamic tasks such as abduction and

forward flexion. According to the results of the current

study, the IFDOC predicts higher glenohumeral joint

reaction forces during dynamic motions like forward flex-

ion compared with the IDO. One may, therefore, conclude

that the IFDOC can potentially be a better candidate for

modeling dynamic tasks. Less number of false-negatives

predicted by the IFDOC compared with the IDO and IFDO

(Fig. 3) supports this line of reasoning. However, a rigor-

ous model validation is still required for a decisive con-

clusion. To this end, the model needs to be modified to

have exactly the same input optimized angles as in the

IDO, IFDO, and IFDOC. Scaling the model to the subject-

specific geometry can also minimize the effect of differ-

ences between the optimized angles (as inputs to IFDOC)

and the resulting (corrected) angles from the forward

simulation on the magnitude of additional moment.

Moreover, the feedback gains in the feedback controller of

the IFDOC need to be optimized. This should be done in a

separate study in which considerable numbers of subjects

are present and both the measured muscle activities as well

as in vivo measured joint reaction forces are used to tune

these parameters.

When the DSEM is compared to other existing upper

extremity models some differences can be discerned:

In contrast to the DSEM in which the motions of the

scapula and clavicle are used as inputs, the Swedish

Shoulder Model (SSM) and the SIMM model use the

‘‘shoulder rhythm’’ as input for scapular motions. While

this is practical since kinematic data collection is highly

simplified, the downside of that option is the limitation of

their use to applications where scapular motion is not

disturbed.

For optimization most models use the quadratic cost

function, although the SSM also uses the so-called soft-

saturation criterion [61]. The AnyBody model uses a min/

max criterion [62] as cost function.
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For the SSM, the predicted forces and the normalized

EMG patterns of four muscles of the shoulder have been

compared [63, 64]. Most importantly, results showed sig-

nificant differences above 60–90 degrees humeral elevation

during abduction.

The Newcastle shoulder model (NSM) is based to a

large extent on the same data as the DSM, but also includes

data from [65]. Although the muscle force predictions from

NSM have been compared with those of DSM and SSM,

there is no individual report on validation of the model.

The AnyBody shoulder and elbow model uses the ori-

ginal anatomical dataset of the DSEM but its structure is

slightly different: the scapulothoracic-gliding plane and

wrapping contours for the deltoid muscle have differently

been modeled. The validation of the model was performed

for wheelchair propulsion [66].

The recently developed model by Blana et al. [67] uses

the new DSEM anatomical dataset and optimization cri-

terion, but the SIMM algorithms for calculating muscle

wrapping paths rather than those of SPACAR. The model

can be used in both inverse and forward dynamics analyses,

and was evaluated by force-EMG comparison for standard

dynamic and activity daily living tasks using a similar

method to that described here.

A sophisticated musculoskeletal model of the entire

shoulder and elbow was represented and qualitatively

validated. The developed model has capability of inverse-

dynamics, forward-dynamics, and combined inverse-for-

ward dynamics analysis and has potential to be recruited in

different clinical and biomechanical applications. For more

realistic predictions, it is recommended to use the new

anatomical dataset and the new developed muscle load

sharing cost function.
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