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Abstract

The results of a multi-parametric analysis of the near-rigid body motions of a

three-component strongly inhomogeneous elastic rod are presented. It is demon-

strated that the values of the associated lowest natural frequencies tend to zero

at large/small ratios of material and geometric parameters. The low-frequency

behavior is classified into global and local regimes and the general conditions

supporting global low-frequency regimes are derived. As an example, a rod with

piecewise uniform properties is considered. A perturbation procedure oriented

to a more general setup is developed.
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1. Introduction

Vibrations of inhomogeneous elastic structures find numerous applications

in modern engineering, see e.g. [1, 2] among other contributions. In many cases

structural components parts may have contrast material and geometric charac-

teristics, including stiffness, volume density and size. As a typical example, we5

mention sandwich plates which are widely used in civil and mechanical engi-

neering, and are therefore intensively studied, see e.g. [3, 4, 5], and references

therein. The number of potential applications may increase significantly due to
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a rapidly growing area of metamaterials, see e.g. [6, 7].

This paper is concerned with investigation of low frequency vibrations of10

elastic rods composed of parts with contrast properties. It is observed that

under certain restrictions on the material parameters and lengths the lowest

natural frequencies become small, tending to zero at the limit of large/small

contrasts.

The analysis is carried out for free vibrations of a non-uniform three-compo-15

nent rod. The basic problem parameters involve the ratios of the Young’s mod-

uli, densities and lengths of the components. A multi-parametric treatment

reveals two types of low-frequency motions. One of these is the so-called global

low-frequency regime corresponding to quasi-static behavior of all of the rod’s

components. Another type may be referred to as local low-frequency regime20

describing quasi-static behavior of �stronger�, in particular, stiffer components

and not preventing oscillating profiles in �weaker� parts, which is similar to

recent results for homogenization of contrast periodic media, see [8, 9].

In the paper the attention is first drawn to the model problem of low-

frequency vibrations of a symmetric piecewise uniform rod with free ends, allow-25

ing a straightforward analytical treatment. The conditions on the parameters

supporting the global low-frequency regime are derived. The associated dis-

placement profile is approximated at leading order by linear functions. This

agrees with an intuitive expectation, that the �stronger� parts perform almost

rigid body motion.30

The consideration is then extended to the local low-frequency behaviour,

along with other types of boundary conditions supporting global low-frequency

regime. The cases which do not allow global low frequency modes are men-

tioned. Finally, the analysis is generalized to a non-uniform three-component

rod with variable material parameters depending on the longitudinal coordinate.35

Since a straightforward analytical approach is no longer possible, a perturba-

tion scheme is developed leading to estimates for low natural frequencies and

the displacement profile.

The developed methodology is not restricted to the three-component rod
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considered in the paper. It has a potential to be extended for a more sophis-40

ticated setup. In particular the obtained results could be applied to analysis

of the lowest cut-off frequencies [10, 11] of sandwich plates and shells and also

have some more general implications to 2D and 3D dynamic problems for elastic

structures with contrast material parameters. In the latter case the perturbation

scheme presented in this paper may need to be amended by including numerical45

routines.

2. Problem statement

0 xh-h +hh-h -h 13 1 21 1

Figure 1: Composite rod.

Consider time-harmonic vibrations of an elastic rod composed of three in-

homogeneous parts. The axis Ox is chosen such that the origin O is located

in the middle of the inner part. The rod is finite, with the outer parts having50

free or fixed ends, and continuity assumed between the components. The inner

part of the rod occupies the region |x| ≤ h1, with the outer parts specified by

−h1 − h3 ≤ x ≤ −h1 and h1 ≤ x ≤ h1 + h2.

The equations of motion are written in the form

d

dx

(

Ei
du

dx

)

+ ρiω
2u = 0, i = 1, 2, 3, (1)

where u is the displacement, Ei are the Young’s moduli, ρi are the material

densities, ci =
√

Ei/ρi are the longitudinal wave speeds and ω is the vibration55

frequency. Here the indices 1, 2 and 3 correspond to the inner, right outer and

left outer parts, respectively.
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The continuity conditions at the interfaces are written as

u(−h1 + 0) = u(−h1 − 0),

u(h1 − 0) = u(h1 + 0),

E1u
′(−h1 + 0) = E3u

′(−h1 − 0),

E1u
′(h1 − 0) = E2u

′(h1 + 0).

(2)

We consider three types of boundary conditions on the outer ends, namely

free ends

u′(−h1 − h3) = 0,

u′(h1 + h2) = 0,
(3)

fixed ends

u(−h1 − h3) = 0,

u(h1 + h2) = 0,
(4)

and mixed boundary conditions

u(−h1 − h3) = 0,

u′(h1 + h2) = 0.
(5)

Let us represent the variable material parameters as

Ei = E∗

i Ẽi(x), ρi = ρ∗i ρ̃i(x), ci = c∗i c̃i(x), i, j = 1, 2, 3,

where E∗

i , ρ
∗

i and c∗i are average values of the associated quantities. We also

introduce dimensionless longitudinal variable

χ =
x

h1

,

and scaled frequencies

λi =
ωhi

c∗i
, i = 1, 2, 3,

along with the dimensionless parameters

Eij =
E∗

i

E∗

j

, ρij =
ρ∗i
ρ∗j

, cij =
c∗i
c∗j

, hij =
hi

hj
, i, j = 1, 2, 3.
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3. Antisymmetric vibrations of a rod with free ends

Let us begin with a simple problem for a symmetric composite rod with

constant material parameters. In this case due to symmetry of the rod

E2 = E3, ρ2 = ρ3, c2 = c3, h2 = h3, λ2 = λ3,

hence, the set of dimensionless parameters is reduced to

E =
E1

E2

, ρ =
ρ1
ρ2

, c =
c1
c2
, h =

h1

h2

.

Consider now vibrations of a rod subject to free ends boundary conditions

(3). Since the rod is symmetric, the analysis for χ ≥ 0 is sufficient for derivation

of the frequency equation. The problem may be decomposed into symmetric and

antisymmetric cases. Let us focus on the antisymmetric problem in this section,

adopting for the displacement of the inner part

u = A sinλ1χ, |χ| ≤ 1, (6)

following from Eq.(1). The displacement of the outer part is written in general

form

u = C coshλ2χ+D sinhλ2χ, 1 ≤ |χ| ≤ 1 + h−1. (7)

Substituting Eq.(6) and Eq.(7) into Eq.(2) and Eq.(3), we arrive at

A sinλ1 − C coshλ2 −D sinhλ2 = 0,

A
E

c
cosλ1 + C sinhλ2 −D coshλ2 = 0, (8)

−C sin(hλ2 + λ2) +D cos(hλ2 + λ2) = 0.

A linear algebraic system Eq.(8) possesses non-trivial solutions provided that

the associate determinant vanishes, leading to the frequency equation

tanλ1 tanλ2 =
E

c
. (9)

Using Eq.(8), we can represent the displacement profile as

u = sinλ1χ, |χ| ≤ 1,

u = sinλ1 coshλ2(χ− 1) +
E

c
cosλ1 sinhλ2(χ− 1), 1 ≤ |χ| ≤ 1 + h−1.

(10)
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The studied low-frequency motion may be split into cases of global low-

frequency regime (λ1 ≪ 1, λ2 ≪ 1), and local low-frequency behaviour (λ1 ≪ 1,60

λ2 & 1 or λ1 & 1, λ2 ≪ 1).

3.1. Global low-frequency regime

In case of λ1 ≪ 1 and λ2 ≪ 1, associated with quasi-static behaviour of both

inner and outer components of the rod, the frequency equation Eq.(9) reduces

to the following approximate form

λ1λ2 =
E

c
, (11)

from which we deduce

λ1 =
√

ρh (12)

and

λ2 =

√

E

h
. (13)

Formulas (12) and (13) combined with strong inequalities λ1 ≪ 1, λ2 ≪ 1

imply

E ≪ h ≪ ρ−1, (14)

which gives an estimate for material parameters allowing global low-frequency

regime.

Fig. 2 contains frequency curves depending on the relative thickness h,65

including the decreasing curve of the first mode for the outer part (shown by

a dashed blue line) defined by Eq.(9), and the increasing curves for the first

three modes for the inner part along with the asymptotic approximation Eq.(12)

depicted by dotted line. It can be seen from Fig. 2 that varying h between E

and ρ−1, it is possible to find a range of values of h, such that λ1 and λ2 are70

both small. Good agreement between the first harmonic for λ1 defined from

Eq.(9) and its approximation Eq.(12) is also observed.

It may also be noticed that the distance between the first and second modes

is substantial. This may have a serious implication for the dispersion analysis

of bending of sandwich plates composed of layers having contrast properties.75
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Figure 2: Frequency vs relative thickness h: E = 0.1, ρ = 0.1.

Indeed, the frequencies studied within 1D framework correspond to the cut-off-

frequencies of the plate [10]. Therefore, one may expect that the first cut-off-

frequency being small leads to the phenomena of weak coupling between the

fundamental mode and the first harmonic, requiring special shear deformation

plate theories in the long-wave low-frequency region, see e.g. [12, 13, 14].80

Introducing the dimensionless displacement U =
u

λ1

, and noting that
E

c
≪ 1

from Eq.(11), and that the condition 0 ≤ hλ2(χ − 1) ≤ λ2 holds true for the

outer part, we arrive at the following approximate profile of the eigenform

U = χ, |χ| ≤ 1,

U = 1, 1 ≤ |χ| ≤ 1 + h−1,
(15)

see Fig. 3.

It is readily observed from Fig. 3 that the �stronger� outer parts perform

rigid body motion (at leading order), whereas the �weaker� inner part under-

goes an almost homogeneous deformation.

It is also worth noting that in the vicinity of intersection of curves for λ1
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Figure 3: Displacement profile (15) (global low-frequency regime): h = 1.

and λ2 in Fig. 2, when λ1 = λ2 = λ, in the low frequency region

λ = (Eρ)1/4. (16)

The low-frequency analysis is therefore performed in respect of a small param-85

eter Eρ, which may be interpreted physically as having a �weak� inner and

�strong� outer components.
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Figure 4: Variation of the frequency λ vs the parameter Eρ for antisymmetric vibrations of a

rod with free ends.

It may be observed from Fig. 4 that the first mode of the frequency equa-

tion (9) decreases as Eρ → 0, with the distance between the first and second
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modes increasing. Naturally, the accuracy of the asymptotic approximation (16)90

increases as Eρ → 0.

3.2. Local low-frequency regime for inner section

Let us now consider the case of λ1 ≪ 1 and λ2 & 1, allowing wave-like

phenomena in the outer parts and precluding those in the inner part of the

rod. We note an underlying link with problems of homogenization of periodic

contrast media, see e.g. [8, 15]. The frequency equation is then given by

tanλ2 =
E

hλ2

. (17)

The corresponding scaled displacement takes the form

U = χ, |χ| ≤ 1,

U = coshλ2(χ− 1) +
E

hλ2

sinhλ2(χ− 1), 1 ≤ |χ| ≤ 1 + h−1.
(18)

Let us consider several particular cases.

Case 1. If
E

hλ2

≪ 1, then from the frequency equation (17) tanλ2 ≪ 1,

hence λ2 ≈ πn, with n = 1, 2, 3, . . . . Noting that λ1 ≪ 1 and
E

hλ2

≪ 1, we

deduce
E

h
≪ n ≪ c

h
. (19)

The displacement can be expressed as

U = χ, |χ| ≤ 1,

U = cosπnh(χ− 1), 1 ≤ |χ| ≤ 1 + h−1.
(20)

The resulting first two modes are shown on Fig. 5.

Case 2. If
E

hλ2

≫ 1, then Eq.(17) implies λ2 ≈ π

2
+πn, with n = 0, 1, 2, . . ..

Using the conditions λ1 ≪ 1 and
E

hλ2

≫ 1, we obtain

n ≪ min

[

c

h
,
E

h

]

. (21)

The displacement profile is given by

U = χ, |χ| ≤ 1,

U = cos
π(2n+ 1)

2
h(χ− 1) +

2E

hπ(2n+ 1)
sin

π(2n+ 1)

2
h(χ− 1), 1 ≤ |χ| ≤ 1 + h−1.

(22)
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Figure 5: Displacement profiles (20) (local low-frequency regime for inner part): h = 1. a)

n = 1; b) n = 2.

Note that since
E

λ2h
≫ 1, for χ > 1

U ∼ 2E

hπ(2n+ 1)
sin

π(2n+ 1)

2
h(χ− 1), (23)

with the first term in Eq.(22) acting similarly to a boundary layer, smoothing95

the discontinuity at χ = 1.

The overall profile for the first two modes of the displacement is presented

on Fig. 6.
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Figure 6: Displacement profiles (22) (local low-frequency regime for inner part): h = 1,

E = 10. a) n = 1; b) n = 2.

Case 3. When
E

hλ2

∼ 1, then the conditions for λ2 reduce to

λ2 ∼ E

h
≪ c

h
. (24)
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3.3. Local low-frequency regime for outer sections

Let us consider another case of local low-frequency regime, when λ1 & 1 and

λ2 ≪ 1. The frequency equation is then written as

tanλ1 =
ρh

λ1

, (25)

and the corresponding natural form is given by

u = sinχλ1, |χ| ≤ 1,

u = sinλ1 + Eλ1(χ− 1) cosλ1, 1 ≤ |χ| ≤ 1 + h−1.
(26)

Similarly to the previous subsection the analysis is split into several cases.100

Case 1. If
ρh

λ1

≪ 1, then tanλ1 ≪ 1, hence λ1 ≈ πn, with n = 1, 2, 3 . . . .

Using λ2 ≪ 1 and
ρh

λ1

≪ 1, we infer

ρh ≪ n ≪ h

c
. (27)

The displacement is expressed as

u = sinπnχ, |χ| ≤ 1,

u = (−1)nEπn(χ− 1), 1 ≤ |χ| ≤ 1 + h−1,
(28)

see Fig. 7 for numerical illustrations of the first two modes.
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Figure 7: Displacement profiles (28) (local low-frequency regime for outer parts): h = 1,

E = 0.1. a) n = 1; b) n = 2.

Case 2. If
ρh

λ1

≫ 1, then from (25) λ1 ≈ π

2
+ πn, with n = 0, 1, 2 . . . . The

conditions λ2 ≪ 1 and
ρh

λ1

≫ 1 give

n ≪ min

[

ρh,
h

c

]

. (29)
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Then the displacement profile is

u = sin
π(2n+ 1)

2
χ, |χ| ≤ 1,

u = (−1)n, 1 ≤ |χ| ≤ 1 + h−1,
(30)

see Fig. 8.
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Figure 8: Displacement profiles (30) (local low-frequency regime for outer parts): h = 1. a)

n = 1; b) n = 2.

In view of the conditions λ1 & 1, λ2 ≪ 1 it is expected to observe oscillatory

behaviour for the inner section of the rod along with polynomial dependence for

the outer components, which is confirmed by Figs. 7 and 8.105

Case 3. If
ρh

λ1

∼ 1, the conditions for λ1, allowing low-frequency regime,

can be obtained in the form

λ1 ∼ ρh ≪ h

c
. (31)

4. Further examples

In this section we consider some other types of boundary conditions. We

remark that cases of antisymmetric vibrations of a rod with fixed ends and

symmetric vibrations of a rod with free ends do not allow global low-frequency

regimes and are therefore excluded from consideration.110
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4.1. Symmetric vibrations of a rod with fixed ends

Here we study the fixed ends boundary conditions (4), with the expression

for the displacement of the inner part sought for as

u = A cosλ1χ, |χ| ≤ 1, (32)

whereas the displacement of the outer part taken as Eq.(7).

Following a usual procedure, the frequency equation may be obtained in the

form

cotλ1 cotλ2 =
E

c
. (33)

The displacement profile is given by

u = cosλ1χ, |χ| ≤ 1,

u = cosλ1 coshλ2(χ− 1)− E

c
sinλ1 sinhλ2(χ− 1), 1 ≤ |χ| ≤ 1 + h−1.

(34)

The low-frequency approximation for the frequency equation gives

λ1λ2 =
c

E
, (35)

leading to

λ1 =

√

h

E
(36)

and

λ2 =
1√
ρh

, (37)

with the conditions on material parameters corresponding to the global low-

frequency vibrations written as

ρ−1 ≪ h ≪ E. (38)

The numerical illustrations of the dependence of λ1 and λ2 on h in this case are

very similar to that presented in Fig. 2, and are therefore omitted here.

The corresponding approximate eigenform is written as

u = 1, |χ| ≤ 1,

u = 1− Eλ2
1(χ− 1), 1 ≤ |χ| ≤ 1 + h−1,

(39)
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Figure 9: Displacement profile (39): h = 1, E = 10.

see Fig. 9.115

In the vicinity of λ1 = λ2 = λ, the approximate solution for λ ≪ 1 is given

by

λ = (Eρ)−1/4, (Eρ ≫ 1). (40)
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Figure 10: Dependence of the frequency λ on the parameter Eρ for symmetric vibrations of

a rod with fixed ends.

As may be seen from Fig. 10, the first harmonic for λ defined by Eq.(33)

decreases as Eρ −→ ∞. The large values of Eρ can be interpreted physically

as a composite rod with a �strong� inner part and �weak� outer parts.
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4.2. Vibrations of a rod with mixed boundary conditions

Consider now vibrations of a rod subject to mixed boundary conditions

Eq.(5). The problem now cannot be split into symmetric and anti-symmetric

parts, so all three parts of the rod should be analysed. The displacement is

sought for in the form

u = F coshλ2χ+G sinhλ2χ, −1− h−1 ≤ χ ≤ −1,

u = A cosλ1χ+B sinλ1χ, −1 ≤ χ ≤ 1,

u = C coshλ2χ+D sinhλ2χ, 1 ≤ χ ≤ 1 + h−1.

(41)

Using Eq.(2) and Eq.(5) together with Eq.(41), the frequency equation is

obtained in the form

2 cot 2λ1 cot 2λ2 = α+
1

α
, (42)

where α =
E

c
.120

The displacement profile is then written as

u =
α sinλ2(h+ 1 + hχ)

β
, −1− h−1 ≤ χ ≤ −1,

u =
sinλ1(1 + χ) cosλ2 + α cosλ1(1 + χ) sinλ2

β
, −1 ≤ χ ≤ 1,

u =
cosλ2(h+ 1− hχ)(sin 2λ1 cosλ2 + α cos 2λ1 sinλ2)

β cosλ2

, 1 ≤ χ ≤ 1 + h−1,

(43)

where

β = cosλ1 cosλ2 − α sinλ1 sinλ2.

In the global low-frequency regime with λ1 ≪ 1 and λ2 ≪ 1, the approxi-

mation for the frequency equation is given by

1

2λ1λ2

= α+
1

α
, (44)

from which

λ1 =

√

h

2(E + ρ−1)
, (45)
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and

λ2 =

√

h−1

2(E−1 + ρ)
. (46)

Using the latter together with the inequalities λ1 ≪ 1 and λ2 ≪ 1 we deduce

the following restrictions on the parameters

(E−1 + ρ)−1 ≪ h ≪ E + ρ−1, (47)

allowing the global low-frequency regime.

The approximate profile of the displacement is given by

U =
γ(h+ 1 + hχ)

1− γλ2
1

, −1− h−1 ≤ χ ≤ −1,

U =
1 + χ+ γ

1− γλ2
1

, −1 ≤ χ ≤ 1,

U =
2 + γ

1− γλ2
1

, 1 ≤ χ ≤ 1 + h−1,

(48)

where γ =
E

h
, see Fig. 11.
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Figure 11: Displacement profile (48): h = 1, E = 10.

When λ1 = λ2 = λ, the approximate solution for λ ≪ 1 is

λ =
(4Eρ)1/4√
Eρ+ 1

, (
√

Eρ+
√

(Eρ)−1 ≫ 1). (49)
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Figure 12: Variation of the frequency λ vs the parameter Eρ for the case of mixed boundary

conditions.

Fig. 12 reveals the behaviour of the first and second modes of the frequency

λ governed by (42) as well as approximate solution for the first mode of (49).

It is seen that the first mode decreases in both limits Eρ → 0 and Eρ → ∞,125

indicating possibilities of global low-frequency vibrations in a rod with mixed

boundary conditions for both cases (a �weak� inner part and �strong� outer

parts, or a �strong� inner part and �weak� outer parts).

5. Asymptotic approach

Finally the analysis is extended to an asymmetric rod with free ends where130

the densities and the Young’s moduli of the components are dependent on the

longitudinal coordinate. Since it is not possible to find the exact solution in this

case, we implement a perturbation scheme.

Let us introduce a small parameter ε =
E12

h12

≪ 1 associated with contrast

material properties of the components and consider the global low-frequency

regime of the form λ1 ∼ λ2 ∼ λ3 ∼ ε. The frequencies and the displacement are

17



expanded as asymptotic series

λ2
i = ε(λ2

i0 + ελ2
i1 + ε2λ2

i2 + . . .),

u = u0 + εu1 + ε2u2 + . . . .
(50)

For notational convenience we introduce the following dimensionless scaling

χi =
x

hi
, i = 1, 2, 3,

thus −1 ≤ χ1 ≤ 1, h12 ≤ χ2 ≤ h12 + 1, −h13 − 1 ≤ χ3 ≤ −h13.

The equation of motion Eq.(1) can be rewritten as

d

dχi

(

Ẽi
du

dχi

)

+ ρ̃iλ
2
iu = 0, i = 1, 2, 3, (51)

with the following boundary value problem

u(−1 + 0) = u(−h13 − 0),

u(1− 0) = u(h12 + 0),

εE23h32u
′(−1 + 0) = u′(−h13 − 0),

εu′(1− 0) = u′(h12 + 0),

u′(−1− h13) = 0,

u′(1 + h12) = 0.

(52)

On substituting the expansion Eq.(50) into the equation of motion Eq.(51)

at leading order ε0 we infer

d

dχi

(

Ẽi
du0

dχi

)

= 0, i = 1, 3, (53)

subject to

u′

0(−h13 − 0) = 0,

u′

0(h12 + 0) = 0,

u′

0(−1− h13) = 0,

u′

0(1 + h12) = 0.

(54)

Integrating the equation Eq.(53) we receive

du0

dχi
=

Ci

Ẽi

, i = 1, 3, (55)
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where Ci are constants.135

From Eq.(55) and Eq.(54) it may be deduced that

u0 = UL, −1− h13 ≤ χ3 ≤ −h13,

u0 = UR, h12 ≤ χ2 ≤ 1 + h12,
(56)

where UR and UL are constants of integration.

The leading order problem for the displacement of the inner part is given by

d

dχ1

(

Ẽ1

du0

dχ1

)

= 0, (57)

with

u0(−1) = UL,

u0(1) = UR.
(58)

Integrating Eq.(57) over −1 ≤ χ1 ≤ 1 and employing Eq.(58) we result in

u0 =

χ1
∫

−1

UR − UL

Ẽ1e1
dχ1, −1 ≪ χ1 ≪ 1, (59)

where

e1 =

1
∫

−1

Ẽ−1

1 dχ1.

It is worth noting that the leading order displacement (56), (59) correlates with

Eq.(15) obtained for a symmetric rod, see Fig. 3.

At next order ε1 the analysis for the outer parts gives estimates for frequen-

cies and a relation between UL and UR. The problem is formulated as follows140

d

dχi

(

Ẽi
du1

dχi

)

+ ρ̃iλ
2
i0u0 = 0, i = 1, 3, (60)

subject to

u′

1(−h13 − 0) = E23h32UL,

u′

1(h12 + 0) = UR,

u′

1(−1− h13) = 0,

u′

1(1 + h12) = 0.

(61)
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Integrating the equation Eq.(60) over h12 ≤ χ2 ≤ 1 + h12 and using Eq.(56)

for u0 one arrives at

Ẽ2

du1

dχ2

∣

∣

∣

∣

χ2=1+h12

− Ẽ2

du1

dχ2

∣

∣

∣

∣

χ2=h12

= −λ2
20URr2, (62)

where

r2 =

1+h12
∫

h12

ρ̃2dχ2.

Employing the conditions Eq.(61), we deduce the expression for λ2
20 in the

form

λ2
20 =

Ẽ2(1)(UR − UL)

Ẽ1(1)URe1r2
. (63)

Similarly the expression for λ2
30 is found as

λ2
30 =

Ẽ3(−1)(UL − UR)E23h32

Ẽ1(−1)ULe1r3
, (64)

where

r3 =

−h13
∫

−1−h13

ρ̃3dχ3.

Using the relation λ2 = h23c32λ3 and Eq.(64), it is possible to express λ2
20

as

λ2
20 =

Ẽ3(−1)(UL − UR)h23ρ23

Ẽ1(−1)ULe1r3
. (65)

Therefore from Eq.(63) and Eq.(65) we obtain the solution λ2
20 = 0 associated

with the rigid body motion and

λ2
20 =

1

e1

(

Ẽ2(1)

Ẽ1(1)r2
+

Ẽ3(−1)ρ23h23

Ẽ1(−1)r3

)

, (66)

for which

UL = −URρ23h23

Ẽ1(1)

Ẽ2(1)

Ẽ3(−1)

Ẽ1(−1)

r2
r3

. (67)

In case when Ei and ρi are independent of χi Eq.(66), Eq.(67) reduce to

λ2
20 =

1

2
(1 + ρ23h23), (68)

for which

UL = −URρ23h23, (69)
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respectively.

In case of the symmetric rod considered previously in Section 3.1, ρ23 = 1,

h23 = 1 and

λ2
20 = 1, (70)

with

UL = −UR, (71)

which matches the previous results, see Eq. (15) .

6. Conclusion

The low-frequency vibrations of a three-component elastic rod with contrast

properties have been studied. It is demonstrated that a contrast may result145

in the lowest natural frequencies being close to zero. A classification involving

global and local low-frequency regimes is presented. The conditions on the

problem parameters (14), corresponding to the global low-frequency behavior

are derived.

It could be suggested from the consideration above that the quasi-static150

linear displacement variations occur when a �stronger� part of the system per-

forms almost rigid body motion, with the �weaker� parts undergoing almost

homogeneous deformations. At the same time the constraints due to a �weaker�

part should not allow proper rigid body motion corresponding to the zero nat-

ural frequency.155

Generally speaking, the developed methodology can be regarded as a low-

frequency perturbation of rigid body motions, similarly to ideas expressed in

[16] for a viscoelastic bar with no assumption on the contrast. In the case of

variable problem parameters, see Section 5, the perturbation procedure does

not rely on explicit analytical solution.160

The obtained results have a clear relation to evaluation of the lowest thick-

ness resonance frequencies [10] of layered plates and shells. The approach can be

expanded to more sophisticated formulations for structures with contrast ma-

terial and geometric properties. In a more general setup the solution procedure
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should apparently include numerical routines at least for �weaker� parts of the165

studied structures.
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