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Abstract 

The effect of alcohol hangover on cognitive processing has received little attention. 

We explored the effect of alcohol hangover on choice response time (RT), a dominant 

dependent variable in cognitive research. Prior research of the effect of hangover on RT has 

produced mixed findings; all studies reviewed relied exclusively on estimates of central 

tendency (e.g., mean RT), which has limited information value. Here we present novel 

analytical methods by going beyond mean RT analysis. Specifically, we examined 

performance in hangover conditions (N = 31) across the whole RT distribution by fitting ex-

Gaussian models to participant data, providing a formal description of the RT distribution. 

This analysis showed detriments to performance under hangover conditions at the slower end 

of the RT distribution and increased RT variance under hangover conditions. We also fitted 

an explicit mathematical process model of choice RT—the diffusion model—which estimates 

parameters reflecting psychologically-meaningful processes underlying choice RT. This 

analysis showed that hangover reduced information processing efficiency during response 

selection, and increased response caution; changes in these parameters reflect hangover 

affecting core decisional-components of RT performance. The implications of the data as 

well as the methods used for hangover research are discussed.  

 

(194 words.) 
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The Effect of Alcohol Hangover on Choice Response Time 

  Alcohol hangover refers to the set of adverse symptoms experienced following 

alcohol consumption once alcohol has been eliminated from the blood (Verster et al., 2010). 

A number of biological mechanisms underlying hangover have been put forward such as the 

metabolism of congeners (alcohols in drinks other than ethanol) such as methanol, imbalance 

in the immune system and reduced blood glucose concentration (Penning et al., 2010), as 

well as acetaldehyde level increase, dehydration, sleep deprivation and insufficient eating 

(Verster et al., 2003). Although researchers have some understanding of the physiological 

effects of hangover, much less is known about the cognitive effects of hangover (Prat, Adan, 

Pérez-Pàmies & Sànchez-Turet, 2008; Prat, Adan & Sánchez-Turet, 2009). 

Stephens, Grange, Jones, and Owen (2014) provided a review of studies which have 

investigated the effects of alcohol hangover on general cognition. They reviewed the growing 

evidence base that shows hangover negatively affects core cognitive functions such as 

divided attention (e.g., Roehrs et al., 1991), sustained attention (e.g., Anderson & Dawson, 

1999; McKinney et al., 2012; Rohsenow et al., 2010), attentional selection (e.g., McKinney et 

al., 2012), and some executive functions (e.g., Streufert et al., 1995).   

 The focus of the present study was on the effect of alcohol hangover on response time 

(RT). Simple RT requires no choice between response alternatives, and is merely a reaction to 

an external stimulus (e.g., “Press the space bar as soon as you see a flash on the screen”). 

Choice RT, in contrast, requires participants to make a decision regarding which of multiple 

responses is appropriate given the stimulus presented. For example, if presented with a 

number stimulus, the task might require participants to judge whether the number is odd or 

even, by making a left or right key press, respectively. Choice RT requires more cognitive 

processing than simple RT as an extra stage of response selection is required. 
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Choice RT is a dominant dependent variable in cognitive psychology, and as such, 

forms the foundation of many tests which measure “higher-level” cognitive processes (Voss 

et al., 2013). An understanding of RT processes at a fundamental level is an important goal 

for cognitive science, both with respect to their use to probe higher-level cognition, but also 

in their own right: Response times are interesting to cognitive scientists because everyday life 

often requires efficient response selection and rapid response times. Driving, for example, 

presents us with an incredibly complex environment wherein we must often make rapid 

responses to external stimuli (braking when a child runs out into the street, for example).  

Examination of the effect of alcohol hangover on choice RT is therefore important given the 

necessity of rapid and efficient responding in everyday life.  

In the present paper we report a study that investigated in detail the effect of alcohol 

hangover on choice response time. The novelty of this contribution is that we went beyond 

central tendency (e.g., mean) RT analysis—which, as we discuss in a later section, has 

limited utility for examining true group differences—by examining performance in hangover 

conditions across the whole of the RT distribution, and also by fitting a formal (mathematical) 

model of choice RT to the data. The former allowed us to explore in finer resolution the 

potential effects of hangover on RT performance; the latter allowed us to begin to address 

which aspect of the RT process is influenced by hangover.   

The introduction is organised as follows. First we provide a brief overview of studies 

that have examined whether hangover affects RT. Then, we discuss the potential limitation of 

relying purely on estimates of central tendency when analysing RT in hangover research. We 

then provide a brief introduction to two approaches which we adopt in this study: analysis of 

whole RT distributions (using ex-Gaussian modelling), and fitting of a formal (mathematical) 

model of choice RT.  
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Previous Studies of Hangover and Response Time 

 There is convincing evidence that response time is negatively affected by the acute 

effects of alcohol (see Schweizer & Vogel-Sprott, 2008, for a review). In contrast, the picture 

is still relatively unclear as to whether alcohol hangover affects response time. The brief 

review below only considers when RT was measured in its own right, rather than as a 

dependent variable assessing another function (e.g., selective attention); see Stephens et al. 

(2014) for a review of these. 

 McKinney and Coyle (2004) utilised a naturalistic study, that is, an alcohol study in 

which participants were free to choose the beverage, the quantity consumed, the setting, and 

whether to eat at the same time as drinking (see Stephens et al., 2014). A series of cognitive 

tasks were performed by 48 participants on two separate occasions, one of which was the 

morning after drinking had occurred (hangover condition), and one the morning after no 

drinking (control condition); the order of hangover/control conditions was controlled. A 

simple RT task—requiring participants to respond as soon as they saw an “X” appear on the 

screen—and a 5-choice RT task were employed. The choice RT task required participants to 

move a stylus from a central position to one of five potential target locations; the relevant 

target location for each trial was indicated by a red LED at the correct location.  The results 

showed slower mean simple-RT in the hangover condition; there was no effect of hangover 

on the standard deviation of simple-RT. For the choice-RT task, there was no main effect of 

hangover on initial-movement time (the time taken to move the stylus to the target area), but 

participants who experienced the experiment in the order hangover—no-hangover showed 

slower RTs in their hangover state.  

McKinney et al. (2012) also utilised a naturalistic study where 48 participants came to 

the lab the day after they had been drinking and performed a series of cognitive tasks; 

performance in this hangover condition was compared to the same participants’ performance 
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on a day after they had not been drinking. (There was also an acute alcohol condition.) The 

RT task was again a simple-RT task requiring participants to press the space bar whenever an 

“X” was presented on-screen. Findings showed slower RTs in the hangover condition than in 

the control condition. Rather surprisingly, RTs were also found to be slower in the hangover 

condition than in the acute-alcohol condition. 

In contrast, Kruisselbrink et al. (2006) found no effect of hangover on RT in a lab-

based study. 12 females were tested, and were presented with 0, 2, 4, or 6 bottles of 5% beer 

across 4 sessions; testing occurred 7.5 hours later. The study utilised a 4-choice RT task, 

requiring participants to make a spatially-compatible movement towards one of four 

directions. No effect on RT was reported, but significantly more errors were made as the 

dosage of alcohol increased. From this, the authors concluded that “…the amount of alcohol 

consumed affects decision-making processes but not the speed of information processing” 

(Kruisselbrink et al., p. 419).  

Lemon et al. (1993) also reported no effect of alcohol hangover on RT. In a simple 

RT task, participants responded by pressing a button when an “X” was presented on the 

screen. In the “Mackworth Clock” task, participants had to monitor a schematic of a clock, 

with a rectangle moving clockwise; on a portion of trials, the rectangle would jump further 

ahead in the movement than usual, and subjects had to respond to this oddity by pressing a 

button. Although an effect on simple-RT was found during an intoxicated stage, no effects 

were found in the hangover state. For the Mackworth Clock test, no effect was found on RT 

in either the acute- or hangover-state.  

  

Limitations on Response Time Analysis 

 It is clear that there is some inconsistency in establishing a clear effect of hangover on 

RT (either simple, or choice). However, one potential limitation of studies examining the 
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effect of hangover on RT is that they all relied on central tendency estimates of RT 

performance; most frequently mean RT was analysed. Although the mean and/or median 

provide an efficient summary statistic of an individual’s performance, the information 

reduction inherent in its computation can potentially limit the opportunity for group 

differences to be realised. Participants provide numerous responses in an experimental 

condition, and the central tendency is an estimate of the whole distribution of RTs; this 

reduction of information—many individual RTs collapsed into one estimate—can be 

problematic, as experimental manipulations (or group differences) can emerge in different 

components of the RT distribution whilst leaving the central tendency unchanged (e.g., 

Heathcote et al., 1991). 

 To overcome this potential limitation in our study, we analysed whole-RT 

distributions as well as estimates of central tendency (i.e., median RT). Specifically, we fit an 

ex-Gaussian function to each participant’s RT data for each condition separately (see Balota 

& Yap, 2011; Heathcote et al., 1991), to provide a formal description of the RT distribution 

under hangover and control conditions.  

In addition, we fit a formal (mathematical) model of choice RT to ascertain which 

cognitive process (if any) is affected by hangover. Specifically, we used a diffusion model—a 

very successful model of two-choice RTs which has been used to address a wide variety of 

cognitive questions (see Voss et al., 2013, and Wagenmakers, 2007). The model assumes that, 

when presented with a stimulus, evidence for a response begins to accumulate in a noisy 

fashion towards one of two response boundaries; one boundary represents the correct 

response, and the other represents the incorrect response. The evidence accumulation process 

continues until one of these two response boundaries is breached; at this point, that response 

is considered to be selected. The average rate of evidence accumulation is described by a 

model parameter called drift rate, which reflects information processing efficiency. The 
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response boundary parameter determines how much evidence is required before a response is 

selected. Psychologically, this boundary separation parameter is thought to reflect response 

caution. One other main parameter is the non-decision time—Ter—which describes the time 

for perceptual encoding of the stimulus and executing a motor response. (The model 

collapses both of these processes into this one parameter.) 

 In the present study we were interested in conducting an exploratory investigation of 

which processes in the diffusion model (if any) are influenced by alcohol hangover. It is 

interesting to note that a recent study (van Ravenzaaij, Dutilh, & Wagenmakers, 2012) 

utilised the diffusion model examining the effects of acute-alcohol administration on RT 

using a diffusion model fitting routine, and found alcohol decreased the drift rate parameter, 

and increased the non-decision time; no clear effect was established on the boundary 

separation. This suggests that in their study, alcohol slowed information processing speed and 

increased motor-responding time, but had no effect on response caution. 

 

The Present Study 

In our study, we presented a choice-RT paradigm to participants on two occasions: 

once a day after the participant had engaged in a drinking episode (hangover condition) and 

once the day after the participant had not engaged in a drinking episode (control condition). 

Due to the inconsistency of the effect of hangover on RT in prior studies, we were uncertain 

what to expect in the current study; this is particularly true because this is the first study to 

investigate the effect of hangover on RT processes using the more detailed analyses of ex-

Gaussian and diffusion modelling. Thus, the study reported below can be considered 

exploratory rather than confirmatory (see e.g., Wagenmakers et al., 2012); however, it is 

important to note that all analyses presented were decided upon a priori, as were the 

participant exclusion criteria implemented. The response time task was a component of a 
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battery of tasks presented to participants (with the order of presentation controlled). 

Additional data collected from the same testing sessions will be reported elsewhere (Stephens 

et al., in preparation).  

 

Method 

Participants 

The Keele University Research Ethics Panel approved the study, which was therefore 

performed in accordance with the ethical standards laid down in the 1964 Declaration of 

Helsinki. 100 adult drinkers were recruited. However, not all participants were analysed due 

to a number of a priori exclusion criteria. First, some participants only turned up for one 

session, so those with incomplete data were obviously excluded (n = 22). Participants who 

had positive blood alcohol levels (tested via a breath test) on the day of testing for either the 

hangover or control day were excluded (n = 20), as were participants for whom there was 

missing BAL information (n = 12). Some participants were removed as they did not confirm 

that they had never been diagnosed with a drink or drug problem (n = 4), or they did not 

provide information on drink history (n = 1). Participants who declared they had not had a 

drink the night before the hangover condition and participants who declared they did have a 

drink the night before the control condition were excluded (n = 2). Participants with a body 

mass index (BMI) score over 30 were also excluded (n = 2), to prevent atypical metabolic 

effects influencing the data. Participants who scored below 80% on average in the response 

time paradigm were also excluded (n = 6). One additional participant was removed as their 

RT for the hangover condition was considerably slower than the RT for the control condition 

(~600ms difference). To remain conservative, this participant was removed from analysis.  

After these exclusion criteria, the final sample consisted of 31 participants (see Table 1 for 
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demographic information). Some participants received course credit plus £10, while £20 was 

paid to those ineligible for course-credit. All participants were fully debriefed after testing. 

 

*** Insert Table 1 here*** 

Apparatus & Stimuli 

 The response time task was presented on a standard PC running Windows XP; the 

Experiment was programmed in E-Prime v2.0. Stimuli were presented on an LCD monitor 

the active part of which measured 410 x 258 mm. Stimuli consisted of the numbers 100–900 

(excluding 500), and were presented in white Courier New Font at a size of 18 on a black 

background; the stimulus appeared in a white-framed square with 5cm sides.  

 

Procedure 

A screening interview ascertained inclusion criteria were met and asked participants 

to indicate the days of the week when they usually drink alcohol. An appointment was made 

to attend the lab for assessment following a usual drinking day but this could be cancelled 

where participants’ decided not to drink after all. Time of testing was between 9am and 1pm 

when hangover effects would be most prominent, and test sessions lasted for around 1.5 

hours. Blood alcohol level was verified as zero for all participants using a Lion Laboratories 

Alcometer 500 electronic breath analyzer. The 9-item Acute Hangover Scale (AHS; 

Rohsenow et al. 2007) assessed concurrent hangover severity. The number and type of 

alcoholic beverages consumed over the previous evening and the start and finish time of the 

drinking session were self-reported. These data, together with height and weight 

measurements were used to estimate blood alcohol concentration at the end of the drinking 

session (eBAC) using the formulae suggested by Seidl, Jensen and Alt (2000). The Epworth 

Sleepiness Questionnaire (Johns, 1991) assessed tiredness “at this moment”.  
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 The response time task required participants judging whether a presented 3-digit 

number was lower or higher than 500. The number was selected randomly on each trial from 

the set of potential stimuli. The task presented four blocks of 51 trials, with a self-paced rest 

screen after each block. A single trial consisted of the presentation of the stimulus, centred 

within the white square frame; the stimulus remained on screen until a response was 

registered. Participants were required to press the “Z” key if the number was lower than 500, 

and “M” if the number was higher than 500. Participants were asked to make their response 

as quickly and as accurately as possible using the index finger of each hand. Once a response 

had been registered, the number disappeared, and the stimulus for the next trial appeared 

500ms later.   

 

Design 

 The study employed a naturalistic design in which participants came into the lab after 

a usual night out drinking in the Hangover condition, and were tested after a night with zero 

alcohol consumption for the Control condition. Participants completed both conditions on 

separate days in a randomised order. The state of the participant (Hungover vs. Control) was 

examined. A naturalistic design is preferable to a survey as it allows assessment of concurrent 

hangover effects. Furthermore, although the quantity and type of alcohol consumed is not 

controlled as it would be in a laboratory-based study, naturalistic studies can assess effects of 

the consumption of larger amounts of alcohol than is usual in laboratory based studies 

(Stephens at al., 2014). As dependent variables, we analysed median response time (in 

milliseconds), standard deviation (SD) of RT, and accuracy (%). In later analyses, we also 

examined the parameter estimates from the ex-Gaussian model (mu, sigma, and tau), as well 

as the parameter estimates from the EZ-diffusion model (drift rate, boundary separation, and 

non-decision time). 
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Results 

All analyses in this paper were conducted using R, a statistical programming language and 

environment (R Core Team, 2013)
1
. The code is written with (relatively) user-friendly 

comments throughout, so others can reproduce the analysis presented here should they so 

wish. 

 The analytical strategy for all dependent variables in this paper follows a similar 

pattern. First, for each dependent variable, we report standard inferential statistics (i.e., t-tests 

together with effect sizes [Cohen’s d]) which utilises null-hypothesis significance testing 

(NHST). Given the known weaknesses of NHST (see e.g., Wagenmakers, 2007), in a second 

step we present Bayesian analysis of the data: Specifically, we present Bayes factors—

denoted BF10—using the default Bayesian t-test outlined by Rouder, Speckman, Sun, Morey 

and Iverson (2009) which allowed us to quantify evidence in favour of the alternative 

hypothesis model (i.e., a group difference) compared to the null hypothesis model (no group 

difference).   

 

Global Response Time Performance 

Before any analysis was conducted, we removed all responses faster than 150 

milliseconds (ms), and slower than 10,000ms; we used such a lenient upper-bound on RT as 

the later analysis will focus on analysis of the whole distribution, so we did not wish to trim 

away potentially important detail from the tails of the RT distributions
2
.  Once this trimming 

                                                 
1
 R code of all analyses—and the raw data itself—can be downloaded from the first author’s GitHub account 

https://github.com/JimGrange/paperData/tree/master/Hangover%20Response%20Times  
2
It should be noted that we find the qualitatively the same results when a more standard trimming procedure is 

used. Specifically, we re-ran the analysis in this section using a standard deviation trimming method by 

removing all RTs slower than 2.5SDs above each participant’s mean RT for each condition, as well as all RTs 

faster than 150ms.  

 

https://github.com/JimGrange/paperData/tree/master/Hangover%20Response%20Times


Hangover & Response Time   13 

 

was complete, median correct RT
3
, standard deviation correct RT, and accuracy were 

calculated. 

Median response time. For the median response time, it was found that RTs were 

slower in the hangover condition (519ms, SE=13.87) than the control condition (486ms, 

SE=9.54), 95% Confidence Interval of difference [11, 54ms], t(30) = 3.08, p=.004, d = 0.55. 

The Bayes factors were calculated using the R-package ‘BayesFactor’ (Rouder, 2013). For 

median response time, the Bayes factor (BF10 = 8.94) showed that the data were ~9 times 

more likely under H1 than under H0, which provides moderate evidence for H1. These 

analyses converge on the conclusion that hangover increased median response time.  

Standard deviation of response time. The data showed that the mean SD of RT was 

larger in the hangover condition (228ms, SE=30.38) than in the control condition (157ms, 

SE=16.21), 95% Confidence Interval of difference [34, 109], t(30) = 3.91, p<.001, d = 0.70. 

The Bayes factor for this test (BF10 = 61.63) showed that the observed data were ~61 times 

more likely under H1 than under H0, which provides very strong evidence for H1. These 

analyses converge on the conclusion that hangover increased the standard deviation of 

response time.  

 

Accuracy 

 The data showed that accuracy was lower in the hangover condition (93.58%, 

SE=0.66) than in the control condition (94.31%, SE=0.65), 95% Confidence Interval of 

difference [-1.99, 0.56]; this difference was not statistically significant, t(30) = -1.18, p=.24, d 

= -0.21. The Bayes factor analysis (BF10 = 0.36) suggested the data were slightly more likely 

                                                 
3
 We used median RT as a more conservative estimate of central tendency to account for negative-skew inherent 

in response time distributions. Note that we find the same qualitative pattern of results using mean RT. In fact, 

the effects are larger when using mean RT, so median RT estimates reported here are certainly more on the 

conservative side. 
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under H0 (2.78 times more likely) than under H1, although this evidence can only be 

considered anecdotal.  

 

Global Response Time & Accuracy Summary 

 These analyses suggest that hangover not only slowed response time, RTs were also 

more variable under conditions of alcohol hangover
4
. These effect sizes can be considered 

approximately medium, according to Cohen’s d criteria. Bayesian analysis of these effects 

showed that the data provided very strong support for hangover having a detrimental effect 

on median RT and the standard deviation of RT. However, Bayesian analyses also suggested 

that the effect of alcohol hangover on accuracy is inconclusive, and thus no strong 

conclusions can be established regarding accuracy. 

 

Ex-Gaussian Modelling 

 Ex-Gaussian estimates were obtained for each subject and each condition separately 

by passing the relevant raw correct response times (in the range 150ms–10,000ms) to the 

timefit function of the ‘retimes’ package (Massida, 2013) in R. This method uses a maximum 

likelihood method of estimating parameters using bootstrap resampling with 1,000 iterations; 

the function returns estimates of the best fitting parameters of the ex-Gaussian distribution 

(Mu, Sigma, Tau) for each participant and each condition. Mu reflects the mean of the 

Gaussian component, Sigma reflects the SD of the Gaussian component, and Tau reflects the 

rate of the exponential component. These parameters are then used separately as dependent 

variables when comparing differences between the hangover and control condition.  

                                                 
4
 In exploratory analysis, we investigated whether individual differences in alcohol consumption the night 

before the hangover condition (as measured by the participant’s eBAC score) correlated with the magnitude of 

their effects in median RT, SD RT, and accuracy. Correlations between each of these DVs and were small and 

all non-significant. (This is also true for analyses conducted on ex-Gaussian DVs, and diffusion model DVs). 

This analysis is shown in Appendix B. We also investigated whether alcohol-hangover symptom severity 

correlated with any of our DVs. Again, these correlations were small and all non-significant. This analysis is in 

Appendix C. 
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Mu. The analysis showed that the mu parameter was numerically larger in the 

hangover condition (401, SE=8.43) than in the control condition (397, SE=6.46), but this 

difference was not statistically significant, 95% Confidence Interval of difference [-9, 18], 

t(30) = 0.66, p = .52, d = 0.12. The Bayes factor analysis (BF10 = 0.23) showed that the data 

were ~4 times more likely under H0 than under H1; this provides moderate evidence for the 

null. These analyses suggest that there is no effect of hangover on the mu parameter.  

 Sigma. The analysis showed that the mean estimate for the sigma parameter was 

higher in the hangover condition (47, SE=1.92) than in the control condition (42, SE=1.85), 

95% Confidence Interval of difference [1, 10], t(30) = 2.52, p=.02, d = 0.45. The Bayes factor 

analysis (BF10 = 2.83) showed that the data were ~3 times more likely under H1 than under H0, 

which provides anecdotal support for H1. These analyses all converge on the conclusion that 

hangover increased the sigma parameter of the ex-Gaussian distribution. 

 Tau. The analysis showed that estimates of tau were higher in the hangover condition 

(176, SE=18.02) than in the control condition (127, SE=10.35), 95% Confidence Interval of 

difference [25, 74], t(30) = 4.14, p<.001, d = 0.74. The Bayes factor analysis (BF10 = 108.77) 

showed that the data were ~109 times more likely under H1 than under H0, which provides 

extreme support for H1. These analyses all converge on the conclusion that hangover 

increased the tau parameter of the ex-Gaussian distribution. 

 Ex-Gaussian summary. The ex-Gaussian analysis suggested that hangover is 

influencing the sigma parameter and the tau parameter. The combined effect is that the 

response times in the hangover condition are modelled as being more spread out and more 

negatively-skewed. To provide a more intuitive presentation of the effect of hangover on the 

response time distributions in the current data set, we simulated 100,000 response times for 

each condition using the means of the best-fitting ex-Gaussian parameters. The distribution 

plots for each simulated condition are shown in Figure 1.  
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***Insert Figure 1 here*** 

 The distribution plots are overlapping, so that the effect of hangover can be seen more 

clearly; the control data is presented in the solid-line, and the hangover data in the dashed line. 

As can be seen, the control data are more compact toward the faster end of the distribution, 

with lower density towards the tail end of the distribution. The hangover data, on the other 

hand, has a more spread density function, with higher densities than the control condition at 

the tail end of the distribution.  

 

Diffusion Modelling 

We fit the data using the EZ-diffusion model (Wagenmakers et al., 2007), which 

requires mean correct RT, variance of correct RT, and proportion correct from each 

participant and condition in order to estimate model parameters. For the correct mean and 

variance RT, we again only used RTs in the range 150ms–10,000ms. The EZ-diffusion model 

was fitted to each subjects’ data for each condition separately. Parameter estimates for two 

participants included negative values; these participants were removed from this analysis. 

Analysis adapted the R-functions provided by Wagenmakers et al. (2007).  

 Drift rate. The analysis showed that the mean estimate for the drift parameter was 

lower in the hangover condition (0.233, SE=0.01) than in the control condition (0.269, 

SE=8.35e-03), 95% Confidence Interval of difference [-0.055, -0.018], t(28) = -4.11, p<.001, 

d = -0.76. The Bayes factor analysis (BF10 = 93.61) showed that the data were ~94 times 

more likely under H1 than under H0, which provides very strong support for H1. These 

analyses all converge on the conclusion that hangover decreased the drift rate parameter of 

the EZ-diffusion model. 

 Boundary separation. The analysis showed that the mean estimate for the boundary 

separation parameter was higher in the hangover condition (0.130, SE=7.63e-03) than in the 
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control condition (0.111, SE=4.49e-03), 95% Confidence Interval of difference [0.006, 

0.031], t(28) = 3.03, p=.005, d = 0.56. The Bayes factor analysis (BF10 = 7.96) showed that 

the data were ~8 times more likely under H1 than under H0, which provides moderate support 

for H1. Taken together, these analyses suggest that there is a clear effect of hangover on the 

boundary separation parameter. 

 Non-decision time. The analysis showed that the mean estimate for the non-decision 

parameter was lower in the hangover condition (0.291, SE=1.54e-02) than in the control 

condition (0.320, SE=8.52e-03), 95% Confidence Interval of difference [-0.059, 0.0004]; this 

difference was not statistically significant, t(28) = -2.019 p=.053, d = -0.38. The Bayes factor 

analysis (BF10 = 1.16) showed that the data were ~1 times more likely under H1 than under H0, 

which provides no evidence for either hypothesis. These analyses suggest that there is no 

clear effect of hangover on non-decision time. 

 

Diffusion Model Summary 

 Under conditions of hangover, information processing speed (as measured by the drift 

rate parameter) was reduced, and response caution (as measured by the boundary separation 

parameter) was increased. These two parameters reflect core decision-making processes in 

choice RT models, so our data suggests that hangover is influencing decision making 

processes during performance. 

 

General Discussion 

 In this study, we were interested in the effect of alcohol hangover on choice response 

time processes. The novel approach of our study was to examine group differences across the 

whole distribution of RTs, and to fit a cognitive model of choice RT to the data, in an attempt 

to elucidate which process of RT—if any—is affected by alcohol hangover.  The outcome of 
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the analysis of median RT and standard deviation of RT was clear-cut: RTs were slower and 

more variable in hangover conditions compared to control conditions. Thus, in our data, 

hangover negatively affected RT. There was no clear effect on accuracy; NHST methods 

showed a non-significant decrease in accuracy under hangover conditions, suggesting 

hangover does not influence accuracy. However, the Bayesian analysis suggests there was 

only anecdotal support for the null. Therefore, no firm conclusions can be drawn from this 

analysis. 

 

RT Distribution Analysis 

 The ex-Gaussian analysis showed hangover affected two parameters of the ex-

Gaussian model: the sigma parameter was increased under hangover conditions, suggesting 

the Gaussian component of RT was more variable under hangover condition; the tau 

parameter was increased under hangover conditions, suggesting hangover RTs were more 

negatively skewed. The distribution analysis is advantageous as it examines RT performance 

at a higher resolution than central-tendency analysis alone (Balota & Yap, 2011). Although 

the parameters of the ex-Gaussian model do not map clearly onto discrete psychological 

processes (Matzke & Wagenmakers, 2009), in a large individual-differences study, 

Schmiedek et al. (2007) found (via latent factors analysis) that tau parameters were strong 

unique predictors of working memory, reasoning, and psychometric speed, suggesting a 

relation between tau parameters and measures of “higher-level” cognitive processing. Thus, 

one could be tempted to conclude that hangover is negatively affecting “higher-level” 

cognitive processes during rapid decision making. However, as no cognitive theory underlies 

the ex-Gaussian distribution (Heathcote et al., 1991; Matzke & Wagenmakers, 2009), we 

should be conservative about making such links between differences in ex-Gaussian 
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parameters and differences in higher-level cognitive processes. However, this can be 

achieved with the diffusion model. 

 

Diffusion Model Analysis 

 In an attempt to elucidate which psychological process of RT is affected by hangover, 

we fit a simplified ‘EZ’ version of the Ratcliff-diffusion model to our data. This analysis 

estimates parameters reflecting psychological processes underlying choice RT, and thus can 

be used to infer changes in psychological processes due to hangover. We found a clear 

reduction in the drift rate parameter, which reflects the rate of evidence accumulation towards 

a response. This parameter reflects the information processing efficiency during response 

selection, and thus the data suggests that hangover negatively affected information processing 

efficiency. We also found a clear increase in the boundary separation parameter, which 

reflects the height of the response boundary; higher boundaries reflect more cautious 

responding. We found no effect of hangover on the non-decision time parameter, which 

reflects the time taken to perceptually encode the stimulus, and make a motor response. This 

analysis suggests that alcohol hangover reduces the efficiency of information processing 

(measured by the drift rate) and induces a more cautious mode of responding (measured by 

the boundary parameter). Interestingly, this raises the possibility that participants used a more 

cautious mode of responding (by raising their response caution) in order to compensate for 

the reduced information processing efficiency due to hangover. The boundary separation 

parameter has been shown to be under the control of the participant (Bogacz et al., 2010) 

allowing the participant to trade speed for accuracy: a situation with reduced evidence quality 

(e.g., from a noisy stimulus)—which will produce a low drift rate—can lead to high error 

rates; by increasing response caution, errors are reduced because more evidence is required 

before a decision is committed. As such, a higher response boundary lowers the probability of 
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the evidence accumulation to reach the incorrect boundary (which therefore leads to higher 

accuracy), which would be advantageous under conditions with a reduced drift rate. 

 Choice of Diffusion Model. There are many versions of the diffusion model which 

can be fitted in a variety of different ways (see Wagenmakers, 2009, and Voss et al., 2013, 

for reviews). Thus, EZ is one of many variants we could have chosen. As such, the possibility 

remains that our results depend on the peculiarities of the method used, rather than being 

inherent to our data. Usage of the EZ diffusion model was governed by several important 

considerations. First, a recent paper (van Ravenzwaaij et al., 2012) examining the effects of 

alcohol on choice RT found the EZ model produced the most stable parameter estimates from 

a few alternatives. Secondly, a simulation study found the EZ model was robust in its ability 

to accurately estimate model parameters (van Ravenwaaij & Oberauer, 2009). To ascertain 

the robustness of our findings against the exact fitting method used, we repeated our analysis 

using two other fitting routines (see Appendix A): the robust-EZ algorithm provided by 

Wagenmakers et al. (2008), and the RWiener package in R (Wabersich & Vanderckhove, 

2014). Reassuringly, there was large agreement between all three implementations. However, 

the RWiener implementation additionally found a clear reduction in non-decision time during 

hangover, which neither of the other two implementations found. It is not clear what explains 

this discrepancy between the implementations, but we note that in EZ and Robust-EZ there is 

a trend for non-decision time to be faster in hangover conditions compared to control 

conditions. It is not clear why hangover should reduce non-decision time, but that two out of 

three implementations did not show a clear reduction, we are cautious about interpreting this 

finding. In summary, all three implementations show a clear reduction of drift rate and a clear 

increase in boundary separation in hangover conditions. 
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Relation to Alcohol-Intoxication Studies  

We note that these results of the diffusion model analysis agree to some extent with 

those reported by van Ravenzaaij et al. (2012), who used the diffusion model to analyse the 

effects of acute-alcohol intoxication on choice RT. They found alcohol conditions decreased 

the drift rate parameter, and increased the non-decision time; they found no effect on the 

boundary separation parameter (recall that we have found a clear reduction of drift rate, a 

clear increase in boundary separation, and no effect on the non-decision time parameter under 

hangover conditions). Thus, both studies find clear negative effects of alcohol and hangover 

on information processing speed. It is not clear what explains differences between the 

findings of our study and that of van Ravenzaaij et al. for the other two parameters, but we 

here note some possibilities. First, there is no reason to necessarily expect to find similar 

patterns of data in hangover conditions as you find during periods of acute alcohol 

intoxication; thus, the absence of alcohol intoxication in our participant groups may be 

sufficient to explain the discrepant findings. Secondly, the study by van Ravenzaaij et al. 

utilised a perceptual-decision task, whereas our task was more memory-driven (relying on 

semantic knowledge of whether a presented number is lower/higher than a designated 

reference point); we are not aware of any study investigating whether the type of 

experimental design (i.e., perceptual vs. memory-driven) affects estimates of model 

parameters. Thirdly—as far as we are aware—these two studies are the only ones to have 

utilised the diffusion model to address group differences in alcohol-related designs; thus, the 

differences in findings may be a natural tendency of there being no consensus of findings 

until a sufficient body of replication and extension has been accrued. This remains an 

essential area for future work to build on these studies to ascertain how alcohol and hangover 

influence choice RT processes. 
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Limitations 

One limitation of this study was the sizeable participant drop-out which saw only 31 

of the 100 recruited individuals appear in the analyses. While on one hand it would have been 

preferable to maintain a larger proportion of recruits, on the other hand we have explained 

why these participants were excluded, and the study would have been weaker rather than 

stronger had we not made those exclusions. We might also have attempted to control for 

circadian typology, that is, whether participants are morning types, evening types or neither 

types (Prat & Adan, 2011). While the time of testing was relatively standard and at a time 

when hangover would be most likely (9am – 1pm), should there have been an excess of 

evening types in our sample this might have exaggerated the extent of decrement observed in 

the hangover state.  

 

Conclusion 

 This study has shown that alcohol hangover induces slower, more variable choice RT. 

Model analysis shows that hangover negatively influenced information processing efficiency 

and increased response caution. As information processing efficiency is a major component 

of response selection during performance, finding a reduction of capacity during hangover 

has clear implications for an individual’s performance during hangover, even when no 

alcohol is present in the system. The data suggests that participants may compensate for this 

by entering a more cautious mode of responding. This may have implications for safety 

critical tasks such as driving, which has been shown to be negatively affected by alcohol 

hangover (Verster, Bervoets, de Klerk, Vreman et al., 2014). 

 This study has also highlighted the importance of going beyond estimates of central 

tendency when wishing to investigate potential effects of alcohol hangover on choice 

response time. Doing so allows us to ask much richer questions. Instead of asking whether 
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hangover affects response time, we can start to ask—and indeed answer—which cognitive 

process of response time is affected by alcohol hangover. Future work should build on the 

methods presented here via confirmatory replications (Open Science Collaboration, 2015; 

Wagenmakers et al., 2012) and extensions (e.g. including measures of circadian typology) so 

that we can begin to form a better picture of the cognitive effects of alcohol hangover.     
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Figure 1. Density plot of simulated data using the mean values of the best-fitting ex-

Gaussian parameters. 100,000 response times were simulated from each condition.  
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Table 1. Descriptive statistics of participant characteristics. 

Variable Mean Value Standard Deviation 

Sex   

   Males N = 11 – 

   Females N = 20  – 

Age (Years) 19 1.32 

BMI 23.38 4.59 

Epworth Sleepiness Scale Score 7.12 3.65 

AHS Score
1
 31.6 10.01 

Units
2
 Consumed Evening Before Hangover 13.16 7.70 

Usual Weekly Units 15.71 13.81 

eBAC (%) 0.18 0.19 

1
 One participant did not complete this questionnaire 

2
 A unit of alcohol contains 8g of ethanol. 
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Appendix A – Alternative Diffusion Model Implementations 

 

Diffusion Model Analysis using RobustEZ Implementation 

Drift rate. The analysis showed that the mean estimate for the drift parameter was 

lower in the hangover condition (0.264) than in the control condition (0.304), 95% 

Confidence Interval of difference [-0.056, -0.023], t(30) = -4.92, p<.001. The Bayes factor 

analysis (BF10 = 789.16) showed that the data were ~789 times more likely under H1 than 

under H0, which provides extreme support for H1.  

 Boundary separation. The analysis showed that the mean estimate for the boundary 

separation parameter was higher in the hangover condition (0.111) than in the control 

condition (0.099), 95% Confidence Interval of difference [0.004, 0.021], t(30) = 2.92, p<.01. 

The Bayes factor analysis (BF10 = 6.38) showed that the data were ~6 times more likely 

under H1 than under H0, which provides moderate support for H1. 

 Non-decision time. The analysis showed that the mean estimate for the non-decision 

parameter was slightly lower in the hangover condition (0.346) than in the control condition 

(0.352), 95% Confidence Interval of difference [-0.017, 0.005]; this difference was not 

statistically significant, t(55) = -1.07, p=.29. The Bayes factor analysis (BF10 = 0.32) showed 

that the data were ~3.13 times more likely under H0 than under H1, which provides moderate 

support for the null hypothesis. 

 

Diffusion Model Analysis using RWiener Implementation 

Drift rate. The analysis showed that the mean estimate for the drift parameter was 

lower in the hangover condition (2.279) than in the control condition (2.627), 95% 

Confidence Interval of difference [-0.5.18, -0.179], t(30) = -4.19, p<.001. The Bayes factor 

analysis (BF10 = 126.14) showed that the data were 126 times more likely under H1 than 

under H0, which provides extreme support for H1.  
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 Boundary separation. The analysis showed that the mean estimate for the boundary 

separation parameter was higher in the hangover condition (1.553) than in the control 

condition (1.378), 95% Confidence Interval of difference [0.069, 0.280], t(30) = 3.37, p=.002. 

The Bayes factor analysis (BF10 = 17.31) showed that the data were ~17 times more likely 

under H1 than under H0, which provides strong support for H1. 

 Non-decision time. The analysis showed that the mean estimate for the non-decision 

parameter was lower in the hangover condition (0.257) than in the control condition (0.280), 

95% Confidence Interval of difference [-0.041, -0.005]; this difference was statistically 

significant, t(30) = -2.59, p=.014. The Bayes factor analysis (BF10 = 3.20) showed that the 

data were ~3 times more likely under H1 than under H0, which provides moderate support for 

the alternative hypothesis. 
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Appendix B – Examination of Individual Differences of Alcohol Consumption & 

Dependent Variables 

In this analysis, we were interested in whether the critical difference in each dependent 

variable (i.e., Hangover condition performance minus control condition performance) 

correlated with our measure of alcohol consumption. To achieve this, we performed 

correlations for each DV difference score between the DV of interest and the participants’ 

eBAC scores. The correlation plots are below, with the Pearson product-moment correlation 

stated as the header of each plot. The first row shows median RT, standard deviation RT, and 

accuracy. The middle row shows each parameter from the ex-Gaussian model, and the final 

row shows each parameter from the EZ-diffusion model. 
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Appendix C – Examination of Individual Differences of Alcohol Hangover Symptom  

Severity & Dependent Variables 

In this analysis, we were interested in whether the critical difference in each dependent 

variable (i.e., hangover condition performance minus control condition performance) 

correlated with our measure of alcohol hangover symptom severity. To achieve this, we 

performed correlations for each DV difference score between the DV of interest and the 

participants’ AHS scores. The correlation plots are below, with the Pearson product-moment 

correlation stated as the header of each plot. The first row shows median RT, standard 

deviation RT, and accuracy. The middle row shows each parameter from the ex-Gaussian 

model, and the final row shows each parameter from the EZ-diffusion model. 
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