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Bayesian bivariate meta-analysis
of correlated effects: Impact of
the prior distributions on the
between-study correlation,
borrowing of strength, and
joint inferences
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Abstract

Multivariate random-effects meta-analysis allows the joint synthesis of correlated results from multiple

studies, for example, for multiple outcomes or multiple treatment groups. In a Bayesian univariate meta-

analysis of one endpoint, the importance of specifying a sensible prior distribution for the between-study

variance is well understood. However, in multivariate meta-analysis, there is little guidance about the choice

of prior distributions for the variances or, crucially, the between-study correlation, �B; for the latter,

researchers often use a Uniform(�1,1) distribution assuming it is vague. In this paper, an extensive

simulation study and a real illustrative example is used to examine the impact of various (realistically)

vague prior distributions for �B and the between-study variances within a Bayesian bivariate random-

effects meta-analysis of two correlated treatment effects. A range of diverse scenarios are considered,

including complete and missing data, to examine the impact of the prior distributions on posterior results

(for treatment effect and between-study correlation), amount of borrowing of strength, and joint predictive

distributions of treatment effectiveness in new studies. Two key recommendations are identified to improve

the robustness of multivariate meta-analysis results. First, the routine use of a Uniform(�1,1) prior

distribution for �B should be avoided, if possible, as it is not necessarily vague. Instead, researchers

should identify a sensible prior distribution, for example, by restricting values to be positive or negative

as indicated by prior knowledge. Second, it remains critical to use sensible (e.g. empirically based) prior

distributions for the between-study variances, as an inappropriate choice can adversely impact the posterior

distribution for �B, which may then adversely affect inferences such as joint predictive probabilities. These

recommendations are especially important with a small number of studies and missing data.
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1 Introduction

The multivariate meta-analysis approach has been advocated to jointly synthesise multiple correlated
results from related research studies.1,2 For example, in a meta-analysis of multiple outcomes, a cancer
patient’s overall survival time is likely to be correlated with their progression-free survival time, and
therefore, treatment effect estimates for both outcomes are likely correlated within a study. Similarly,
in a network meta-analysis of multiple treatment groups, the treatment effect for A vs. B is likely
correlated with that for A vs. C. Compared to separate univariate meta-analyses, the multivariate
approach utilises such correlation to gain additional information toward the estimation of summary
meta-analysis results.3,4 This is especially advantageous when there are missing effect estimates in some
studies (such as missing direct comparisons in network meta-analysis) and when there is potential
outcome reporting bias,5,6 as the correlation can lead to more precise inferences and/or a reduction in
bias,2 which has been referred to as ‘borrowing of strength’7.

The Bayesian framework for multivariate meta-analysis is a natural way to account for all parameter
uncertainty, to make predictions regarding the possible effects in new studies, and to derive joint
probability estimates regarding the multiple effects of interest. However, it requires the specification
of prior distributions for all unknown parameters, which may be considered a disadvantage when
genuine prior information does not exist. A previous simulation study of Bayesian univariate meta-
analyses8 found that the pooled effect estimates can be particularly sensitive to the choice of prior
distribution for the between-study variance, even when seemingly ‘vague’ prior distributions are
specified. To address this, previous work has utilised a large collection of existing meta-analyses to
generate empirical prior distributions for the unknown between-study variance in a new univariate
meta-analysis of intervention effects for continuous outcomes9 and binary outcomes,10,11 across a wide
range of healthcare settings, such as where the outcome of interest is all-cause mortality.

In addition to prior distributions for the between-study variances, a multivariate meta-analysis
also requires prior distribution(s) for the between-study correlation(s). One might address this using
the conjugate prior distribution for the entire between-study variance-covariance matrix, which is
the inverse-Wishart prior distribution, and this has been used by previous authors, such as bivariate
meta-analyses of test accuracy studies.12–14 However, others argue that it is preferable to place
separate prior distributions on each component of the between-study variance-covariance matrix
because the Wishart prior distribution can be very influential toward the posterior estimates of the
between-study variances;14–17 the Wishart distribution is a generalisation of the Gamma
distribution, which is known to be influential in univariate meta-analysis when used as a prior
distribution for the between-study variances, especially when the true between-study variances are
close to zero.8 Separation of the between-study variance-covariance matrix also allows more
flexibility in the choice of prior distributions for each component, for instance if genuine prior
information was available for some, but not all, of the components.

In situations where separate prior distributions are placed on the between-study variances and
correlations, an unanswered question remains: what is the impact of the choice of prior distributions
for the between-study correlations and variances in a multivariate meta-analysis, especially in
situations where little or no prior information is available? Appropriate estimation of the
between-study variance-covariance matrix is important to making valid inferences, and thus
undesired influence of prior distributions is unwanted when prior information is unavailable. For
instance, appropriate estimation of the between-study correlation is desired because it dictates the
magnitude of the borrowing of strength1 and is therefore potentially influential toward pooled
effects, credible intervals and prediction intervals; it is also pivotal when estimating functions of
the pooled estimates or when deriving joint probability estimates (such as the probability that the
treatment is effective for all outcomes). However, in our experience, most previous Bayesian
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applications of multivariate meta-analysis (including some of our own) adopt a Uniform(�1,1) prior
distribution for the between-study correlation but do not conduct sensitivity analyses to check
whether it is appropriate or influential.1,17,18

The aim of this paper is to examine the impact of seemingly vague and realistically vague prior
distributions for the between-study correlations and variances in a bivariate meta-analysis, to extend
previous work in the univariate setting.8 Real application and an extensive simulation study are
described, focusing on a Bayesian bivariate meta-analysis of treatment effects for two correlated
outcomes, and investigating how the choice of prior distributions impacts upon posterior estimates
of the pooled treatment effects and between-study covariance matrix, the accuracy of 95% credible
and prediction intervals, and joint probabilistic inferences. Both complete and missing outcome data
situations are examined, and the impact on the amount of borrowing of strength (that is, the change
in pooled results and credible intervals from univariate to bivariate analysis) is also considered.

The remainder of this paper is structured as follows. Section 2 introduces the bivariate random-
effects meta-analysis model and potential prior distributions for the between-study variances and
correlation. Section 3 describes the methods and results of the simulation study. The key findings are
then illustrated in the context of a real meta-analysis dataset in Section 4. Section 5 concludes with
some discussion and recommendations.

2 General model for bivariate random-effects meta-analysis

This section summarises the general framework for bivariate meta-analysis, and it introduces
possible prior distributions for the between-study variances and correlation. We focus on the use
of bivariate meta-analysis for two correlated outcomes, but the issues remain similarly pertinent in
other situations of correlated effects, such as multiple treatment groups (network meta-analysis) and
multiple performance statistics (such as sensitivity and specificity).19,20

2.1 Model specification

Suppose that each of i ¼ 1 to n, studies examines an effect of interest (such as a treatment effect) for
two outcomes (j ¼ 1, 2), such as systolic and diastolic blood pressure, or overall and progression-free
survival. Let each study provide the estimated effects, Yi1 and Yi2, and their associated standard
errors, si1 and si2, where each Yij is an estimate of an underlying true value, �ij, and these true values
may vary between studies due to heterogeneity. Assuming the Yij and �ij are drawn from a bivariate
normal distribution, and that the within-study variance-covariance matrix (Si) is known, then the
bivariate random-effects meta-analysis model can be specified as

Yi1

Yi2

� �
� N

�i1

�i2

� �
, Si

� �

Si ¼
s2i1 �Wi

si1si2

�Wi
si1si2 s2i2

 !

�i1

�i2

� �
� N

�1

�2

� �
, D

� �

D ¼
�21 �B�1�2

�B�1�2 �22

 !
ð1Þ
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The true values (�ij), therefore, have a mean value �j (referred to as the ‘pooled’ effect for outcome j)
and between-study variance, �j

2. The within-study covariance matrix, Si, contains the known within-
study variances, s2ij, and within-study covariances, �Wi

si1si2, for each trial, where �Wi
represents the

within-study correlation of Yi1 and Yi2. The between-study covariance matrix,D, contains the unknown
between-study variances, �j

2, and the unknown between-study correlation, �B, of the �i1s and �i2s.
Multivariate extensions to the bivariate model (1) follow naturally, although are more complex due
to the increasing number of between-study variances and correlations that require estimation.2,14,21,22

2.1.1 Within-study and between-study correlation

Within-study and between-study correlation are two measures of correlation in a multivariate
random-effects meta-analysis model. The within-study correlation is a measure of the association
between the effect estimates in each study and is caused by the same patients contributing correlated
data toward both outcomes. Estimation of model (1) typically assumes that these are known (just as
the within-study variances are assumed known),1 and for the purposes of this paper, we also make
this assumption. Authors such as Riley et al.23 and Trikalinos et al.24 detail how to derive within-
study correlations when individual participant data are available, but these can also be
approximated using aggregate data in some other situations.25 Alternatively, it is possible to
construct prior distributions from previous studies.21,22

The between-study correlation is a measure of how the true underlying effects are related across
studies and occurs because of between-study heterogeneity in, for example, the dosage of a drug or
patient characteristics of the study populations, such as age. The between-study correlation is
unknown and must be estimated in the meta-analysis model, alongside the between-study variances.

Both within- and between-study correlation can influence the amount of borrowing of strength in
a bivariate meta-analysis.5,7 Within-study correlations are more influential when the within-study
variances are large relative to the between-study variance, whereas the between-study correlation is
more influential when the between-study variances are large relative to the within-study variances.
Furthermore, accounting for such correlation is essential when an aim is to make joint inferences
about the two effects of interest, such as the probability that they are both above a particular value.

2.2 Model estimation

In a frequentist framework, model (1) can be estimated by methods of moments or restricted
maximum likelihood.2 Within a Bayesian framework, the likelihood pertaining to model (1) is
combined with prior distributions for the unknown parameters of �j, �j

2, and �B, and then
posterior inferences are derived by sampling from the marginal posterior distributions using, for
example, Markov chain Monte Carlo (MCMC) via Gibbs sampling. The convergence of parameters
must be checked, which can be done visually using history and trace plots, and possible
autocorrelation must be examined, which can be reduced by thinning the samples.

The prior distributions for the pooled effects (�j) are not evaluated and are given a vague N(0,
10002) prior distribution throughout. Here, the focus is on examining different choices of the prior
distributions for �j

2 and, especially, �B, and these are now discussed.

2.3 Choice of prior distribution for sj

In univariate meta-analysis, the prior distribution for 1/�2 was once commonly chosen to be the
Gamma(e, e) distribution with the misperception that if e were very small (i.e. 0.001), then this
distribution would be ‘vague’8. However, previous work by Lambert et al.8 (and more generally
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outside the meta-analysis field by Gelman26) demonstrated that the Gamma distribution is not
appropriate, as posterior inferences for the between-study variance and pooled effects are
sensitive to e. Here, e must be set to a reasonable value, or meta-analysts should rather use one
of a number of different weakly informative prior distributions discussed by Lambert et al.8 and
Gelman.26 These refer to distributions that are set up so that the information they provide is weak
but contain only realistic values for the variance. These include the half-Normal (0,a)
distribution,27,28 and the half-t family of distributions, such as the half-Cauchy distribution.26 In
particular, for the half-Normal (0,a) distribution, the value of a can be chosen to cover all realistic
values of the between-study variance, for example, as identified from other previous meta-analyses
of the same outcome type in the same disease field.

The latter idea leads naturally to empirically based prior distributions for the between-study
variances.29 Indeed, previous work has used a large collection of existing meta-analyses to
generate empirical prior distributions for the unknown between-study variance in a new
univariate meta-analysis of intervention effects for continuous outcomes9 and binary
outcomes,10,11 across a wide range of healthcare settings, such as where the outcome of interest is
all-cause mortality.

Here, in the setting of bivariate meta-analysis, we interrogate some inappropriate and sensible/
weakly informative prior distributions for the between-study variances, to explore their impact on
bivariate meta-analysis estimates and conclusions. In particular, in the simulation study (Section 3),
two contrasting prior distributions for the between-study variances are compared: an inappropriate
Gamma distribution and a more suitable truncated normal distribution that was suggested by
Lambert et al.8 Then, in the illustrative example in Section 4, a relevant empirical prior
distribution is chosen and compared to an inappropriate Gamma prior distribution.

We include an inappropriate Gamma distribution for 1/�2 in both simulations, and the example
to highlight the danger of using this (or its extension, the Wishart distribution) as a prior distribution
for the between-study variances in the context of bivariate meta-analysis applications, with
particular emphasis on how it can adversely affect the posterior distribution for �B, and the
amount of borrowing of strength toward the pooled effects. Although it is well documented that
inverse-Gamma and Wishart prior distributions for variance terms are inappropriate, unfortunately,
they are still adopted in the meta-analysis field. For example, Menke,30 Riley et al.,12 and
Zwinderman and Bussuyt13 use a Wishart prior distribution in bivariate meta-analyses of
sensitivity and specificity from multiple test accuracy studies. Yang et al.31 use a Wishart prior
distribution in their network meta-analysis of multiple therapies for acute ischemic stroke, as
does Jansen32 in a network meta-analysis of multiple treatments of lung cancer. In their seminal
paper on the Bayesian approach to multivariate meta-analysis of multiple outcomes, Nam et al.18

use an inverse Gamma prior on each of the between-study variances. Therefore, given its continued
use, herein it is important to demonstrate the drawback of the Gamma prior distribution within
multivariate meta-analysis, with a novel angle on its impact on �B, the amount of borrowing of
strength and joint inferences.

2.4 Choice of prior distribution for qB

A range of (realistically) vague prior distributions for the between-study correlation are considered
to account for varying levels of hypothetical prior knowledge. Below are five possible prior
distributions in which options 1 to 3 allow the between-study correlation to be positive or
negative, and options 4 and 5 only allow the between-study correlation to be positive. The five
prior distributions are shown in Figure 1.
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Option 1

�B � Uð�1, 1Þ

This prior distribution gives equal weight to all possible positive and negative values of correlation.
This distribution is often used in practice1,17,18 and is usually considered when there is no prior
information regarding the true value of the between-study correlation.

Option 2

z ¼
1

2
log

1þ �B
1� �B

� �
� Nð0, SD ¼ 0:4Þ

This prior distribution is referred to as a Fisher prior, and it is similar to option 1, as it has the same
mean and allows both positive and negative values21 but gives more weight around the mean and less
weight at the extremes.

Figure 1. Density plots for prior distributions for between-study correlation: (a) �B�Uniform(�1,1) (option 1);

(b) 1
2
log 1þ�B

1��B

� �
�N(0, SD ¼ 0.4) (option 2); (c) �Bþ1ð Þ

2
�Beta(1.5,1.5) (option 3); (d) �B�Uniform(0,1) (option 4);

(e) logit(�B)�N(0, SD ¼ 0.8) (option 5).
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Option 3

�B þ 1ð Þ

2
� Betað1:5, 1:5Þ

Similar to options 1 and 2, this Beta prior distribution also allows for positive and negative values of
the between-study correlation. It is similar to option 1 in that it is relatively flat across the range of
values, with the exception that values at the extreme ends of the distribution are considered
extremely unlikely. The scale and shape parameter values of 1.5 are chosen here to ensure a prior
distribution that is noticeably different to both options 1 and 2.

Option 4

�B � Uð0, 1Þ

This prior distribution gives equal weight to all possible positive values of correlation.

Option 5

logitð�BÞ � Nð0, SD ¼ 0:8Þ

Similar to option 4, this logit prior distribution allows only positive values; however, more weight is
given around the mean and less weight is given in the tails of the distribution.

Although these five prior distributions reflect a key range of options, we recognise that other
choices of prior distributions could be specified. In particular, it may be that negative values of the
correlation are very unlikely but not impossible and therefore a prior distribution might be specified
that, unlike priors 4 and 5, allows for some small probability of negative values. An example of such
a prior distribution is shown in the Supplementary Material. Clearly, the choice will be context
specific but here onwards the five prior distributions described above are our key focus.

3 Simulation study to examine choice of prior distributions

We now describe the methods and results of the simulation study to examine the impact of
(realistically) vague prior distributions for the between-study variances and correlation in a
Bayesian estimation of bivariate meta-analysis model (1). The simulation focuses mainly on
N¼ 10 studies per meta-analysis, but both complete data (both outcomes available in all 10
studies) and missing data (some studies only provide one outcome) situations are considered.
Alternative N is also considered briefly in Section 3.2.5.

3.1 Methods of the simulation study

The simulation study involves three key steps, as follows.

Step 1: Generation of bivariate meta-analysis datasets for a range of settings

We use the simulation data previously generated by Riley et al.,33 where full details of the simulation
process are documented. Briefly, for each simulation scenario (see below), a true between-study and
within-study bivariate Normal model was specified according to equation (1). Then, allowing for the
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specified within- and between-study variances and correlations, two effect estimates (Yi1 and Yi2)
were generated (one for each outcome) for each of the 10 studies in the meta-analysis. This was
repeated 1000 times, so to generate 1000 meta-analysis datasets for each simulation. A range of
simulation settings are considered (Table 1).

Settings 1 to 5 involve complete data (i.e. Yi1 and Yi2 are available for all studies) but settings 6 to
9 involve missing data, where some studies were made to have only Yi2. Missing data scenarios are
very important, as borrowing of strength may be large in such situations. We chose to generate non-
ignorable missingness. In each complete data meta-analysis dataset, the treatment effect estimate for
outcome 1 (Yi1) was selectively removed if it was larger than the unweighted mean of Yi1 within each
set of 10 trials, i.e.

Remove Yi1 if Yi1 4
1

10

X10
i¼1

Yi1

On average, this process removed half of the treatment effect estimates and their standard
deviations (SD) for outcome 1 in the simulated datasets. This missing data process was chosen to
reflect selective outcome reporting bias in which an outcome is measured and analyzed but not
reported on the basis of the results.34,35 Although this missing data mechanism is missing-not-at-
random, the utilisation of correlation from reported outcomes can still reduce (though not entirely
remove) bias in univariate meta-analysis results in this situation, as shown elsewhere,6 and is now a
key reason for applying the multivariate model.36 Therefore, it is of particular interest whether
chosen prior distributions affect the bivariate meta-analysis results for outcome 1 in this setting.

Step 2: Fit model (1) to each dataset in each setting, for all the different sets of prior distributions

To each of the 1000 meta-analysis datasets within each of the nine settings, model (1) was
fitted using MCMC with a particular set of chosen prior distributions. This was then
repeated for each different set of prior distributions. The different sets of prior distributions were
as follows.

Table 1. Settings for which simulated meta-analysis datasets were generated.

Setting

True parameter value

�Wi �B �1 �2 �1 �2

Complete data

1 0 0 0 2 0.5 0.5

2 0 0.8 0 2 0.5 0.5

3 0.8 0 0 2 0.5 0.5

4 0.8 0.8 0 2 0.5 0.5

5 0.8 0.8 0 2 0.05 0.05

Missing data

6 0 0 0 2 0.5 0.5

7 0 0.8 0 2 0.5 0.5

8 0.8 0 0 2 0.5 0.5

9 0.8 0.8 0 2 0.5 0.5

Within-study variances (sij
2) were drawn from a log normal distribution and had an average value of 0.5. Therefore, settings 1 to 4

and 6 to 9 had similarly sized within- and between-study variances on average, whilst settings 5 and 10 had relatively large within-

study variances.
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Pooled effects (�j)

The prior distributions for �j were always given a vague N(0, 10002).

Between-study variances (� j
2)

Two prior distributions for �j
2 were chosen (one that appeared appropriate and one that appeared

inappropriate) based on the results of a univariate meta-analysis of the simulated datasets where �Wi

¼ �B ¼ 0 in model (1) (see Table S1 in the Supplementary material). Because the true between-study
SD in the simulations were 0.5, a �j�N(0,2) (�j> 0) prior distribution appeared most suitable
(realistically vague) among six prior distributions previously explored by Lambert et al.8 In
contrast, the Gamma(0.1,0.1) prior distribution for 1/�j

2 was, as expected, by far the poorest in
terms of estimating �j accurately. However, as this inappropriate prior distribution is still often
adopted in the multivariate meta-analysis literature (see earlier), we include it here to highlight its
impact. Thus, in each setting of the simulation study, both these prior distributions were evaluated
to compare the impact of a seemingly suitable prior distribution with a seemingly inappropriate
prior distribution for �j.

Between-study correlation (�B)

The prior distributions evaluated for �B were the five prior distributions detailed in Section 2.4.
This led to 10 combinations of the prior distributions for between-study variances and

correlations shown in Table 2.
In each analysis, the posterior parameter estimates were obtained using the Gibbs Sampler

MCMC method, which was implemented in SAS 9.3 using the PROC MCMC procedure.37 For
each dataset, the analyses were performed with 300,000 iterations after allowing for a 200,000
iteration burn in and the samples were thinned by 100 to reduce autocorrelation (see
Supplementary Material for SAS code). The convergence of parameters was checked using
history and trace plots.

Step 3: Summarise results

In each setting, to summarise and compare the posterior results for each set of prior distributions,
the following were calculated from the set of 1000:

. The mean posterior mean of pooled effects across all simulations, the mean and median posterior
median of between-study SD across all simulations, and the mean and median posterior median
of between-study correlation across all simulations (to check for bias);

. The mean and median SD of the posterior pooled effects across simulations;

. The mean-squared error (MSE) of the pooled effects, calculated by the average squared difference
from the true value across the 1000 simulated datasets;

. The coverage performance of the 95% credible intervals for the pooled effects, calculated by the
percentage of the 1000 95% credible intervals that contain the true effect.

Furthermore, we also evaluated performance in terms of predictive inferences about
treatment effects in new trials. The predictive distribution of treatment effects in a new trial was
assumed to be

�i1new
�i2new

� �
� N

�1
�2

� �
,D

� �
ð2Þ

Burke et al. 9

 at University of Keele on September 1, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


In each analysis, values of �i1new and �i2new were sampled from this distribution during the MCMC
process, which naturally accounts for the uncertainty in the pooled average effects, �1 and �2, and
the uncertainty in the between-study covariance matrix, D. Across all datasets in each setting for
each set of prior distributions, we used these to derive:

. The average marginal probability that �i1new> 0, the average marginal probability that �i2new> 2,
and the average joint probability that both �i1new> 0 and �i2new> 2.

In settings 1, 3, 6, and 8, where �B ¼ 0, the two true marginal probabilities that �i1new> 0 and
�i2new> 2 was both 0.5, and the true joint probability that �i1new> 0 and �i2new> 2 was 0.25. When
�B¼ 0.8 in settings 2, 4, 5, 7, and 9, the true joint probability was 0.4.

3.2 Results of the simulation study

3.2.1 Complete case data when using prior distribution for between-study variance of � j�N(0,2) (�j> 0)

Tables 3 and 4 display the simulation results for settings 1 and 4, respectively, for the different prior
distributions for the between-study correlation where the sensible prior distribution for �j is used
(N(0,2) truncated at zero). The equivalent results for settings 2 and 3 are presented in Tables S2
and S3 in the Supplementary Material.

In all settings, the choice of prior distribution for �B is informative of the posterior estimate of �B.
This is expected since there are only 10 studies per meta-analysis, so there are only 10 data points to
estimate a correlation, and thus the posterior mean is similar to the prior mean. For example, in
setting 1 (�Wi ¼ �B ¼ 0, Table 3) where �B�Uniform(�1,1), the mean posterior median for �B across
simulations is 0.007. When �B�Uniform(0,1), the mean posterior median for �B across simulations
is 0.412. A similar result is observed in settings 2 to 4. In settings 2 and 4, the true value of �B is 0.8;
however, none of the selected prior distributions led to average medians of �B across simulations
close to its true value. For example, in setting 4 (�Wi ¼ �B ¼ 0.8, Table 4) where �B�Uniform(0,1),
the average posterior median of �B is only 0.646.

Table 2. All combinations of prior distributions for between-study correlation and between-study variance.

Combination Prior distribution for �B Prior distribution for �j

(i) �B�U(�1,1)

�j�N(0,2), �j> 0

(ii) z ¼ 1
2
log 1þ�B

1��B

� �
� Nð0,SD ¼ 0:4Þ

(iii) �Bþ1ð Þ

2
� Betað1:5,1:5Þ

(iv) �B�U(0,1)

(v) logitð�BÞ � Nð0,SD ¼ 0:8Þ

(vi) �B�U(�1,1)

1/�j
2
�Gamma(0.1,0.1)

(vii) z ¼ 1
2
log 1þ�B

1��B

� �
� Nð0,SD ¼ 0:4Þ

(viii) �Bþ1ð Þ

2
� Betað1:5,1:5Þ

(ix) �B�U(0,1)

(x) logitð�BÞ � Nð0,SD ¼ 0:8Þ

U: Uniform.
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The performance of the 95% credible intervals is also close to 95% for �j regardless of the choice
of prior distribution for �B. Furthermore, the choice of prior distribution for �B has little impact on
the posterior means of �1 and �2 across simulations, and their mean SD. In other words, there
appears to be very little borrowing of strength, which agrees with previous work that shows the
borrowing of strength in a bivariate meta-analysis toward the estimates of �j is usually very small
when complete data are available for both outcomes.5,33

However, the prior distribution for �B does have a larger impact upon average joint inferences
across both outcomes. The average joint probability that �̂i1new> 0 and �̂i2new> 2 is slightly higher for
the prior distributions for �B that allow only positive values. Also, since no prior distribution leads
to an average posterior median of the between-study correlation close to 0.8, the average joint
probability is always lower than the true value of 0.4.

3.2.2 Complete case data when using prior distribution for between-study variance of 1/� j
2
�Gamma(0.1,0.1)

Table 5 displays the simulation results for setting 3 where the inappropriate Gamma(0.1,0.1) prior
distribution for 1/�j

2 is used. The equivalent results for settings 1, 2, and 4 are in Tables S4, S5,
and S6, respectively, in the Supplementary Material.

The posterior means for �1 and �2 remain approximately unbiased for all choices of the prior
distributions for �B, for settings 1 to 4. However, the posterior distributions of the �j

2s are centred on
much larger values than 0.25 for both outcomes. Therefore, the SD of the pooled effects are much
larger than those when �j�N(0,2)I(0,). Thus, the credible intervals for the pooled effect estimates are
too wide, leading to inappropriate coverage of 100% in all settings, regardless of the choice of prior
distribution for �B.

The simulation results also show that when the values of �j are larger, �B is likely to increase. This
can lead to a huge upward bias in the posterior distribution of �B, even with the Uniform(–1,1) prior
distribution for �B. For example, using prior distributions of 1/�j

2
�Gamma(0.1,0.1) and

�B�Uniform(�1,1) in setting 3 (true �B ¼ 0, Table 5), the mean posterior median �B across
simulations is 0.605. However, using the same prior distribution for �B but a prior distribution
for �j of N(0,2)I(0,), the average posterior median for �B is �0.035 (Table 4). This is due to much
higher average estimates of �j with the Gamma prior distribution (mean posterior median �1¼ 1.926,
mean posterior median �2 ¼ 2.157) compared to the half Normal prior distribution (mean posterior
median �1 ¼ 0.532, mean posterior median �2 ¼ 0.536).

The estimates of the joint probability (that �̂i1new> 0 and �̂i2new> 2) are again influenced by the
estimate of correlation between the outcomes. In the same example as above, where the correlation is
dramatically overestimated, the true joint probability is 0.25, but the mean joint probability estimate
across simulations is 0.342. This highlights that seemingly vague prior distributions for the �j’s and
�B may have undesired impact on the posterior conclusions, which may lead to incorrect (joint)
inferences.

3.2.3 Results with missing data when prior distribution for �j is N(0,2) (� j> 0)

For the missing data settings, it was of particular interest whether the prior distributions affect the
outcome 1 results (for which missing data was selectively missing) and the amount of borrowing of
strength. Both the N(0,2) (� > 0) prior distribution for �j and the Gamma(0.1,0.1) prior distribution
for 1/�j

2 were considered again, but for brevity the results are only presented for settings 8 and 9
where there are within-study correlations of 0.8.

The simulation results are shown in Table 6 for setting 9 (�1 ¼ 0, �2 ¼ 2, �1 ¼ �2 ¼ 0.5, �Wi ¼ �B ¼
0.8) (setting 8 is in Table S7 in the Supplementary Material). As expected, due to the selective
missingness, the average posterior mean for �1 is consistently lower than the true value for all
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prior distributions, and in all settings. For example, where the true �1 ¼ 0, the mean �1 is, on
average, �0.432 (SD ¼ 0.250) where �B�Uniform(�1,1). However, if the posterior mean for �B is
higher, the bias in the posterior distribution of �1 is lower; in other words, the borrowing of strength
increases as the posterior mean for �B increases. For example, in the same set of results, for
�B�Uniform(0,1), the average posterior median �B is 0.545 and the mean �1 across simulations is
�0.390. The estimated effect for outcome 2 remains approximately unbiased across all settings as
there is complete data for this outcome.6

Although bias remains in the mean �1 across simulations, crucially it is closer to the true
value of 0 than a separate univariate meta-analysis for outcome 1. In the same example,
where �B�Uniform(�1,1) the average mean �1 is �0.432 (SD ¼ 0.250) whereas the average
mean from the univariate analysis is �0.483 (SD ¼ 0.251). The MSE of �1 is also lower in the
bivariate model compared to the univariate model for all prior distributions for �B. In the same
scenario, the MSE of �1 from the bivariate analysis is 0.249 but 0.296 in the univariate analysis.
Furthermore, if a more appropriate prior distribution is used for �B, the greater the reduction in
the MSE. The more appropriate prior distributions for �B also lead to better coverage.
Where �B�Uniform(0,1), the number of 95% credible interval (CrIs) that contain the true �1 is
73.5%, compared to 67.2% when �B�Uniform(�1,1), and just 61.2% in the univariate analysis.
Therefore, the amount of borrowing of strength is heavily influenced by the choice of prior
distribution for �B.

3.2.4 Results with missing data when prior distribution for 1/�j
2 is Gamma(0.1,0.1)

The results of the missing data scenario when the prior distribution for 1/�j
2 is Gamma(0.1,0.1) are

shown in Tables S8 and S9 in the Supplementary Material. As in the complete data simulations, the
main finding is that the posterior estimates of �j are hugely overestimated, and this leads to overly
large estimates of �B for all prior distributions for �B (compared to when using a N(0,2)I(0,) prior
distribution for �j).

3.2.5 Increasing the number of trials per meta-analysis

One finding from the simulations so far is that the prior distribution for the between-study
correlation can be highly informative toward the borrowing of strength, posterior results and
joint inferences for meta-analyses of 10 studies, with complete and missing data. In settings 2
and 4, where there is strong true between-study correlation (�B ¼ 0.8), most of the prior
distributions for �B result in this parameter being underestimated. To ascertain if this improved
when the number of studies per meta-analysis increases, the simulations were repeated with 25 and
50 studies. For brevity, only the results for complete data in setting 4 (where �Wi ¼ 0.8 and �B ¼ 0.8)
where �j�N(0,2)I(0) are discussed.

The results are shown in Tables S10 and S11 in the Supplementary Material. As expected, as the
number of studies per meta-analysis increases, the posterior median of �B is closer to the true value.
For example, recall that given 10 studies and �B�Uniform(�1,1) the mean posterior median �B
across simulations was 0.516 (Table 4), but with 50 studies, the mean posterior median is 0.734.
Interestingly, the average �B is still underestimating the true value of 0.8 for any of the prior
distributions for �B, and the choice of prior distribution is still influential even when there are 50
studies.

The mean joint probability estimates are closer to 0.4 with 50 studies compared to 25 or 10
studies, but they are still lower than the true value of 0.4 for all prior distributions for �B. This
again is partly due to the underestimated between-study correlation, but it is also due to the
uncertainty in all parameters. For instance, even when repeating the simulations in setting 4 and
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forcing �B to be 0.8, the mean joint probability is 0.372 and thus still underestimated compared to
0.4. Only in the unrealistic situation where all parameters are known (i.e. �B, �j, �1, and �2 are fixed
at their true values) is the mean joint probability approximately 0.4. Therefore, unless the meta-
analysis has a very large number of studies, the uncertainty in the estimates of the pooled treatment
effects, the between-study variances and the between-study correlation, will be propagated into
lower joint probabilistic inferences than if these parameters were known.

This finding can perhaps be considered comparable to the use of the t-distribution for
the derivation of prediction intervals for �inew by Higgins et al.38 in a frequentist framework.
Here, the t-distribution is used instead of the Normal distribution to account for the uncertainty
in the between-study variance. This can be extended to a bivariate setting. If 2,000,000 samples
of x and y are drawn from a bivariate t-distribution (with 8 degrees of freedom since the number
of trials is 10) with means zero and two, respectively, variances equal to 0.25, and correlation
equal to 0.8, then the joint probability that x> 0 and y> 2 is just 0.366. This is similar to
the mean joint probability estimate of 0.372 in the simulation study when the correlation
is forced to be 0.8. The joint probability is only equal to 0.4 when the bivariate Normal
distribution is assumed. If 2,000,000 x and y are sampled from the bivariate Normal distribution,
with the same parameter values as those used above, then the resulting probability is very close
to 0.4.

3.2.6 Reducing the size of the between-study variance relative to the within-study variance

In the simulations so far, the true between-study variance was 0.25 for both outcomes, which was a
similar size compared to the within-study variances. If the between-study variances are large relative
to the within-study variances, it is known that the between-study correlation (rather than the within-
study correlations) will be most influential toward the borrowing of strength.1 However, even when
the between-study variances are small relative to the within-study variances, the magnitude of
between-study correlation is crucial toward joint (predictive) inferences, and so it is important to
estimate it reliably. However, in the frequentist setting, it is known to be potentially problematic to
estimate between-study variances and correlations when the between-study variation is relatively
small, as shown elsewhere.33 Therefore, in the Bayesian setting, prior distributions for between-study
variances and correlations are likely to be even more influential toward their posterior results when
the between-study variation is relatively small.

To illustrate this, bivariate meta-analysis data were additionally simulated for setting 5 using the
same approach as before, but now with true between-study variances of 0.0025 compared to within-
study variances as before (i.e. on average 0.25). Only within- and between-study correlations of 0.8
were considered, and the results are shown in Table S12 in Supplementary Material. The results
show that the prior distributions for the between-study variances and correlations are very
influential, and more than in the earlier simulations. For example, the mean posterior median
correlation is 0.281 (true value is 0.8) from the new simulations for setting 5 when using a
Uniform(�1,1) prior distribution; this is much closer to the prior distribution mean compared to
the mean posterior median correlation of 0.516 in the earlier simulations in setting 4 (Table 4) where
the between-study variation was larger.

4 Illustrative example

This section illustrates the key findings from the simulation study in a meta-analysis dataset
involving (potentially selectively) missing data. The example is introduced, and then the key
results summarised.
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4.1 Combining partially and fully adjusted results

The dataset for the illustrative example is from a previous individual participant data meta-analysis of
trials concerned with whether smoking is a prognostic factor for stroke, where smoking is a binary
variable by yes (current smoker) or no (not current smoker).23 The summary results for the 10 trials
are shown in Table 7. There are two prognostic effects for smoking: a partially adjusted log hazard
ratio (HR), which is adjusted for treatment, and a fully adjusted log HR, which is adjusted for
treatment, age, and body-mass index (BMI). There is missing information for age and BMI in 5
out of 10 trials, and so only partially adjusted HR estimates are available in these. However, in the
remaining five trials, there is information to estimate both fully and partially adjusted log HRs. These
prognostic effect estimates are highly correlated with the within-study correlations close toþ1 (derived
from bootstrapping).23 Interestingly, the five studies only giving partially adjusted results have, on
average, smaller HR estimates than in those studies providing both partially and fully adjusted effects.
Therefore, there is concern that there is selective reporting bias here for the fully adjusted results, and
that a univariate meta-analysis of the fully adjusted results will be biased upwards. A bivariate meta-
analysis of the partially and fully adjusted results borrows strength to reduce this bias.

Upon applying the bivariate meta-analysis, two prior distributions for the between-study
variances are considered for comparison. The first is the inappropriate Gamma prior distribution,
where 1/�j

2
�Gamma(0.1,0.1).8 The second prior distribution is an empirical prior for future meta-

analyses with a binary outcome10 where �2j � lognormal ð�2:89, 1:912Þ. This prior distribution is
proposed by Turner et al. for non-pharmacological interventions with semi-objective outcomes (an
objective outcome that is not all-cause mortality). The median for �2j is 0.056, and a 95% prior
interval is 0.001 to 2.35. This prior distribution is not an exact match as these are prognostic
rather than intervention effects, and the outcome is survival rather than binary. However, the
event (stroke) is rare in this example and HRs and odds ratios are often similar in this setting39,40;
therefore, this empirical prior distribution is considered suitable for illustrative application here.

4.2 Results from illustrative example

The results of the meta-analyses are shown in Table 8. Utilisation of correlation leads to large
borrowing of strength toward the fully adjusted pooled results in the bivariate meta-analysis.

Table 7. Results for the 10 trials in the meta-analysis of partially adjusted and fully adjusted log hazard ratios (log HR).23

Trial name Control Treatment

Partially adjusted

log HR (var)

Fully adjusted

log HR (var)

Within-study

correlations

(from bootstrap)

ATMH 750 780 0.216 (0.752) 0.173 (0.754) 0.992

HEP 199 150 1.238 (0.182) 1.477 (0.223) 0.893

EWPHE 82 90 �1.038 (1.080) �0.667 (1.125) 0.988

HDFP 2371 2427 0.884 (0.072) 0.894 (0.074) 0.985

MRC-1 3445 3546 1.232 (0.119) 1.209 (0.120) 0.986

MRC-2 1337 1314 0.379 (0.039) – –

SHEP 2371 2365 0.399 (0.027) – –

STOP 131 137 1.203 (1.256) – –

Sy-Chi 1139 1252 0.633 (0.042) – –

Sy-Eur 2297 2398 0.156 (0.100) – –

HR: hazard ratio; var: variance.
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For example, in the analysis using the empirical prior distributions for the variances and the
Uniform(0,1) prior distribution for the correlation, the fully adjusted pooled estimate for the
logHR is 0.68 compared to 0.98 in the univariate analysis, which corresponds to a HR of 1.97
rather than 2.66. In regards to the influence of the choice of prior distributions for the variances and
correlations, the key findings are now discussed, which also highlight those identified in the
simulation study.

Key finding (i): The choice of prior distribution for �B influences the posterior estimates for �B, and thus
borrowing of strength toward �j and joint inferences.

As expected, the choice of prior distribution for �B influences the mean �B and its 95% CrI. Using
the empirical prior distribution for �j, the posterior median �B is 0.069 (95% CrI �0.618 to 0.695)
when using the Fisher prior distribution for �B (Figure 2). However, when �B�Uniform(0,1), the
posterior median �B is 0.561 (95% CrI 0.0.035 to 0.983). These large changes in the between-study
correlation affect the pooled treatment effect estimates. The posterior mean fully adjusted log HR is
0.701 (95% CrI 0.410 to 1.037) when using the Fisher prior distribution, compared to 0.681 (95%
CrI 0.404 to 0.995) with the Uniform prior distribution. The latter leads to more borrowing of
strength in the bivariate analysis, which gives a narrower CrI and slightly lower summary prognostic
effect than identified in the other analyses. Joint inferences are also affected. For example, consider
the posterior probability that both partially and fully adjusted HRs are >1.5 in the analyses using
the empirical-based prior for �j. These range from 0.73 to 0.8 depending on the chosen prior
distribution for the between-study correlation.

Key finding (ii): The choice of prior distribution for �j influences the posterior results for �B, and thus
borrowing of strength toward �j and joint inferences.

As observed in the simulation study, as the estimates of �j increase, �B also increases, even when the
prior distribution for �B remains the same. For example, when �B�Uniform(�1,1), the posterior
median for �B is 0.199 (95% CrI �0.917 to 0.974) if �j

2
�lognormal(�2.89,1.912), and 0.842 (95%

CrI �0.644 to 0.999) when 1/�j
2
�Gamma(0.1,0.1). This is because the posterior estimates of �j differ

Figure 2. Posterior mean and 95% CrI for between-study correlation for various prior distributions in the

illustrative example.
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for these two prior distributions for �j (Figure 3) (�1
2 is 0.036 and �2

2 is 0.035 with the empirical prior
distribution, compared to �1

2
¼ 4.508 and �1

2
¼ 6.821 with a Gamma(0.1,0.1) prior distribution).

This example illustrates that the choice of prior distribution for the between-study variances can
impact considerably upon the posterior distribution for �B. Subsequently, it also impacts upon the
borrowing of strength and joint inferences. For example, in the bivariate meta-analysis with a
Uniform(0,1) prior distribution for the between-study correlation, the inappropriate Gamma
prior for 1/�j

2 leads to a joint probability of 0.50 that both the true partially and fully adjusted
HRs are >1.5. In contrast, when using the empirically based prior distribution, the predicted
probability is 0.77 and thus far larger.

Key finding (iii): The prior distribution for �B also influences the posterior estimates for �j.

As identified in the simulation study, the prior distribution for �B can alter the posterior
distributions for �j. When 1/�j

2
�Gamma(0.1,0.1) and �B�Uniform(�1,1), the posterior median

�1
2 is 4.508 (95% CrI 1.570 to 11.341) and �2

2 is 6.821 (95% CrI 1.924 to 22.742) (Figure 4).
However, when 1/�j

2
�Gamma(0.1,0.1) but with the Fisher prior distribution for �B, the posterior

medians of �1
2 and �2

2 are 3.475 (95% CrI 1.266 to 8.940) and 10.201 (95% CrI 1.929 to 42.271),
respectively.

Figure 3. Posterior median and 95% CrI for between-study variances and between-study correlation for the two

selected prior distributions for the between-study variances.
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Key finding (iv): The Gamma prior distribution for 1/�j
2 is inappropriate and empirically based prior

distributions are preferred for multivariate meta-analysis.

The Gamma prior distribution for the between-study variances appears particularly inappropriate
because the posterior estimates of �j

2 are much larger than when using the empirical prior distribution,
and this increases the mean of the posterior distribution of �B, which affects the joint probability
estimates. This finding agrees with those in the simulation study and those already determined
elsewhere, for example by Lambert et al.8 and Wei et al.17 about the influential impact of a
Gamma (Wishart) prior distribution on the between-study variances in meta-analysis, and
Gelman26 more generally. In addition, the results of our example and the simulation study reveal
the Gamma prior can be influential toward the between-study correlation, and thus borrowing of
strength and joint inferences. For example, in our illustrative case study in stroke, the joint probability
that the partially and fully adjusted HRs are >1.5 is reduced by about 0.3 to 0.4 in the analyses using
the Gamma prior distribution compared to the empirically based prior distribution.

Therefore, empiricallybasedpriordistributions forbetween-studyvariances arehighlypreferable in the
multivariate meta-analysis field. Similarly, empirically based prior distributions for the between-study
correlation are needed where possible, to ensure that the borrowing of strength and joint inferences are
appropriate. The commonly chosen Uniform(�1,1) prior distribution may not always be appropriate.

5 Discussion

In a meta-analysis of multiple effects, a multivariate approach can jointly synthesise the endpoints
and account for any correlation between the effects that may exist both within and between

Figure 4. Posterior median and 95% CrI for between-study variance for fully adjusted logHR for various priors for

between-study correlation.

22 Statistical Methods in Medical Research 0(0)

 at University of Keele on September 1, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


studies.5,33 This leads to borrowing of strength and thus potentially different and stronger
conclusions than separate univariate analyses, and therefore, within a Bayesian bivariate meta-
analysis framework, it is crucial for prior distributions to be selected with care. This paper has
explored the choice of prior distributions for the between-study variances and correlation in a
Bayesian bivariate random-effects meta-analysis within a simulation study and a real example.
The key recommendations are summarised in Box 1 and now briefly discussed.

5.1 Key findings

In current applications of multivariate meta-analysis, the Uniform(�1,1) distribution is often
selected for the between-study correlation without a sensitivity analysis,1,17,18 perhaps assuming

Box 1. Key recommendations for specification of prior distributions for
between-study variances and correlation in a Bayesian bivariate meta-analysis

. The use of a Wishart prior distribution on the entire between-study variance-
covariance matrix is best avoided; it can be highly influential toward posterior
meta-analysis results. Rather, a separate prior distribution should be specified for
the between-study variances and the correlation.

. The prior distributions for between-study variances need to be chosen sensibly as they
strongly impactonparameter estimates including thebetween-studycorrelation, and thus
can influence the amount of borrowing of strength and subsequent joint inferences. For
this purpose, empirical prior distributions may be most useful, such as those by Rhodes
et al.9 andTurner et al.10 The use of an inverseGamma prior distribution is best avoided.

. The prior distribution for the between-study correlation also needs to be chosen
sensibly, as it may have large influence toward the amount of borrowing of strength
and joint inferences, especially when the number of studies providing both outcomes
is small and the between-study variation is relatively small. A Uniform(�1,1) prior
distribution for �B is not always vague and thus should not be routinely used
without due thought. Even when the number of studies is large (say, 50) it can
have an important influence when the true correlation is large.

. Clinical, biological, or methodological rationale might provide external evidence to
inform a more realistically vague prior distribution for the between-study
correlation. For example, a Uniform(0,1) prior distribution could be specified if
only positive values are plausible, such as prognostic effects that are partially and
fully adjusted, or treatment effects on two highly correlated outcomes like systolic
and diastolic blood pressure. A Uniform(�1,0) prior distribution might be specified
if only negative values are plausible, for example for sensitivity and specificity from
multiple studies that use different thresholds.

. Sensitivity analysis for the choice of prior distributions on between-study variances and
correlations may be needed, especially when external evidence to inform the prior
distributions is not available, borrowing of strength is potentially large (due to missing
data), and there is relatively small information from the likelihood to inform their
posterior distributions (for example, when the number of studies in the meta-analysis
is small, and the between-study variance is small relative to the within-study variances).
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it is vague. However, this work illustrates that the choice of prior distribution for �B is often
highly informative of posterior conclusions for all parameters of interest, especially when
there are few studies in the meta-analysis, or missing outcome data. Even with large numbers
of studies, such as 50, the prior distribution still noticeably influences the posterior distribution
for the between-study correlation, which can impact upon the amount of borrowing of strength,
joint inferences and subsequently clinically important measures such as the summary treatment
effects and probabilistic statements. Therefore, a major recommendation is that the prior
distribution for the between-study correlation must be chosen carefully in future multivariate
meta-analyses, and the commonly chosen Uniform(�1,1) prior distribution is not always
appropriate.

Although appropriate estimation of the between-study correlation is important in complete data
settings (especially, when making joint inferences across the multiple outcomes), it is even more
critical in missing data settings. The prior distribution is more informative of the posterior
distribution for this parameter since there is less data to estimate the between-study correlation,
and the correlation itself has more impact on the borrowing of strength, which is usually greater
in missing data settings.5 Therefore, a sensible prior distribution for the between-study correlation
is desired. External sources of data, such as similar systematic reviews, could be used to
construct plausible prior distributions for this parameter.21,26,29 If related data are unavailable, a
clinically relevant range of values for the prior distribution could still be specified. For example, if
the meta-analysis pools overall and progression-free survival, it may be clinically plausible that
the correlation is restricted to positive values only, and therefore, a Uniform(0,1) prior
distribution may be more realistic than a Uniform(�1,1) distribution. Alternatively, if a meta-
analysis is used to pool sensitivity and specificity estimates from diagnostic test studies, the
correlation could be restricted to negative values, and the Uniform(–1,0) prior distribution may
be a sensible choice. If negative (or positive) values are highly unlikely but not implausible, then a
distribution might be used that allows all values but with most probability given to positive (or
negative) values (see Supplementary Material). If there is no prior information to inform a more
realistically vague prior distribution, then the Uniform(�1,1) distribution appears the most sensible
choice. However, a sensitivity analysis that considers alternative prior distributions would then be
especially important.

The choice of prior distribution for the between-study correlation and the between-study
variances are not independent, and therefore, wise choices must be made for all parameters in
the bivariate meta-analysis model. Where previous simulation work has illustrated the importance
of the prior distribution for the between-study variance in a univariate meta-analysis,8 the
simulation studies in this paper reveal that this is also true for a bivariate meta-analysis. If an
inappropriate prior distribution is selected for the between-study variance, this not only has an
impact on the posterior estimates of �j themselves but also on the posterior estimate of between-
study correlation, the pooled treatment effect estimates, the amount of borrowing of strength, and
subsequently joint inferences. Therefore, previously derived empirical prior distributions9–11 should
be considered for the between-study variance parameters in a multivariate setting. The use of
Gamma or Wishart prior distributions should be avoided; our simulation study shows this may
introduce bias in the posterior estimates of the between-study variances and correlation, which then
may influence the subsequent meta-analysis results and borrowing of strength. This was previously
noted as a potential concern by Achana et al.41 in a single application of network meta-analysis of
multiple treatments and outcomes. However, Wishart prior distributions are still being suggested by
some researchers, for example, in a recent tutorial for undertaking Bayesian bivariate meta-
analyses.42
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5.2 Limitations

Whilst many different prior distributions were examined, there are, of course, numerous other prior
distributions that could be used but were not considered here. Furthermore, the simulation study
was specifically for bivariate meta-analysis, but there may be more than two correlated outcomes. In
this case, there are several more between-study variance-covariance parameters that require prior
distributions. However, the findings are likely to generalise.

Finally, the simulation results (e.g. bias, MSE, coverage) are essentially a frequentist evaluation
of a Bayesian analysis, which some may argue may not be appropriate. In particular, Senn43

previously suggested that it is perhaps philosophically incorrect to conduct a simulation study to
assess the performance of Bayesian prior distributions because it is ‘irrelevant to any Bayesian who
truly believed what the prior distribution represented’. Although this is an important statement, the
rationale for the simulation study here is similar to that of Lambert et al.44 who justify that, ‘if a
statistician desires to have a model with good bias and coverage properties, but needs/wants to use
Bayesian methods, then we believe that simulation is a very good way of establishing this’.

5.3 Conclusions

The simulation study and the illustrative example revealed that the choice of prior distribution for the
between-study correlation in a Bayesian bivariate random-effects meta-analysis is important andmust
be chosenwith caution, and in conjunctionwith suitable choices of prior distributions for the between-
study variances. Ideally, the empirical prior distributions should be utilised for the between-study
variance parameters, and external clinical evidence used to inform a realistically vague prior
distribution of the between-study correlation. This is especially important for multivariate meta-
analysis involving missing data, where the correlation dictates the amount of borrowing of strength
from indirect information, and when joint inferences are desired across the multiple effects of interest.
Often, sensitivity analyses to the choice of all prior distributions will be essential.

Box 1 summarises recommendations for future Bayesian multivariate random-effects meta-analyses.

Acknowledgements

We would like to thank Dan Jackson and Ian White for helpful feedback during the initial stages of the project,

and also two anonymous reviewers for their constructive feedback on how to improve the paper.

Author contributions

RR and SB conceived the research idea. DB undertook all the simulation analyses under the supervision of RR

and feedback from SB. DB drafted the paper and revised following comments from RR and SB.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

Funding

Theauthor(s) disclosed receipt of the following financial support for the research, authorship, and/or publicationof

this article: Richard D Riley was supported by funding from a multivariate meta-analysis grant from the MRC

Burke et al. 25

 at University of Keele on September 1, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


Methodology Research Programme (grant reference number: MR/J013595/1). Danielle Burke was partly

supported by funding from the MRC Midlands Hub for Trials Methodology Research, at the University of

Birmingham (Medical Research Council Grant ID G0800808). Sylwia Bujkiewicz is supported by the Medical

ResearchCouncil (MRC)MethodologyResearchProgramme (NewInvestigatorResearchGrantMR/L009854/1).

References

1. Riley RD. Multivariate meta-analysis: the effect of
ignoring within-study correlation. J R Stat Soc A 2009;
172: 789–811.

2. Jackson D, Riley R and White IR. Multivariate meta-
analysis: potential and promise. Stat Med 2011; 30:
2481–2498.

3. Riley RD, Thompson JR and Abram KR. An alternative
model for bivariate random-effects meta-analysis when the
within-study correlations are unknown. Biostatistics 2008;
9: 172–186.

4. Mavridis D and Salanti G. A practical introduction to
multivariate meta-analysis. Stat Methods Med Res 2013;
22: 133–158.

5. Riley RD, Abrams KR, Lambert PC, et al. An evaluation
of bivariate random-effects meta-analysis for the joint
synthesis of two correlated outcomes. Stat Med 2007; 26:
78–97.

6. Kirkham JJ, Riley RD and Williamson PR. A multivariate
meta-analysis approach for reducing the impact of
outcome reporting bias in systematic reviews. Stat Med
2012; 31: 2179–2195.

7. Jackson D, White IR, Price M, et al. Borrowing of strength
and study weights in multivariate and network meta-
analysis. Stat Methods Med Res, Epub ahead of print 6
November 2015. DOI: 10.1177/0962280215611702.

8. Lambert PC, Sutton AJ, Burton PR, et al. How vague is
vague? A simulation study of the impact of the use of prior
distributions in MCMC using WinBUGS. Stat Med 2005;
24: 2401–2428.

9. Rhodes KM, Turner RM and Higgins JP. Predictive
distributions were developed for the extent of
heterogeneity in meta-analyses of continuous outcome
data. J Clin Epidemiol 2014; 68: 52–60.

10. Turner RM, Davey J, Clarke MJ, et al. Predicting the
extent of heterogeneity in meta-analysis, using empirical
data from the Cochrane Database of Systematic Reviews.
Int J Epidemiol 2012; 41: 818–827.

11. Pullenayegum EM. An informed reference prior for
between-study heterogeneity in meta-analyses of binary
outcomes. Stat Med 2011; 30: 3082–3094.

12. Riley RD, Dodd SR, Craig JV, et al. Meta-analysis of
diagnostic test studies using individual patient data and
aggregate data. Stat Med 2008; 27: 6111–6136.

13. Zwinderman AH and Bossuyt PM. We should not pool
diagnostic likelihood ratios in systematic reviews. Stat
Med 2008; 27: 687–697.

14. Bujkiewicz S, Thompson JR, Spata E, et al. Uncertainty in
the Bayesian meta-analysis of normally distributed
surrogate endpoints. Stat Methods Med Res, Epub
ahead of print 13 August 2015. DOI: 10.1177/
0962280215597260.

15. Leonard TH and Hsu JS. Bayesian inference for a
covariance matrix. Ann Stat 1992; 20: 1669–1696.

16. Daniels MJ and Robert EK. Nonconjugate Bayesian
estimation of covariance matrices and its use in
hierarchical models. J Am Stat Assoc 1999; 94: 1254–1263.

17. Wei Y and Higgins JPT. Bayesian multivariate meta-
analysis with multiple outcomes. Stat Med 2013; 32:
1191–1205.

18. Nam IS, Mengersen K and Garthwaite P. Multivariate
meta-analysis. Stat Med 2003; 22: 2309–2333.

19. Reitsma JB, Glas AS, Rutjes AW, et al. Bivariate analysis
of sensitivity and specificity produces informative
summary measures in diagnostic reviews. J Clin Epidemiol
2005; 58: 982–990.

20. Snell KI, Hua H, Debray TP, et al. Multivariate meta-
analysis of individual participant data helped externally
validate the performance and implementation of a
prediction model. J Clin Epidemiol, Epub ahead of print 15
May 2015. DOI: 10.1016/j.jclinepi.2015.05.009.

21. Bujkiewicz S, Thompson JR, Sutton AJ, et al. Multivariate
meta-analysis of mixed outcomes: a Bayesian approach.
Stat Med 2013; 32: 3926–3943.

22. Bujkiewicz S, Thompson JR, Riley RD, et al. Bayesian
meta-analytical methods to incorporate multiple surrogate
endpoints in drug development process. Stat Med, Epub
ahead of print 3 November 2015. DOI: 10.1002/sim.6776.

23. Riley RP, Price MJ, Jackson D, et al. Multivariate meta-
analysis using individual participant data. Res Synth Meth
2015; 6: 157–174.

24. Trikalinos TA, Hoaglin DC and Schmid CH. An
empirical comparison of univariate and multivariate meta-
analyses for categorical outcomes. Stat Med 2014; 33:
1441–1459.

25. Wei Y and Higgins JPT. Estimating the within-study
covariances in multivariate meta-analysis with multiple
outcomes. Stat Med 2013; 32: 1191–1205.

26. Gelman A. Prior distributions for variance parameters in
hierarchical models (comment on article by Browne and
Draper). Bayesian Anal 2006; 1: 515.

27. Spiegelhalter DJ, Abrams KR and Myles JP. Bayesian
approaches to clinical trials and health-care evaluation.
Chichester: John Wiley & Sons, 2004.

28. Neuenschwander B, Capkun-Niggli G, Branson M, et al.
Summarizing historical information on controls in clinical
trials. Clin Trials 2010; 7: 5–18.

29. Higgins JP and Whitehead A. Borrowing strength from
external trials in a meta-analysis. Stat Med 1996; 15:
2733–2749.

30. Menke J. Bayesian bivariate meta-analysis of sensitivity
and specificity: summary of quantitative findings in 50
meta-analyses. J Eval Clin Pract 2014; 20: 844–852.

31. Yang B, Shi J, Chen X, et al. Efficacy and safety of
therapies for acute ischemic stroke in China: a network
meta-analysis of 13289 patients from 145 randomized
controlled trials. PLoS ONE 2014; 9(2): e88440.

32. Jansen JP. Network meta-analysis of survival data
with fractional polynomials. BMC Med Res Methodol
2011; 11: 61.

33. Riley RD, Abrams KR, Sutton AJ, et al. Bivariate
random-effects meta-analysis and the estimation of
between-study correlation. BMC Med Res Methodol 2007;
7: 3.

34. Smyth RM, Kirkham JJ, Jacoby A, et al. Frequency and
reasons for outcome reporting bias in clinical trials:
interviews with trialists. BMJ 2011; 342: c7153.

35. Saini P, Loke YK, Gamble C, et al. Selective reporting bias
of harm outcomes within studies: findings from a cohort of
systematic reviews. BMJ 2014; 349: g6501.

26 Statistical Methods in Medical Research 0(0)

 at University of Keele on September 1, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


36. Frosi G, Riley RD, Williamson PR, et al. Multivariate
meta-analysis helps examine the impact of outcome
reporting bias in Cochrane rheumatoid arthritis reviews.
J Clin Epidemiol 2015; 68(5): 542–550.

37. Inc SI. SAS/STAT� 9.3 user’s guide. Cary, NC: SAS
Institute Inc, 2011.

38. Higgins JPT, Thompson SG and Spiegelhalter DJ. A re-
evaluation of random-effects meta-analysis. J R Stat Soc A
2009; 172(Part 1): 137–159.

39. Symons MJ and Moore DT. Hazard rate ratio and
prospective epidemiological studies. J Clin Epidemiol 2002;
55(9): 893–899.

40. Perneger TV. Estimating the relative hazard by the ratio of
logarithms of event-free proportions. Contemp Clin Trials
2008; 29(5): 762–766.

41. Achana FA, Cooper NJ, Bujkiewicz S, et al. Network
meta-analysis of multiple outcome measures accounting
for borrowing of information across outcomes. BMC Med
Res Methodol 2014; 14: 92.

42. Gajic-Veljanoski O, Cheung AM, Bayoumi AM, et al.
A tutorial on Bayesian bivariate meta-analysis of mixed
binary-continuous outcomes with missing treatment
effects. Stat Med, Epub ahead of print 9 November 2015.
DOI: 10.1002/sim.6791.

43. Senn S. Trying to be precise about vagueness. Stat Med
2007; 26(7): 1417–1430.

44. Lambert PC, Sutton AJ, Burton PR, et al. Comments on
‘trying to be precise about vagueness’ by Stephen Senn,
Statistics in Medicine 2007; 26:1417–1430. Stat Med 2008;
27(4): 619. (author reply 22–24.

Burke et al. 27

 at University of Keele on September 1, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/

