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Abstract: Nanoparticle platforms are being intensively investigated for neurological 

applications. Current biological models used to identify clinically relevant materials have 

major limitations, e.g. technical/ethical issues with live animal experimentation, failure to 

replicate neural cell diversity, limited control over cellular stoichiometries and poor 

reproducibility. High-throughput neuro-mimetic screening systems are required to address 

these challenges. We describe an advanced multicellular neural model comprising the major 

non-neuronal/glial cells of the central nervous system (CNS), shown to account for ~99.5% 

of CNS nanoparticle uptake. This model offers critical advantages for neuro-nanomaterials 

testing whilst reducing animal use: one primary source and culture medium for all cell types, 

standardized biomolecular corona formation and defined/reproducible cellular stoichiometry. 

Using dynamic time-lapse imaging, we demonstrate in real-time that microglia (neural 

immune cells) dramatically limit particle uptake in other neural subtypes (paralleling post-

mortem observations after nanoparticle injection in vivo), highlighting the utility of the 

system in predicting neural handling of biomaterials. 
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Introduction 

Advanced functional material design has led to a global increase in clinical nanomaterial use 

for regenerative medicine, particularly platforms such as magnetic particles (MPs), in 

applications including imaging and biomolecule delivery, with several therapeutic 

nanoparticles under clinical trials or in pre-clinical development.1, 2 Identification and 

optimization of such medical biomaterials requires dedicated design and realization of 

surface functionalization with appropriate materials characterization tools, and parallel 

biomedical testing using relevant biomimetic screening models. Neurological applications 

represent a unique challenge in this regard, given the complex, multicellular composition of 

the brain and spinal cord (termed the central nervous system or CNS).3 Neural cells are 

classed into neurons (transmitters of electrical information) or glia (the supporting cells). Glia 

outnumber neurons by about 10-fold4–7 and comprise several subtypes that regulate the neural 

environment including, critically, clearance of nanomaterials.8 One study recently proved that 

glial uptake of nanoparticles accounts for ca. 99.5% of nanoparticle clearance in the CNS, 

with neurons accounting for the small balance9 - identifying the former as the 

overwhelmingly dominant population governing CNS nanoparticle uptake. Consequently, the 

overall response of the glial population to introduced nanomaterials is the most critical 

predictor of the CNS characteristic response as a whole.  

 

We recently reported major differences in MP uptake/handling between glia.10 The immune 

components (microglia) showed rapid and avid particle uptake with extensive degradation. In 

contrast, other glial subtypes (the astrocytes, oligodendrocytes and their precursors) showed 

significantly lower but stable particle accumulation. Based on these observations, we 

predicted that the rapid and high particle accumulation by a dominant cell population, such as 

microglia, would constitute a critical ‘extracellular barrier’ to particle uptake in mixed neural 
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cell populations, such as the intact nervous system. This is pertinent as high numbers of 

activated microglia are typically present in neurological pathology.11 Accordingly, the 

development and testing of neuro-compatible materials for clinical use must account for both 

intercellular dynamics and constituent glial cell numbers, using appropriate multicellular 

neural models.  

 

Despite this major need there is a substantial lack of sophisticated and accessible neural 

models for high-throughput screening of neuro-nanomaterials.12 In terms of widely used 

current approaches, live animal models are biologically relevant but involve significant 

ethical issues, technical complexity and expense, whilst being low-throughput. ‘Reductionist’ 

models addressing the 3Rs principles (Reduction, Replacement and Refinement of animal 

experimentation13,14 for which there is a current global drive) have several drawbacks, chiefly 

pertaining to their biological relevance. These include use of inappropriate 

sources/combinations of cells/tissue, e.g. cell lines of unknown age/provenance combined 

with primary cells, adult plus immature cells or peripheral nervous system (PNS) and CNS 

cells,15,16 significantly limiting their neuro-mimetic capacity. Large variability is also inherent 

in these models, making reproducibility and robust analyses problematic. Tissue explants are 

technically challenging, showing uneven cellular distribution and stoichiometry, limiting 

robust quantification of material uptake,16 and reducing their predictive utility. 

 

Another major point of note is that biomolecule interactions with materials at the nanoscale – 

the same length scale as proteins – underpin the affinity between the surface and the 

biomolecule upon adsorption. In biological media, with ~30,000 different proteins likely 

present at varying abundance,17 there is competition for adsorption sites on nanoparticles.18 

The so-called ‘protein corona’ formed around nanoparticles is highly dependent on their 
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characteristics (surface chemical functionality and nano-topography).19–21 Most studies 

investigate cell-material interactions in isolated, purified mono-cultures, propagated in cell-

specific media wherein differentially modified materials are presented to cells, even when the 

same defined starting nanoparticles are used.10 This would substantially impact the readouts 

of intercellular comparisons of materials' handling (as the cells encounter this corona rather 

than the material surface).19 Given this important confounding variable, it is important that 

the same biological medium be used with all cell types under study, to standardize 

experiments and elucidate true cellular responses to nanomaterials. This is especially relevant 

for neural cells, which co-exist in the same extracellular fluid in the intact nervous system, 

but with individual subtypes typically requiring biochemically distinctive media for survival 

and propagation in vitro. 

 

To address these challenges, we developed a multi-glial cell screening model for 

nanomaterials with the following key features: (i) a standardized culture medium developed 

in-house for the model, which permits survival of all cell types; (ii) derivation of all cells 

from a single primary source; (iii) reproducible experimenter control over cellular 

stoichiometry; (iv) ease of nanomaterial delivery and (v) compatibility with a range of 

analytical/microscopic techniques. To evaluate the biological utility of the new model in 

predicting neural responses to introduced materials, we have challenged the system with 

well-characterized MPs, to test the hypothesis that a ‘microglial barrier’ exists, limiting 

particle uptake by other neural subtypes (a phenomenon previously only inferred from post-

mortem observations following nanoparticle introduction into the intact CNS).22 
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Materials and Methods 

The care and use of animals was in accordance with the Animals (Scientific Procedures) Act 

of 1986 (United Kingdom) with approval by the local ethics committee. 

 

Materials  

Tissue culture-grade plastics, media, and media supplements were from Fisher Scientific 

(Loughborough, UK) and Sigma-Aldrich (Poole, UK). DAPI mounting medium was from 

Vector Laboratories (Peterborough, UK). TrypLE (trypsin replacement) and monoclonal anti-

biotin-FITC (fluorescein isothiocyanate) secondary antibody (clone BN-34) were from 

Sigma-Aldrich (Poole, UK). All other secondary antibodies were from Jackson 

ImmunoResearch Laboratories Inc. (West Grove, PA, USA). 

 

Sphero MPs and coronal protein characterization 

Sphero MPs (mean diameter 360 nm, range 200 – 390 nm, 15 – 20% Fe w/v; Spherotech Inc., 

Illinois, USA) have previously been characterized in detail10 and detection of Sphero-labelled 

cells using MRI illustrates their biological utility.23 MPs were incubated in media (3 h; 20 µg 

mL-1), magnetically separated, washed and air dried onto aluminium discs. FTIR data was 

collected on a Bruker Alpha system using a DRIFT attachment, with 512 scans being 

averaged at a resolution of 4 cm-1. Amide I band component peak fitting was performed using 

previously defined parameters,24 and an in-house program built using Omnic Macros Basic 

(Thermofisher Scientific). Eigen Vector Solo was used for PCA analysis, with all data being 

mean centered. The hydrodynamic diameter and zeta-potential of Sphero particles in cellular 

media were determined using a Zetasizer Nano ZS (Malvern, UK). All media contain 

carbonate buffer to maintain a pH of ~7.4 while incubated (37 °C, 5% CO2/95% humidified 

air). As pH can influence particle-media interactions, cell culture conditions were replicated: 
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media were incubated for 24 h prior to particle addition (50 µg mL-1) with the 5% CO2 

headspace being sealed between removal and measurement. Measurements were made at 

37 °C, 5 min and 24 h following particle addition. 

 

Development of the co-culture model 

 

'Staggered Culture' approach for simultaneous cell derivation and stoichiometrically 

defined co-cultures 

The McCarthy and de Vellis mixed glial culture method25 (with modifications by Chen et 

al.)26 was used to derive all glial cell types. Parallel seeding of flasks with dissociated tissue 

at different densities [poly-D-lysine (PDL)-coated 75 cm2 flasks; D10; 37 °C, 5% CO2/95% 

humidified air], ensured cells reached confluence at different times, enabling simultaneous 

derivation of high purity cellular fractions (Figure 1). Cells were plated on PDL-coated glass 

coverslips in 24 well plates and subjected to 50% medium change (D10-CM ‘gliosupportive’ 

medium) every 2 – 3 d. For an initial assessment of competitive MP uptake dynamics, 50:50 

co-cultures were used to ensure comparable cell numbers were present for head-to head 

analyses. A density of 6 x 104 cells per cm2 was selected to avoid the adverse effects of 

confluence, whilst permitting survival of all cell types (Supplementary Table S1). 

 

Development of the standardized 'gliosupportive' medium 

All cells were plated on PDL coated 24 well plates (astrocytes at 4 x 104 cells cm-2; microglia 

at 9 x 104 cells cm-2; OPCs at 6 x 104 cells cm-2). In pilot experiments, mono-cultures of each 

cell type were tested for 48 h in various cell specific media (Supplementary Table S2). To 

develop a gliosupportive medium, D10 medium supplemented with conditioned D10 medium 
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from parent mixed glial cultures was tested (D10-CM; conditioned medium derived 48 h after 

last medium change, sterile-filtered and stored at 4 °C).  

Competitive uptake studies 

To test our proposed ‘extracellular barrier’ hypothesis using our multicellular model, Sphero 

particles (20 µg mL-1) were added to glial mono-cultures or 50:50 co-cultures, 24 h after 

plating in the gliosupportive medium. Mono-cultures served as internal controls, 

demonstrating intrinsic particle uptake by each cell type. After 24 h, all cultures were washed 

and fixed (4% paraformaldehyde) for immunocytochemistry. 

Immunocytochemistry 

Fixed cells were incubated with blocking solution (RT; 30 min), then primary antibody or 

lectin in blocking solution (Supplementary Table S3; 4 °C; overnight), washed with PBS, 

and incubated with the appropriate FITC-conjugated secondary antibody (1:200; RT; 2 h) and 

mounted with nuclear stain DAPI.  

Fluorescence microscopy for toxicity and uptake analyses 

Samples were photographed on an Axio Scope A1 fluorescence microscope (Carl Zeiss 

MicroImaging, Germany) and images merged using Photoshop CS3. A minimum of three 

microscopic fields and 100 nuclei per culture were assessed for all conditions. Toxicity was 

assessed by morphological observations and by comparing proportions of pyknotic nuclei 

(pyknotic/ healthy plus pyknotic), identified as small, intensely stained and often 

fragmenting. Culture purity and stoichiometry were determined by assessing the percentage 

of cells expressing cell-specific markers. Extent of MP-loading was assessed using a semi-

quantitative technique by comparison with the average cross-sectional area of an OPC, as 

described previously.10 Briefly, uptake was scored as low (<10% of the area of an average 

nucleus), medium (10 – 50%) or high (>50%). Elsewhere, we have discussed the benefits of 

this technique versus techniques deriving an average value for fluorescence or iron per cell.10 
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Further, measurements of ‘intracellular’ iron content (using colorimetric absorbance assays) 

include substantial proportions of extracellular (membrane-bound) particles: 20% of the iron 

per cell value for microglia,27 and up to 50% for astrocytes.28 Such techniques also assume an 

even distribution between cells and we have shown that considerable heterogeneity exists 

within glial subtypes in terms of extent of uptake.10  

Statistical analysis 

Data were analyzed using Prism software (GraphPad, CA, USA) and are expressed as mean ± 

standard error of the mean unless stated otherwise. ‘n’ refers to the number of primary 

cultures from which mixed glial fractions were derived, each established from a different 

litter. Unpaired two-tailed t-tests were performed to compare the following between mono- 

and co-cultures: (i) the percentage of MP-labelled cells, (ii) proportions of pyknotic nuclei, 

(iii) proportions of cells showing ‘low’, ‘medium’ or ‘high’ levels of MP-loading. 

Live cell dynamic time-lapse imaging 

To study microglial behavior (specifically membrane activity and survival), mono-cultures 

were plated in PDL-coated 24 well plates (6 x 104 cells cm-2, D10). After 24 h, cultures were 

imaged using time-lapse phase contrast microscopy (Nikon Eclipse Ti fluorescence 

microscope with Nikon DS-U2/L2 camera and NIS Elements BR 3.22.14 software), then 

Sphero MPs were added (20 µg mL-1) and cultures imaged using time-lapse microscopy. To 

assess if microglial behavior was similar in mono versus co-cultures, a mixed glial culture 

was subjected to time-lapse imaging before and after Sphero addition (20 µg mL-1, D10-CM). 

In separate experiments, cells were fixed and stained for transmission electron microscopy 

and scanning electron microcopy to visualize the ultrastructure of cells (Supplementary 

methods).   
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Results 

 

Differences in MP protein coronas in different cell media highlight the need to develop a 

single gliosupportive medium 

Astrocytes, microglia, OPCs and oligodendrocytes are typically cultured in distinct media 

(D10, OPC-MM and Sato; see supplementary methods). Sphero particles incubated in each 

medium showed differences in MP-associated coronas (Figure 2) highlighting the 

importance of employing a single cell medium for intercellular comparisons of nanoparticle 

uptake. In pilot experiments, no single cell-specific medium could support all cell types 

without adversely affecting survival, proliferation or increasing the proportion of undesirable 

cell phenotypes29 (Supplementary table S2). Often, ‘conditioned’ media are used for cell 

culture, wherein proteinaceous materials secreted by cells better support cell populations 

compared to standard media - offering a potential solution to this problem. In our cultures, 

multiple factors are secreted by the astrocyte bedlayer into base medium which becomes 

conditioned, so it was rationalized that D10 conditioned medium from parent cultures could 

provide an enhanced chemical medium to sustain multiple glial cell types in our co-cultures. 

Indeed, we found that a 20% supplement successfully supported the attachment and survival 

of all glial cell types whilst limiting cell differentiation and genesis of undesirable cell 

phenotypes (Supplementary table S2), identifying this as an appropriate gliosupportive 

medium.  

 

Analysis of particle characteristics between cell specific glial culture media versus the 

new gliosupportive medium 

Detailed analyses of corona formation were performed in the standard media and 

gliosupportive medium. To assess if particles exhibited different size/charge characteristics in 



11 

 

different media, dynamic light scattering (DLS) and zeta potential measurements were 

performed (Figure 3A). Particles exhibited similar hydrodynamic diameters in different 

media, and after differing incubation periods (5 min versus 24 h). Zeta-potential 

measurements demonstrated a similar negative charge for particles across media. These 

measurements may be expected to show similarity due to generalization of proteinaceous 

adsorption with similar adsorbed protein layer thickness (and similar hydrodynamic 

diameters) and surface charge states. By contrast, FTIR analysis of the amide I band, 1600-

1700 cm-1, is well-documented to be highly sensitive to changes in protein secondary 

structure.18,24 Although also a global measure of protein structure, this technique 

discriminated between the nature of the adsorbed layer compositions formed from various 

media (Figure 3B). Variation in amide II and III was also observed (data not shown). 

Component amide I band fitting of each of the particle coronas formed in different media 

highlights significant differences between global corona secondary structures (Figure 3A). 

 

Principal component analysis (PCA) of FTIR spectra was carried out to determine the 

variation patterns of the amide I band (1710-1590 cm-1) and whole mid-infrared region 

(4000-400 cm-1, data not shown). PCA is a statistical approach for the examination of 

complex variance between samples; when applied to spectroscopic data it is often referred to 

as a reverse Beer-Lambert law, with loadings representing the origin of the variability and 

scores highlighting the relative amount (or concentration) of this change between samples. 

The analysis highlights variances matching well with protein secondary structure 

components: α-helix (~1655 cm-1), extended chain or β-sheet (~1636 & 1628 cm-1) and side 

chain (~1614 cm-1; Figure 3B). A component of PC1 includes a peak at 1601 cm-1, a highly 

indicative band in the styrene coating of the MPs used here,10 possibly indicating a change in 

the presentation of this coating after protein adsorption. PCA scores show excellent 
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discrimination between all four samples using only PC1 and PC2 (Figure 3C). TEM analyses 

of particles revealed electron dense rings, indicating the presence of iron around a 

polystyrene core, consistent with the reported physical diameter range: 200 – 390 nm (Figure 

3D). 

 

Co-cultures of defined stoichiometry could be propagated in the gliosupportive medium  

High purity glial fractions were derived from mixed glial parent preparations - 

astrocytes (97.8 ± 1.0% GFAP+), microglia (98.0 ± 0.9% lectin-reactive) and OPCs (98.1 ± 

0.4% A2B5+ or NG2+; Supplementary figure F1A). Individual cell types were successfully 

combined to produce co-cultures with approximately 1:1 cellular stoichiometry in the 

gliosupportive medium (Supplementary figure F1A). In co-cultures, each cell type was 

evenly distributed, ensuring a reliable head-to-head comparison of competitive particle 

uptake dynamics. In some experiments, mature and highly branched oligodendrocytes were 

identified (Supplementary figure F1B), and stained with the late-stage marker MBP (data 

not shown) indicating that this medium can support all stages of the oligodendrocyte lineage. 

This was confirmed in further pilot experiments, in which astrocytes, microglia and OPCs 

were added to an oligodendrocyte culture (at 8 DIV) and all four cell types could be 

successfully co-cultured in D10-CM for 48 h. 

 

Microglia dramatically reduce MP uptake by other cell types proving the 'extracellular 

barrier' hypothesis in our model 

For all cell types, the particle dose used here has previously been tested in 

monocultures, without evidence of toxicity at 24 h.10,23,30 To rule out Sphero-induced toxicity 

in multicellular cultures, cell viability assays were conducted. No toxicity was observed in 

mono- or co-cultures: no differences in cellular adherence or cellular/nuclear morphology 
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were apparent by phase/fluorescence microscopy following immunostaining. No significant 

differences in numbers of pyknotic nuclei were found between mono- and co-cultures (less 

than 5% of cells, consistent with our previous reports).10,23,30 

 

Glial Monocultures: MP-labelled cells were readily identified in all cultures. In 

mono-cultures, the cellular hierarchy in percentage of cells labelled and extent of loading was 

consistent with our previous report:10 microglia > astrocytes > OPCs, with  ~100% of 

microglia and astrocytes being labelled (Figure 4A, B, E). The extent of loading varied 

between cell types with more microglia exhibiting ‘high’ loading than astrocytes (~55% 

versus ~35%). OPCs showed lower proportions of labelled cells (~75%), and lower extent of 

accumulation [~5% showing ‘high’, with ~20% showing ‘low’ loading (Figure 4C, D, F)]. 

 

50:50 co-cultures with microglia: Particle uptake features in astrocytes and OPCs 

were dramatically altered in the presence of microglia, both in proportions of cells labelled 

and extent of loading. Microglia mainly exhibited ‘high’ loading in co-cultures (Figure 4A, 

B, E). Percentages of labelled astrocytes and OPCs were markedly reduced (ca. 100% to 70% 

and 75% to 35% respectively, Figure 4A, C-F) along with a reduced extent of loading.  

 

Ultrastructural and dynamic live cell imaging to understanding the basis for the 

‘microglial barrier’ effect 

Ultrastructural analyses of microglia revealed extensive membrane ruffling and 

infoldings (Figure 5A, B) versus OPCs (Figure 5C) and astrocytes (not shown). This 

suggests high levels of microglial endocytotic/phagocytic activity versus other cell types. The 

rounded morphologies observed using electron microscopy resembled those of activated 

microglia under light/fluorescence microscopy (Figures 4 and 5). Supporting the 
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ultrastructural observations, live microglia under time-lapse microscopy showed rounded, 

ruffled morphologies and sweeping projections of membrane rapidly extruded and retracted 

(Video 1: individual frames 20 seconds apart; Figure 5D).  Membranes of astrocytes and 

OPCs showed motility, but with a lesser rate/extent of activity than microglial membranes 

(Video 1; Figure 5D). Comparable microglial morphologies and membrane activity were 

observed using time-lapse imaging of monocultures (Video 2; Figure 5E), demonstrating 

that these microglial behaviors are not dependent on the presence of other glial cells. 

Microglia remained within a region of approximately 80 µm diameter, appearing to explore 

their immediate microenvironment with membrane projections, an observation consistent 

with the proposed surveillance role of the microglia in the CNS. 

 

Following MP addition, microglia became MP-loaded within 1 h, with large 

intracellular accumulations apparent within 90 min (Figure 5F, G). In mixed cultures (in 

gliosupportive medium), labelled microglia were identified within 15 min and heavily MP-

loaded cells, with increasingly spherical morphologies, were apparent by 2 h (Video 3). 

Notably, no MP-loading was apparent in astrocytes or OPCs in mixed cultures over the same 

period. Some microglia extended processes over and around neighboring cells, a behavior 

that may be expected to limit the latter cells’ access to particles. 
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Discussion 

Here, we have successfully developed a multicellular (multi-glial) model for the 

developmental testing of medical biomaterials. Representation of all the major glial subtypes 

in the model ensures mimicry of the in vivo situation where the glia account for ca. 99.5% of 

nanoparticle uptake from the extracellular environment.9 We utilized our approach to 

demonstrate for the first time, the existence of a competitive ‘microglial barrier' to particle 

uptake in other neural cells in real-time. Parallel derivation of all glial types for the model 

from a single primary source, as achieved here, avoids problems with cell lines which are 

often of unknown provenance (origin and treatment history)31 and altered physiology,32 

potentially leading to dramatically different nanoparticle uptake dynamics and toxicity 

profiles compared with primary cells.16 Our method also ensures that constituent cells possess 

identical ages/anatomical origins, with culture under identical conditions. Further, by 

achieving defined cellular stoichiometry with high reproducibility, direct intercellular 

comparisons can be reliably drawn. The even cellular distribution in monolayers facilitated 

light and fluorescence microscopical analysis, obviating the need for confocal or z-stack 

identification of labelled cells. This system was also analyzed using time-lapse light and 

fluorescence microscopy, highlighting the potential to provide dynamic detail about particle 

uptake and particle-induced changes in cellular behavior (e.g. altered motility). As such, we 

consider that our model offers significant advantages over alternative neural co-culture 

systems currently used within the nanomedicine community. 

 

As far as we are aware, we are also the first to demonstrate that different biomolecular 

coronas are formed in different neural media, identifying this as a critical confounding 

variable in cross-cellular comparisons of materials handling. Competitive protein binding to 

interfaces is a highly dynamic process, with distinct variability in the composition of the 
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formed biolayer in different biochemical media.19,21,33,34 Changes in the protein corona 

presented at the particle surface lead to variance in how cells 'perceive' particles, through 

non-specific interaction or specific receptor mediated responses. Therefore, the cell-material 

interactions can be expected to vary between media. Secondary structure changes within the 

protein corona are indicative of a global change within the adsorbed protein layer.18,35 Here 

we clearly highlight this variability. Differences in global secondary structure were observed 

from component amide I band fitting, particularly with respect to the α-helical component. 

PCA analysis of spectra further supported this finding, with discrimination between coronas 

formed from the four different media being highly resolved depending upon secondary 

structure component bands. Consequently, development of a single medium to support all cell 

types was a major outcome, to overcome issues associated with medium-specific corona 

formation. Therefore, we consider this model can provide a true reflection of multiple glial 

responses to nanomaterials, as pertains in complex neural tissue. Further analysis of the 

protein corona in future studies would allow for a more detailed insight into the mechanisms 

underpinning particle-neural cell interactions, where a major knowledge gap currently exists. 

Techniques such as 2D PAGE and mass spectrometry can be used to characterize the protein 

components of the corona, for various particle-medium combinations. This may reveal 

correlations between the presence of particular proteins and specific cell-particle interactions 

in those media; the predictive value of such data would greatly aid particle design for 

optimized cell interaction and internalization.  

 

Astrocytes and OPCs showed dramatic reductions in MP uptake upon culture with 

microglia, confirming that extensive and avid microglial uptake is a major extracellular 

barrier limiting particle uptake in other cells. These results indicate that MP-loading observed 

in neural mono-cultures cannot be extrapolated to mixed populations (such as the intact 
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CNS). Indeed, mono-culture data, as is widely-reported within the nanomedicine community, 

will likely provide significant over-estimates of the extent of MP-loading possible for neural 

cells within mixed cell populations, thereby providing insufficient insight into responses 

within the intact nervous system. Further, our in vivo studies have shown that delivery of the 

Sphero particles employed here into the spinal cord parenchyma results in extensive particle 

localization within microglia/macrophages, with negligible uptake in other neural cells 

(unpublished data). Similarly, post-mortem studies of glioblastoma patients who received 

thermotherapy with MPs have shown that particles are predominantly localized within 

macrophage like cells.36 By contrast, isolated neural tumor cells do have the capacity to take 

up particles in vitro22 which would have predicted uptake in the intact CNS, highlighting the 

critical importance of developing multicellular models that incorporate the CNS immune 

component in order to make reliable predictions about the neural handling of introduced 

materials. Direct delivery of other MPs to the CNS also results in competitive uptake 

dynamics between glial cell types, with reported microglial dominance of this uptake22 (as 

reported here). The striking similarity of these findings to ours, highlights the neuro-mimetic 

and predictive value of our advanced model. Complementary ultrastructural and dynamic 

(live cell) imaging applied to the model have provided insight into the basis for the 

‘microglial barrier’ effect10 by confirming the highly phagocytic and active nature of 

microglia in terms of cellular motility, membrane re-organization and surveillance behaviors, 

all of which will limit particle uptake by other neural cells in the vicinity. 

 

We consider that the versatility of the model allows for diverse screening applications 

in regenerative neurology. For example, biomaterials intended to evade microglial clearance 

and/or target specific neural cell types could be tested, and the effects of drugs on competitive 

uptake dynamics could be assessed. There is also considerable scope to increase the 
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sophistication of the model in terms of cellular complexity (including addition of neurons) 

and tailored stoichiometry (Figure 6). Consequently, this facile system can be employed to 

conduct head-to-head comparisons of biomaterials handling by glial cells, and provides a 

foundation by which screening approaches can be standardized. We predict that such neuro-

mimetic models have the potential to accelerate the rate of discovery of neurocompatible and 

efficacious materials for neuroregenerative applications, whilst taking a major step towards 

reducing live animal experimentation. 
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Figure Legends 

Figure 1. Schematic diagram showing ‘Stoichiometrically Defined’ co-culture method. 

 

Figure 2. A pan-gliosupportive medium is necessary to standardize the protein corona. 

(A) Schematic of protein corona formation in biological medium. (B) Amide I region of 

protein corona formed from saline and different culture media. 

 

Figure 3. Magnetic particles developed measurably different coronas in different neural 

culture media. Analyses of MPs incubated in different neural media: (A) Zetasizer and FTIR 

analyses (comparative amide I component bands), (B) PCA loadings, (C) PC1 and PC2 score 

plot and (D) transmission electron micrograph of Sphero particles showing electron dense 

iron ring around polystyrene core. 

 

Figure 4. Astrocytes and OPCs show marked reduction in proportions of MP-labelled 

cells and extent of loading in co-culture with microglia. Fluorescence micrographs of (A) 

astrocyte: microglia co-culture showing extensive microglial loading (white arrows). Contrast 

unlabelled GFAP+ astrocytes (yellow arrows) with several labelled astrocytes in mono-

cultures (inset; arrows show ‘high’ loading). (B) Microglial mono-culture exhibiting 

extensive loading (arrows; GFAP-; phase contrast counterpart inset). (C) OPC: microglia co-

culture showing extensive microglial loading (arrows; DAPI+/A2B5-) - note lack of labelled 

OPCs. Inset, OPC mono-culture with multiple labelled OPCs, arrows show ‘high’ loading. 

(D) OPC: microglia co-culture showing extensive loading in microglia - note lack of OPC 
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labelling (DAPI+/lectin-unreactive; phase contrast counterpart inset). (E) Bar graph showing 

proportions of MP-labelled cells/extent of loading in microglia:astrocyte cultures. Proportions 

of MP-labelled astrocytes were significantly reduced versus mono-cultures (+++p < 0.001) 

with more astrocytes exhibiting ‘medium’ (*p < 0.05) or ‘high’ (*p < 0.05) loading, and 

fewer exhibiting ‘low’ loading (***p < 0.001); n = 3. (F) Bar graph showing proportions of 

MP-labelled cells/extent of loading in microglia: OPC cultures. When co-cultured with 

microglia, proportions of MP-labelled OPCs were significantly reduced (+++p < 0.001). More 

OPCs exhibited ‘medium’ (***p < 0.001) loading in mono-cultures than in co-cultures (n = 

4). 

 

Figure 5. Microglia possess highly active membrane projections and exhibit rapid and 

extensive uptake of MPs. (A) Transmission electron micrograph of an MP-labelled 

microglial cell (red arrows) showing extensive membrane ruffles/folds (black arrows). SEM 

reveals highly ruffled microglial membrane (B), compared with relatively quiescent OPC 

membranes (C). Note similarities in (A) and (B), in morphologies and membrane folds. (D) 

Time-lapse micrographs of a mixed culture without MPs (stills from Video 1) show 

astrocytes with flattened phenotypes in the bedlayer, while OPCs exhibit relatively small, 

dark cell bodies with fine processes. Microglia display rounded morphologies with membrane 

being rapidly extruded and retracted (arrow). Astrocytes and OPCs show limited membrane 

motility (also see Video 1), compared to the microglial cell (arrow) over the same period. (E) 

Time-lapse series from a microglial mono-culture in the absence of MPs (still from Video 2). 

Arrows indicate the same cell in each frame, showing extensive and rapid membrane 

remodeling. (F) Representative phase-contrast image of a live microglial mono-culture after 
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90 min MP incubation, with counterpart fluorescence micrograph showing high MP-loading 

(G). 

 

Video 1: Mixed glial culture, no MPs, 20 s between frames, 79 min 20 s length. The 

sequence shows high levels of microglial activity, relative to other cell types. 

 

Video 2: Microglial mono-culture, no MPs, 2 min between frames, 2 h 58 min length. The 

sequence confirms that microglial activity is similar in mono- and co-cultures. 

 

Video 3: Mixed glial culture, 20 min post-MP addition, 2 min between frames, 12 h 8 m 

length. The sequence demonstrates the microglial dominance of particle uptake versus other 

cell types present. 

 

Figure 6. Schematic showing potential enhancements and applications of the 

stoichiometrically defined neural co-culture in vitro screening platform. 


