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ABSTRACT 
 

An approach to the creation of learning materials which aid the visualization of 

stereoselective reaction pathways is presented. Molecular editing software can be used 

to create models of various transition-state geometries. These 3-dimensional models can 10 

be manipulated, using suitable visualization software, to select relevant viewpoints. By 

using an overlay annotation tool, line-diagrams can be drawn directly over these 3-

dimensional representations. This may help students to make representational 

translations between the 3-dimensional structures (transition-states etc) and the 2-

dimensional diagrams typically used to depict these objects.  15 
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INTRODUCTION 25 

 

For some students, stereochemistry can be a particularly challenging aspect of their 

organic chemistry education.1 There is often significant variation in students’ ‘spatial-

awareness’2 and their ability to visualize and mentally manipulate 3-dimensional 

structures. In particular, students sometimes find it difficult to make the cognitive 30 

connection between a 3-dimensional object, for instance a transition-state geometry or 

conformational structure, and the necessarily 2-dimensional diagrams typically used to 

depict it.  Educationally, this might be seen as a ‘threshold’ concept3 as students often 

make significant progress once a certain level of understanding has been reached but 

progressing past this level is hard.  35 

 

Molecular models, either real or virtual, are an extremely useful tool in aiding 

students’ understanding of stereochemical concepts.4 The approach outlined here uses 

a series of molecular editing and visualization tools to create learning materials aimed 

at supplementing these activities.  40 

EXAMPLE OF COURSE MATERIAL 
 

As an illustrative example of a challenging stereoselective reaction pathway, a 

particular slide from one of our 3rd year optional B.Sc. courses - ‘Diastereoselectivity in 

Natural Product Synthesis’ - is shown in Figure 1. This shows a conformational line-45 

diagram of the proposed ‘Zimmerman-Traxler’ transition-state5 for a boron mediated 

aldol coupling of an -chiral ethyl ketone with an aldehyde via the E-enolate. The 
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rationale for this transition-state is based on: 1) Adoption of a ‘chair’ conformation for 

the 6-membered transition-state. 2) Adoption of an enolate conformation which 

minimizes A1,3 strain between the E-methyl group and the substituent on the -carbon. 50 

This places the smallest of the -substituents (hydrogen) in the plane of the enolate 

double bond. 3) Approach by the aldehyde towards the least hindered ‘face’ of the 

enolate, i.e. closer to the methyl group rather than the large alkyl group RL. In other 

words, RL is on the ‘outside’ of the transition-state, in a sterically less demanding 

position.6  55 

 

 

Figure 1: Course notes slide for the aldol reaction of E-boron-enolates of -chiral ketones via a 

Zimmerman-Traxler type transition-state. The Immediate Product is drawn in the same conformation as the 60 

transition-state. The bonds highlighted in blue in the Immediate Product conformational diagram indicate 

which bonds will be ‘in the plane of the paper’ of the ‘standard’ line diagram on the right. The required 

viewpoint for this is indicated with the eye symbol. The stereochemical configuration in the ‘greyed out’ 

section of the product line diagrams is already known from the starting materials.  

There are several aspects of this example which highlight various areas of difficulty 65 

students have with visualization. Firstly, whilst some students have the ability to form a 

3-dimensional mental representation of the transition-state from the conformational 

diagram used to depict it, others find this quite difficult. Perhaps more difficult is the 

‘mental’ rotation of the viewpoint required to go from the conformational diagram of the 

Immediate Product to the ‘standard’ line diagram, even when the required viewpoint 70 
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and the bonds which are ‘in the plane of the paper’ in the new viewpoint are indicated. 

Finally, flipping the final product either horizontally or vertically can also present 

difficulty.  

 
 75 

APPROACH TO VISUALIZATION 
 

 

By using 3-dimensional models with a combination of screen-casting and ‘virtual-

transparency’ applications, it is possible to clearly demonstrate the relationships 80 

between starting-materials, transition-state geometries and products (and their 3-

dimensional and 2-dimensional depictions) in a straightforward manner.  

 

A combination of real (e.g. Molymod) and virtual molecular models were used. Real 

models have the obvious advantage that students can physically interact with them and 85 

actually see them in 3-dimensions. An advantage of using virtual models is that bond-

lengths, bond-angles and valencies are not restricted in any way. In addition, virtual 

models are essentially free, assuming free access to a computer, and take no time to re-

construct, thus allowing students to easily swap between several models.  

 For the virtual models, the freely available and open-source Avogadro7 software 90 

package was used for their creation. Importantly, Avogadro allows the user to build 3-

dimensional molecules from scratch and also permits the arbitrary placement and 

movement of different atoms, regardless of bond-length or bond-angles. Individual 

atoms or groups of atoms can be selected and dragged into the desired positions. As 

such, it is reasonably straightforward to construct any particular arrangement required. 95 

In addition, certain structural motifs, for instance the chair conformation of a 6-
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membered ring, can also be reached very easily using the built-in energy minimization 

routines. These can then serve as a convenient starting point for other structures, e.g. 

Zimmerman-Traxler transition-states. Another important feature of Avogadro is the 

ability to select any bond and rotate around the dihedral angle arbitrarily. This is very 100 

useful when creating Felkin-Anh type or antiperiplanar transition-states. In general, for 

a particular reaction, Avogadro was used to create a 3-dimensional model of the 

proposed transition-state as well as the corresponding 3-dimensional model of the 

product, where the atoms were arranged with the same geometry as the transition-

state. In order to facilitate clear visualization, elements other than those actually 105 

present were substituted in to represent various groups, based on their size and color. 

The structures of the transition-state and product geometries only differed significantly 

in the arrangement of bonds whilst the atoms remained more-or-less in the same 

position (see Supporting Information for examples of .pdb files of structures created in 

Avogadro).  110 

 In addition to being extremely useful in building and editing 3-dimensional 

structures, Avogadro is also able to display the structures with reasonable clarity. 

However, for structural display, the QuteMol8 package, which is also freely available 

and open-source, was preferred. QuteMol enables high quality real-time manipulation 

and rendering of chemical structures. Its settings are highly configurable and a wide 115 

variety of molecular display types are available, including ball-and-stick types closely 

resembling the Molymod structures. It also has some built-in settings which serve as 

convenient start points for further adjustment. One limitation of QuteMol is that it 

represents all bonds as single bonds. This obviously needs to be explained when these 

models are being used. Also, bonds seem to be constructed in QuteMol according to the 120 

distance between atoms in the .pdb representation, so occasionally atoms need to be 

moved slightly further apart (in Avogadro) to avoid having bonds being inadvertently 
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inserted between atoms simply because they are too close to each other. Despite these 

minor issues, the increased clarity and visual appeal of QuteMol made it the preferred 

display method. The settings used (see Supporting Information for details) allowed bold 125 

‘cartoonish’ ball-and-stick structures to be displayed. Importantly, QuteMol is able to 

draw borders around structural features, making it easier to see which atoms/bonds 

are in front of other atoms/bonds.  

 

To make connections between various views of the 3-dimensional structures and their 130 

2-dimensional depictions, for example standard molecular line drawings, it was 

desirable to be able to draw line diagrams directly on top of the corresponding 3-

dimensional structure, and then to show only the line drawing itself. This required a 

‘virtual transparency’ application. For this purpose, transparency tools, such as 

EpicPen9 or Annotate!Pro10 can be used. This creates a transparent drawing canvas on 135 

top of the entire desktop. The pen settings (e.g. colour, thickness) are configurable and 

the drawings can easily be turned on or off, or erased. A pen input tablet was used to 

draw these line diagrams (Wacom Bamboo).  

 

A typical work-flow is shown in Figure 2. Structures created in Avogadro are opened in 140 

QuteMol, where they can be manipulated to show different viewpoints. The annotation 

tool, e.g. EpicPen or Annotate!Pro, is then used to draw line-diagrams over the various 

3-dimensional views. The 3-dimensional view can then be temporarily removed simply 

by bringing any clear window to the front of the display, leaving the line diagram on its 

own. The line diagram can then be erased and the molecule manipulated to show 145 

another viewpoint, onto which a new line diagram can be drawn. In this way, the 

instructor can demonstrate the link between the various viewpoints of a particular 3-

dimensional representation and the corresponding 2-dimensional line diagrams. In 
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addition to use in lectures, instructional videos can easily be created using screen-

casting software alongside this approach. CamStudio,11 a free and open-source 150 

screencasting application was used for this purpose (several videos outlining the 

approach are provided in the Supporting Information). By making the 3-dimensional 

structure files for transition-state geometries available to download on our intranet, 

students are also able to investigate them in their own time.  

 155 

 

 

Figure 2: Workflow for stereochemical visualization. A) Transition-state geometry created in Avogadro. B) 

QuteMol used for manipulation and visualization, in lectures or screencasts. C) EpicPen or Annotate!Pro can 

be used to draw overlay line-diagram on the structure in QuteMol. D) The line diagram can be temporarily 160 

isolated by opening a blank window over QuteMol.  

 

In addition to using virtual 3-dimensional models, real models (e.g. Molymod) can also 

be used with this approach (Figure 3), thereby supplementing the students’ own use of 

physical models. To a certain extent the use of real models with this approach is more 165 
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difficult, in that the molecules need to be held in place by hand. This means that 

overlay drawing cannot be done at the same time and necessitates the recording of a 

video of the manipulation first, then creating a new one with the annotation added. This 

could be alleviated if some clamping mechanism was used to hold the model steady 

whilst the overlaid line diagram was being drawn.  170 

 

Figure 3: Use of physical models (Molymod). A) Transition-state structure made with Molymod system which 

is manipulated, using a webcam to make a video. B) Video played and paused to show a particular viewpoint. 

EpicPen or Annotate!Pro can be used to draw overlay of line diagram. CamStudio can be used to capture 

screen/voice to make instructional video.  175 

 

CONCLUSION 
 

 

Both anecdotal evidence and student feedback strongly suggest that these learning 180 

materials have been extremely beneficial to our undergraduates, especially those who 

previously tended to struggle with the visualization and mental manipulation of 3-

dimensional conformational structures. Particular areas of the course where this 

approach has been used include: Zimmerman-Traxler transition-states (e.g. 

stereoselective aldol reactions), stereoselective reductions (e.g. Evans-Saksena, Prasad) 185 

and Diels-Alder cycloadditions. These are all currently taught in the 3rd year of our 

undergraduate degrees on both the B.Sc. and MChem integrated Masters courses. 
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However, the approach should also find use in many other areas of organic chemistry, 

particularly those involving stereochemistry or conformational analysis.  

ASSOCIATED CONTENT 190 

Supporting Information 
Several videos demonstrating the approach are included in the Supporting 

Information, along with .pdb and .cml structure files of the Zimmerman-Traxler 

transition-state and product used in the videos (QuteMol can be used to open the .pdb 

file and Avogadro can be used to open the .cml file).  195 
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